Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 819
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Cell ; 35(6): 2271-2292, 2023 05 29.
Article in English | MEDLINE | ID: mdl-36916511

ABSTRACT

Ethylene induces anthocyanin biosynthesis in most fruits, including apple (Malus domestica) and plum (Prunus spp.). By contrast, ethylene inhibits anthocyanin biosynthesis in pear (Pyrus spp.), but the underlying molecular mechanism remains unclear. In this study, we identified and characterized an ethylene-induced ETHYLENE RESPONSE FACTOR (ERF) transcription factor, PpETHYLENE RESPONSE FACTOR9 (PpERF9), which functions as a transcriptional repressor. Our analyses indicated PpERF9 can directly inhibit expression of the MYB transcription factor gene PpMYB114 by binding to its promoter. Additionally, PpERF9 inhibits the expression of the transcription factor gene PpRELATED TO APETALA2.4 (PpRAP2.4), which activates PpMYB114 expression, by binding to its promoter, thus forming a PpERF9-PpRAP2.4-PpMYB114 regulatory circuit. Furthermore, PpERF9 interacts with the co-repressor PpTOPLESS1 (PpTPL1) via EAR motifs to form a complex that removes the acetyl group on histone H3 and maintains low levels of acetylated H3 in the PpMYB114 and PpRAP2.4 promoter regions. The resulting suppressed expression of these 2 genes leads to decreased anthocyanin biosynthesis in pear. Collectively, these results indicate that ethylene inhibits anthocyanin biosynthesis by a mechanism that involves PpERF9-PpTPL1 complex-mediated histone deacetylation of PpMYB114 and PpRAP2.4. The data presented herein will be useful for clarifying the relationship between chromatin status and hormone signaling, with implications for plant biology research.


Subject(s)
Malus , Pyrus , Pyrus/genetics , Pyrus/metabolism , Transcription Factors/metabolism , Anthocyanins/metabolism , Histones/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism , Fruit/metabolism , Malus/genetics , Malus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
2.
BMC Plant Biol ; 24(1): 431, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773421

ABSTRACT

BACKGROUND: The flower colour of H. syriacus 'Qiansiban' transitions from fuchsia to pink-purple and finally to pale purple, thereby enhancing the ornamental value of the cultivars. However, the molecular mechanism underlying this change in flower colour in H. syriacus has not been elucidated. In this study, the transcriptomic data of H. syriacus 'Qiansiban' at five developmental stages were analysed to investigate the impact of flavonoid components on flower colour variation. Additionally, five cDNA libraries were constructed from H. syriacus 'Qiansiban' during critical blooming stages, and the transcriptomes were sequenced to investigate the molecular mechanisms underlying changes in flower colouration. RESULTS: High-performance liquid chromatography‒mass spectrometry detected five anthocyanins in H. syriacus 'Qiansiban', with malvaccin-3-O-glucoside being the predominant compound in the flowers of H. syriacus at different stages, followed by petunigenin-3-O-glucoside. The levels of these five anthocyanins exhibited gradual declines throughout the flowering process. In terms of the composition and profile of flavonoids and flavonols, a total of seven flavonoids were identified: quercetin-3-glucoside, luteolin-7-O-glucoside, Santianol-7-O-glucoside, kaempferol-O-hexosyl-C-hexarbonoside, apigenin-C-diglucoside, luteolin-3,7-diglucoside, and apigenin-7-O-rutinoside. A total of 2,702 DEGs were identified based on the selected reference genome. Based on the enrichment analysis of differentially expressed genes, we identified 9 structural genes (PAL, CHS, FLS, DRF, ANS, CHI, F3H, F3'5'H, and UFGT) and 7 transcription factors (3 MYB, 4 bHLH) associated with flavonoid biosynthesis. The qRT‒PCR results were in good agreement with the high-throughput sequencing data. CONCLUSION: This study will establish a fundamental basis for elucidating the mechanisms underlying alterations in the flower pigmentation of H. syriacus.


Subject(s)
Anthocyanins , Flavonoids , Flowers , Hibiscus , Metabolome , Transcriptome , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Hibiscus/genetics , Hibiscus/metabolism , Hibiscus/growth & development , Flavonoids/metabolism , Anthocyanins/metabolism , Pigmentation/genetics , Gene Expression Regulation, Plant , Gene Expression Profiling , Color
3.
BMC Plant Biol ; 24(1): 619, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937683

ABSTRACT

BACKGROUND: Anthracnose, mainly caused by Colletotrichum fructicola, leads to severe losses in pear production. However, there is limited information available regarding the molecular response to anthracnose in pears. RESULTS: In this study, the anthracnose-resistant variety 'Seli' and susceptible pear cultivar 'Cuiguan' were subjected to transcriptome analysis following C. fructicola inoculation at 6 and 24 h using RNA sequencing. A total of 3186 differentially expressed genes were detected in 'Seli' and 'Cuiguan' using Illumina sequencing technology. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that the transcriptional response of pears to C. fructicola infection included responses to reactive oxygen species, phytohormone signaling, phenylpropanoid biosynthesis, and secondary metabolite biosynthetic processes. Moreover, the mitogen-activated protein kinase (MAPK) signaling pathway and phenylpropanoid biosynthesis were involved in the defense of 'Seli'. Furthermore, the gene coexpression network data showed that genes related to plant-pathogen interactions were associated with C. fructicola resistance in 'Seli' at the early stage. CONCLUSION: Our results showed that the activation of specific genes in MAPK, calcium signaling pathways and phenylpropanoid biosynthesis was highly related to C. fructicola resistance in 'Seli' and providing several potential candidate genes for breeding anthracnose-resistant pear varieties.


Subject(s)
Colletotrichum , Disease Resistance , Gene Expression Profiling , Plant Diseases , Pyrus , Pyrus/microbiology , Pyrus/genetics , Colletotrichum/physiology , Plant Diseases/microbiology , Plant Diseases/genetics , Disease Resistance/genetics , Transcriptome , Gene Expression Regulation, Plant
4.
Small ; : e2311642, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497490

ABSTRACT

Singlet oxygen (1 O2 ) species generated in peroxymonosulfate (PMS)-based advanced oxidation processes offer opportunities to overcome the low efficiency and secondary pollution limitations of existing AOPs, but efficient production of 1 O2 via tuning the coordination environment of metal active sites remains challenging due to insufficient understanding of their catalytic mechanisms. Herein, an asymmetrical configuration characterized by a manganese single atom coordinated is established with one S atom and three N atoms (denoted as Mn-S1 N3 ), which offer a strong local electric field to promote the cleavage of O─H and S─O bonds, serving as the crucial driver of its high 1 O2 production. Strikingly, an enhanced the local electric field caused by the dynamic inter-transformation of the Mn coordination structure (Mn-S1 N3 ↔ Mn-N3 ) can further downshift the 1 O2 production energy barrier. Mn-S1 N3 demonstrates 100% selective product 1 O2 by activation of PMS at unprecedented utilization efficiency, and efficiently oxidize electron-rich pollutants. This work provides an atomic-level understanding of the catalytic selectivity and is expected to guide the design of smart 1 O2 -AOPs catalysts for more selective and efficient decontamination applications.

5.
BMC Cancer ; 24(1): 543, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684978

ABSTRACT

OBJECTIVES: This study aimed to evaluate the prognostic significance of postoperative Creatine Kinase type M and B (CK-MB) to total Creatine Kinase (CK) ratio (CK-MB/CK) in colorectal cancer (CRC) patients after radical resection. METHODS: This was a single-center retrospective cohort analysis. Subjects were stage I-III CRC patients hospitalized in Sichuan Cancer Hospital from January 2017 to May 2021. Patients were divided into abnormal group and normal group according to whether the CK-MB/CK ratio was abnormal after surgery. Through a comparative analysis of clinical data, laboratory test results, and prognosis differences between the two groups, we aimed to uncover the potential relationship between abnormal CK-MB > CK results and CRC patients. To gauge the impact of CK-MB/CK on overall survival (OS) and disease-free survival (DFS), we employed the multivariable COX regression and LASSO regression analysis. Additionally, Spearman correlation analysis, logistic regression, and receiver-operating characteristic (ROC) curve analysis were conducted to assess the predictive value of the CK-MB/CK ratio for postoperative liver metastasis. RESULTS: Cox regression analysis revealed that the CK-MB/CK ratio was a stable risk factors for OS (HR = 3.82, p < 0.001) and DFS (HR = 2.31, p < 0.001). To distinguish hepatic metastases after surgery, the ROC area under the curve of CK-MB/CK was 0.697 (p < 0.001), and the optimal cut-off value determined by the Youden index was 0.347. CONCLUSIONS: Postoperative abnormal CK-MB/CK ratio predicts worse prognosis in CRC patients after radical resection and serves as a useful biomarker for detecting postoperative liver metastasis.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/surgery , Colorectal Neoplasms/pathology , Colorectal Neoplasms/blood , Colorectal Neoplasms/mortality , Male , Female , Middle Aged , Prognosis , Retrospective Studies , Aged , Biomarkers, Tumor/blood , Liver Neoplasms/surgery , Liver Neoplasms/secondary , Liver Neoplasms/blood , Liver Neoplasms/mortality , Creatine Kinase/blood , Creatine Kinase, MB Form/blood , ROC Curve , Adult , Disease-Free Survival
6.
Cell Biol Int ; 48(6): 848-860, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38444077

ABSTRACT

Oxidized low-density lipoprotein (oxLDL), a key component in atherosclerosis and hyperlipidemia, is a risk factor for atherothrombosis in dyslipidemia, yet its mechanism is poorly understood. In this study, we used oxLDL-induced human aortic endothelial cells (HAECs) and high-fat diet (HFD)-fed mice as a hyperlipidemia model. Phosphatidylserine (PS) exposure, cytosolic Ca2+, reactive oxygen species (ROS), and lipid peroxidation were measured by flow cytometer. TMEM16F expression was detected by immunofluorescence, western blot, and reverse transcription polymerase chain reaction. Procoagulant activity (PCA) was measured by coagulation time, intrinsic/extrinsic factor Xase, and thrombin generation. We found that oxLDL-induced PS exposure and the corresponding PCA of HAECs were increased significantly compared with control, which could be inhibited over 90% by lactadherin. Importantly, TMEM16F expression in oxLDL-induced HAECs was upregulated by enhanced intracellular Ca2+ concentration, ROS, and lipid peroxidation, which led to PS exposure. Meanwhile, the knockdown of TMEM16F by short hairpin RNA significantly inhibited PS exposure in oxLDL-induced HAECs. Moreover, we observed that HFD-fed mice dramatically increased the progress of thrombus formation and accompanied upregulated TMEM16F expression by thromboelastography analysis, FeCl3-induced carotid artery thrombosis model, and western blot. Collectively, these results demonstrate that TMEM16F-mediated PS exposure may contribute to prothrombotic status under hyperlipidemic conditions, which may serve as a novel therapeutic target for the prevention of thrombosis in hyperlipidemia.


Subject(s)
Anoctamins , Endothelial Cells , Lipoproteins, LDL , Phosphatidylserines , Reactive Oxygen Species , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Animals , Humans , Phosphatidylserines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice , Anoctamins/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Male , Hyperlipidemias/metabolism , Calcium/metabolism , Diet, High-Fat , Thrombosis/metabolism , Lipid Peroxidation/drug effects , Cells, Cultured , Blood Coagulation/drug effects
7.
Environ Sci Technol ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329881

ABSTRACT

Sunlight may lead to changes in disinfection byproducts (DBPs) formation potentials of source water via transforming dissolved organic matter (DOM); however, the underlying mechanisms behind these changes remain unclear. This work systematically investigated the effect of photochemical transformation of DOM from reservoir water (DOMRe) and micropolluted river water (DOMRi) after 36 h of simulated sunlight irradiation (equivalent to one month under natural sunlight) on DBPs formation. Upon irradiation, high molecular weight (MW) and aromatic molecules tended to be mineralized or converted into low-MW and highly oxidized (O/C > 0.5) ones which might react with chlorine to generate high levels of DBPs, resulting in an elevation in the yields (µg DBP/mg C) of almost all the measured DBPs and the quantities of unknown DBPs in both DOM samples after chlorination. Additionally, DOMRi contained more aromatic molecules susceptible to photooxidation than DOMRe. Consequently, irradiated DOMRi exhibited a greater increase in the formation potentials of haloacetonitriles, halonitromethanes, and specific regulated DBPs, with nitrogenous DBPs being responsible for the overall rise in the calculated cytotoxicity following chlorination. This work emphasized the importance of a comprehensive removal of phototransformation products that may serve as DBPs precursors from source waters, especially from micropolluted source waters.

8.
Acta Pharmacol Sin ; 45(5): 914-925, 2024 May.
Article in English | MEDLINE | ID: mdl-38253637

ABSTRACT

Metrnl is a secreted protein involved in neurite outgrowth, insulin sensitivity, immunoinflammatory responses, blood lipids and endothelial protection. In this study, we investigated the role of Metrnl in ischemic stroke. Fifty-eight ischemic stroke patients (28 inpatient patients within 2 weeks of onset and 30 emergency patients within 24 h of onset) and 20 healthy controls were enrolled. Serum Metrnl was measured by enzyme-linked immunosorbent assay. We showed that serum Metrnl levels were significantly reduced in both inpatient and emergency patient groups compared with the controls. Different pathological causes for ischemic stroke such as large artery atherosclerosis and small artery occlusion exhibited similar reduced serum Metrnl levels. Transient ischemic attack caused by large artery atherosclerosis without brain infarction also had lower serum Metrnl levels. Metrnl was correlated with some metabolic, inflammatory and clotting parameters. Reduced serum Metrnl was associated with the severity of intracranial arterial stenosis and the presence of ischemic stroke. In order to elucidate the mechanisms underlying the reduced serum Metrnl levels, we established animal models of ischemic stroke in normal mice, atherosclerotic apolipoprotein E-knockout mice and Metrnl-knockout mice by middle cerebral artery occlusion (MCAO) using intraluminal filament or electrocoagulation. We demonstrated that serum Metrnl levels were significantly lower in atherosclerosis mice than normal mice, whereas acute ischemic stroke injury in normal mice and atherosclerosis mice did not alter serum Metrnl levels. Metrnl knockout did not affect acute ischemic stroke injury and death. We conclude that reduced serum Metrnl levels are attributed to the chronic vascular pathogenesis before the onset of ischemic stroke. Metrnl is a potential target for prevention of ischemic stroke.


Subject(s)
Adipokines , Ischemic Stroke , Humans , Animals , Male , Ischemic Stroke/blood , Ischemic Stroke/genetics , Female , Middle Aged , Aged , Mice, Inbred C57BL , Mice , Infarction, Middle Cerebral Artery/blood , Mice, Knockout, ApoE
9.
J Chem Phys ; 160(4)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38265087

ABSTRACT

TiNiCu0.025Sn0.99Sb0.01 is prepared using microwaves. However, an ultra-high electrical conductivity and electronic thermal conductivity are obtained by interstitial Cu and Sb doping, which could not effectively improve the ZT value. We introduce carbon dots (CDs) as a nano-second phase by ball milling to simultaneously optimize the thermoelectric properties. To our best knowledge, this is the first report on half-Heusler/CDs composites. Experimental results show that the introduction of nano-CDs optimizes the carrier concentration and mobility and dramatically improves the Seebeck coefficient through the energy filtering effect. The nano-CDs introduce more point defects, inhibit the grains growth, and form a specific carbon solid solution second phase in the matrix. The lattice thermal conductivity is reduced to the same level as TiNiSn at 1.96 W m-1 K-1 through the synergistic effect of point defects and phase and grain boundaries scattering, and the ZT value reaches a maximum of 0.63 at 873 K.

10.
Clin Lab ; 70(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38747910

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) is characterized by high invasion rates, rapid progression, and poor prognoses. Thus, identifying SCLC patients at high risk of progression and death is critical to improve long-term survival. In this study, the aspartate transaminase-to-albumin ratio (ATAR) was examined as a prognostic factor for SCLC patients. METHODS: We screened 196 SCLC patients from December 2013 to September 2022 at the Sichuan Cancer Hospital. The data was collected from patients' medical information as well as from their blood results during diagnosis. Using the Youden index as a cutoff value, patients were divided into high-risk(> 0.54) and low-risk (≤ 0.54) ATAR groups. We analyzed the prognostic factors for overall survival (OS) using the Kaplan-Meier method, univariate and multivariate analyses, Cox regression, and the C-index. RESULTS: There were 109 (55.6%) smokers among the patients, and the median OS was 17.55 months. The Kaplan-Meier analysis indicated that patients with high-risk ATAR had significantly lower OS (p < 0.0001). A multivariate analysis demonstrated that elevated ATAR is an independent adverse predictor of OS (p < 0.001, HR = 1.907). Our study found that ATAR is an independent predictor of survival outcomes in SCLC, which was superior to ALB, PNI, and SII in predicting outcomes in low-risk and high-risk groups (all p < 0.05). Models combining ATAR with ALB, PNI, and SII showed more powerful prognostic value than their corresponding original models. Moreover, the prognostic indicator ATAR can significantly stratify stage I - II and III - IV SCLC patients (p < 0.05). CONCLUSIONS: Peripheral blood ATAR prognostic index can be used as an independent predictor of SCLC patients before treatment.


Subject(s)
Aspartate Aminotransferases , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/blood , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/diagnosis , Male , Female , Lung Neoplasms/blood , Lung Neoplasms/mortality , Lung Neoplasms/diagnosis , Middle Aged , Prognosis , Aged , Aspartate Aminotransferases/blood , Serum Albumin/analysis , Kaplan-Meier Estimate , Biomarkers, Tumor/blood , Retrospective Studies , Adult
11.
Ecotoxicol Environ Saf ; 269: 115824, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38096595

ABSTRACT

Eisenia fetida is recognised as advantageous model species in ecotoxicological and regeneration investigations. The intensive utilization of carbamate pesticides (CARs) imposes heavy residue burdens and grave hazards on edaphic environments as well as soil fauna therein. However, precise mechanisms whereby the specific CAR exerted toxic effects on earthworms remain largely elusive, notably from regenerative perspective. Herein, acute responses and regenerative toxicity of two carbamates (metolcarb, MEB and fenoxycarb, FEB) against E. fetida were dissected using biochemical, histological as well as molecular approaches following OECD guidelines at the cellular, tissue and organismal level. The acute toxicity data implied that MEB/FEB were very toxic/medium to extremely toxic, respectively in filter paper contact test and low to medium toxic/low toxic, respectively in artificial soil test. Chronic exposure to MEB and FEB at sublethal concentrations significantly mitigated the soluble protein content, protein abundance while enhanced the protein carbonylation level. Moreover, severely retarded posterior renewal of amputated earthworms was noticed in MEB and FEB treatments relative to the control group, with pronouncedly compromised morphology, dwindling segments and elevated cell apoptosis of blastema tissues, which were mediated by the rising Sox2 and decreasing TCTP levels. Taken together, these findings not only presented baseline toxicity cues for MEB and FEB exposure against earthworms, but also yielded mechanistic insights into regenerative toxicity upon CAR exposure, further contributing to the environmental risk assessment and benchmark formulation of agrochemical pollution in terrestrial ecosystem.


Subject(s)
Oligochaeta , Soil Pollutants , Animals , Carbamates/metabolism , Ecosystem , Soil Pollutants/analysis , Soil/chemistry
12.
Physiol Mol Biol Plants ; 30(6): 1029-1046, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38974356

ABSTRACT

Faba bean wilt disease is a key factor limiting its production. Intercropping of faba bean with wheat has been adopted as a prevalent strategy to mitigate this disease. Nitrogen fertilizer improves faba bean yield, yet wilt disease imposes limitations. However, faba bean-wheat intercropping is effective in controlling wilt disease. To investigate the effect of intercropping under varying nitrogen levels on the incidence of faba bean wilt disease, nutrient uptake, and biochemical resistance in faba bean. Field and pot experiments were conducted in two cropping systems: faba bean monocropping (M) and faba bean-wheat intercropping (I). At four nitrogen levels, we assessed the incidence rate of wilt disease, quantified nutrient uptake, and evaluated biochemical resistance indices of plants. The application of N decreased the incidence rate of wilt disease, with the lowest reduction observed in intercropping at the N2 level. N application at levels N1, N2, and N3 enhanced the content of N, P, K, Fe, and Mn as well as superoxide dismutase (SOD), phenylalanine ammonia lyase (PAL), and polyphenol oxidase (PPO) activities and defense gene expression in monocultured plants. Additionally, these levels increased the contents of total phenols, flavonoids, soluble sugars, and soluble proteins, and all reached their maximum in intercropping at the N2 level. The application of intercropping and N effectively controlled the occurrence of faba bean wilt disease by promoting nutrient absorption, alleviating peroxidation stress, and enhancing resistance in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01466-1.

13.
J Am Chem Soc ; 145(48): 26383-26392, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37983008

ABSTRACT

Covalent organic frameworks (COFs) create extended two-dimensional (2D) skeletons and aligned one-dimensional (1D) channels, constituting a class of novel π architectures with predesignable structural ordering. A distinct feature is that stacks of π building units in skeletons shape the pore walls, onto which a diversity of different units can be assembled to form various pore interfaces, opening a great potential to trigger a strong structural correlation between the skeleton and the pore. However, such a possibility has not yet been explored. Herein, we report reversible three-dimensional (3D) coalescence and interlocked actions between the skeleton and pore in COFs by controlling hydrogen-bonding networks in the pores. Introducing carboxylic acid units to the pore walls develops COFs that can confine water molecular networks, which are locked by the surface carboxylic acid units on the pore walls via multipoint, multichain, and multidirectional hydrogen-bonding interactions. As a result, the skeleton undergoes an interlocked action with pores to shrink over the x-y plane and to stack closer along the z direction upon water uptake. Remarkably, this interlocked action between the skeleton and pore is reversibly driven by water adsorption and desorption and triggers profound effects on π electronic structures and functions, including band gap, light absorption, and emission.

14.
Clin Chem ; 69(4): 363-373, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36807661

ABSTRACT

BACKGROUND: Isothermal amplification is considered to be one of the most promising tools for point-of-care testing molecular diagnosis. However, its clinical application is severely hindered by nonspecific amplification. Thus, it is important to investigate the exact mechanism of nonspecific amplification and develop a high-specific isothermal amplification assay. METHODS: Four sets of primer pairs were incubated with Bst DNA polymerase to produce nonspecific amplification. Gel electrophoresis, DNA sequencing, and sequence function analysis were used to investigate the mechanism of nonspecific product generation, which was discovered to be nonspecific tailing and replication slippage mediated tandem repeats generation (NT&RS). Using this knowledge, a novel isothermal amplification technology, bridging primer assisted slippage isothermal amplification (BASIS), was developed. RESULTS: During NT&RS, the Bst DNA polymerase triggers nonspecific tailing on the 3'-ends of DNAs, thereby producing sticky-end DNAs over time. The hybridization and extension between these sticky DNAs generate repetitive DNAs, which can trigger self-extension via replication slippage, thereby leading to nonspecific tandem repeats (TRs) generation and nonspecific amplification. Based on the NT&RS, we developed the BASIS assay. The BASIS is carried out by using a well-designed bridging primer, which can form hybrids with primer-based amplicons, thereby generating specific repetitive DNA and triggering specific amplification. The BASIS can detect 10 copies of target DNA, resist interfering DNA disruption, and provide genotyping ability, thereby offering 100% accuracy for type 16 human papillomavirus detection. CONCLUSION: We discovered the mechanism for Bst-mediated nonspecific TRs generation and developed a novel isothermal amplification assay (BASIS), which can detect nucleic acids with high sensitivity and specificity.


Subject(s)
DNA , Nucleic Acid Amplification Techniques , Humans , DNA Primers/genetics , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , Tandem Repeat Sequences
15.
BMC Cancer ; 23(1): 1171, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037003

ABSTRACT

BACKGROUND: The aim of the study is to explore the role of preoperative folate receptor-positive circulating tumor cell (FR+CTC) levels in predicting disease-free survival (DFS) and overall survival (OS) in patients with esophageal squamous cell carcinomas (ESCC). METHODS: Three ml blood samples were prospectively drawn from ESCC patients, and ligand-targeted polymerase chain reaction (LT-PCR) was used for the quantification of FR+CTCs. Other serum indicators were measured by traditional methods. Clinicopathological characteristics were obtained from the hospital medical record system, DFS and OS data were obtained by follow-up. The correlation between clinico-pathological characteristics, DFS, and OS and FR+CTCs were analyzed, respectively. Risk factors potentially affecting DFS and OS were explored by Cox regression analysis. RESULTS: there were no significant correlations between FR+CTCs and patient age, sex, albumin, pre-albumin, C-reactive protein (CRP), ferritin and CRP/Albumin ratio, tumor size, grade of differentiation, lymph node metastasis, TNM stage, perineural invasion/vessel invasion (all P > 0.05). Nevertheless, preoperative FR+CTCs were an independent prognostic factor for DFS (HR 2.7; 95% CI 1.31-, P = 0.007) and OS (HR 3.37; 95% CI 1.06-, P = 0.04). DFS was significantly shorter for patients with post-operative FR+CTCs ≥ 17.42 FU/3ml compared with patients < 17.42 FU/3ml (P = 0.0012). For OS, it was shorter for patients with FR+CTCs ≥ 17.42 FU/3ml compared with patients < 17.42 FU/3ml, however, the difference did not reach statistical significance (P = 0.51). CONCLUSIONS: ESCC patients with high FR+CTCs tend to have a worse prognosis. FR+CTCs may monitor the recurrence of cancers in time, accurately assess patient prognosis, and guide clinical decision-making. TRIAL REGISTRATION: The study was approved by the Sichuan Cancer Hospital & Institute Ethics Committee (No. SCCHEC-02-2022-050).


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Retrospective Studies , Esophageal Neoplasms/pathology , Prognosis , Albumins , C-Reactive Protein , Folic Acid
16.
Nutr Cancer ; 75(4): 1165-1176, 2023.
Article in English | MEDLINE | ID: mdl-36892498

ABSTRACT

We explored the predictive value of various inflammatory-nutritional indicators for postoperative quality of life (QoL) in gastric cancer (GC) patients undergoing laparoscopic distal gastrectomy (LDG) and developed a novel inflammatory-nutritional score (INS). In this study, 156 GC patients who underwent LDG were included. We used multiple linear regression to analyze the correlation between postoperative QoL and inflammatory-nutritional indicators. Least absolute shrinkage and selection operator (LASSO) regression analysis was performed to construct INS. Hemoglobin was positively correlated with physical functioning (ß =8.5; p = 0.003) and cognitive functioning (ß = 3.5; p = 0.038) 3 mo, after surgery. Prognostic nutritional index (PNI) was positively associated with global health status (ß =5.8; p = 0.043). Albumin-alkaline phosphatase ratio (AAPR) was negatively correlated with emotional functioning 12 mo, after surgery (ß = -5.7; p = 0.024). Neutrophil-lymphocyte ratio (NLR), Lymphocyte- monocyte ratio (LMR), AAPR, hemoglobin and PNI were selected using LASSO regression analysis to construct INS. The C-index values of the model in the training group and the validation group were 0.806 (95% CI, 0.719-0.893) and 0.758 (95% CI: 0.591-0.925), respectively. INS had particular predictive value for postoperative QoL in patients undergoing LDG and provided a reference for risk stratification and clinical practice.


Subject(s)
Laparoscopy , Stomach Neoplasms , Humans , Quality of Life , Stomach Neoplasms/surgery , Retrospective Studies , Albumins , Gastrectomy , Prognosis
17.
Nanotechnology ; 34(36)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37257441

ABSTRACT

The construction of multi-component composites has become an attractive strategy for high-performance microwave absorption through balancing the magnetic and dielectric loss. However, the influences of different components on absorption performance are ambiguous, which has inevitably hampered the widespread applications of microwave absorbents. Herein, we rationally designed the multi-component absorbers of N-doped carbon composited with Fe/Fe3C nanoparticles, and systematically investigated the impacts of Fe/Fe3C nanoparticles and Fe-Nxmoieties on the microwave-absorbing capacities. It is found that the coexisitence of Fe/Fe3C and Fe-Nxis indispensable to realize the strong microwave absorption ability by simultaneously enhancing the dielectric and magnetic loss in the frequency range of 2-18 GHz. As expected, our optimal absorber dispersed in paraffin with a filler loading of 15 wt% exhibits the minimum reflection loss (RLmin) value of -49 dB and the maximum effective absorption bandwidth (BWeff) value of 4.2 GHz at a low thickness. Our work specifies the importance and influence of the coexistence between the Fe-Nxconfigurations and Fe/Fe3C nanoparticles in the carbon-based composites for the superior microwave absorption and inspires the future fabrication of extraordinary materials in the electromagnetic field.

18.
Bioorg Chem ; 139: 106714, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37454496

ABSTRACT

The pathogenesis of Alzheimer's disease (AD), a multifactorial progressive neurodegenerative disease associated with aging, is unclear. Ethyl caffeate is a plant polyphenol that has been reported to have neuroprotective effects, but the mechanisms by which it acts are unclear. In this study, for the first time, we investigated the molecular mechanism of its anti-AD properties using the Caernorhabditis elegans model. The results of our experiments showed that ethyl caffeate delayed the paralysis symptoms of CL4176 to a different extent and reduced the exogenous 5-hydroxytryptophan-induced paralysis phenotype. Further studies revealed that ethyl caffeate lowered Aß plaques and depressed the expression of Aß monomers and oligomers, but did not influence the mRNA levels of Aß. Moreover, it was able to bring paraquat-induced ROS levels down to near-standard conditions. Real-time quantitative PCR experiment showed a significant upregulation of the transcript abundance of daf-16, skn-1 and hsf-1, key factors associated with the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway (IIS), and their downstream genes sod-3, gst-4 and hsp-16.2. It was further shown that ethyl caffeate activated the translocation of DAF-16 and SKN-1 from the cytoplasm to the nucleus and enhanced the expression of sod-3::GFP, gst-4::GFP and hsp-16.2::GFP in transgenic nematodes. This meant that the protection against Aß toxicity by ethyl caffeate may be partly through the IIS signaling pathway. In addition, ethyl caffeate suppressed the aggregation of polyglutamine proteins in AM141, which indicated a potential protective effect against neurodegenerative diseases based on abnormal folding and aggregation of amyloid proteins. Taken together, ethyl caffeate is expected to develop as a potential drug for the management of AD.

19.
Platelets ; 34(1): 2194445, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37041749

ABSTRACT

Tumor-educated platelets (TEPs) have been widely reported to have promising application potential; nonetheless, platelet isolation from peripheral blood is an important but neglected step in TEPs research for platelet-based liquid biopsy. In this article, we discussed some common influence factors for platelet isolation. To investigate the factors involved in platelet isolation, a prospective multicenter study was conducted on healthy Han Chinese adults (18 to 79 years of age). A total of 208 individuals were included in the final statistical analysis out of the 226 healthy volunteers who were prospectively enrolled from four hospitals. The primary study metric was the platelet recovery rate (PRR). The similar pattern was observed in the four hospitals, The PRR at room temperature (23°C±2°C) was slightly higher than the PRR at cold temperature (4°C±2°C). Moreover, the PRR gradually decreased as the storage time increased. The PRR for samples within 2 hours of storage is significantly higher than for samples beyond 2 hours (p < .05). Additionally, PRR was also affected by the equipment used in different centers. This study confirmed several factors that influence platelet isolation. In our study, we indicated that platelet isolation should be performed within two hours of peripheral blood draw and held at room temperature until isolation, and that centrifuge models should be fixed during the extraction process, which will further improve the research progress of platelet-based liquid biopsy in cancer.


What is the context? Globally, cancer is one of the leading cause of premature death. Early screening is important for cancer diagnosis and treatment and can even significantly lower cancer mortalityGlobally, cancer is one of the leading cause of premature death. Early screening is important for cancer diagnosis and treatment and can even significantly lower cancer mortalityFor the liquid biopsy, isolation is an important step. Early studies have explored the influencing factors of exosome, circulating tumor cells (CTCs), and other components extraction in liquid biopsy.Despite platelet also being an excellent source of liquid biopsy, few studies have explored the factors that influence platelet isolation.Considering the importance of platelet isolation in tumor-based platelet liquid biopsy, our aim is to optimize platelet isolation conditions as much as possible to obtain a high platelet recovery rate.What is new? In this study, we conducted a prospective multicenter study ofhealthy adults from four centers, combining whole blood with platelet-richplasma to investigate factors influencing platelet recovery rate (PRR) during platelet isolation.In our study, we indicated that platelet isolation should be performed within two hours at room temperature, and that centrifuge models should be fixed during the extraction process, which will further improve the research progress of platelet-based liquid biopsy in cancer.What is the impact? In future platelet-related studies, we should fix the sample storage temperature, storage time and centrifuge model in the process of platelet extraction, so as to reduce the variables affecting platelet extraction as much as possible and ensure the stable recovery rate of platelet extraction.


Subject(s)
Blood Platelets , Blood Specimen Collection , Cell Separation , Adult , Humans , China , Cold Temperature , Neoplasms/pathology , Prospective Studies , Adolescent , Young Adult , Middle Aged , Aged , Healthy Volunteers , Specimen Handling/methods , Specimen Handling/standards , Blood Specimen Collection/methods , Blood Specimen Collection/standards , Liquid Biopsy/methods , Cell Separation/methods
20.
J Enzyme Inhib Med Chem ; 38(1): 2203878, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37106479

ABSTRACT

Clostridium botulinum neurotoxin type A (BoNT/A) is one of the most potent biotoxins ever known. Its entry into neurons could block vesicle exocytosis to abolish the release of neurotransmitters from nerve terminals, thus leading to muscle paralysis. Although there are so many peptides, antibodies and chemical compounds claimed to have anti-toxin activity, no drug is available in the clinical application except equine antitoxin serum. In the present work, a short peptide inhibitor RRGW of BoNT/A was firstly identified by computer-aided ligand-receptor binding simulation, then an RRGW derived peptide was rational designed based on the fragment of SNAP-25 (141-206 aa). Proteolytic assay showed that the anti-toxin activity of the RRGW derived peptide was much higher than that of RRGW. Digit abduction score assay demonstrated that the derived peptide delayed BoNT/A-induced muscle paralysis at a lower concentration by 20-fold than RRGW. The results supported that RRGW derived peptide can be a potential BoNT/A inhibitor candidate for further treating botulism.


Subject(s)
Botulinum Toxins, Type A , Botulism , Animals , Horses , Botulinum Toxins, Type A/pharmacology , Peptides/pharmacology , Botulism/drug therapy , Paralysis
SELECTION OF CITATIONS
SEARCH DETAIL