Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.640
Filter
Add more filters

Publication year range
1.
Cell ; 184(2): 422-440.e17, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33450207

ABSTRACT

Itch is an evolutionarily conserved sensation that facilitates expulsion of pathogens and noxious stimuli from the skin. However, in organ failure, cancer, and chronic inflammatory disorders such as atopic dermatitis (AD), itch becomes chronic, intractable, and debilitating. In addition to chronic itch, patients often experience intense acute itch exacerbations. Recent discoveries have unearthed the neuroimmune circuitry of itch, leading to the development of anti-itch treatments. However, mechanisms underlying acute itch exacerbations remain overlooked. Herein, we identify that a large proportion of patients with AD harbor allergen-specific immunoglobulin E (IgE) and exhibit a propensity for acute itch flares. In mice, while allergen-provoked acute itch is mediated by the mast cell-histamine axis in steady state, AD-associated inflammation renders this pathway dispensable. Instead, a previously unrecognized basophil-leukotriene (LT) axis emerges as critical for acute itch flares. By probing fundamental itch mechanisms, our study highlights a basophil-neuronal circuit that may underlie a variety of neuroimmune processes.


Subject(s)
Basophils/pathology , Neurons/pathology , Pruritus/pathology , Acute Disease , Allergens/immunology , Animals , Chronic Disease , Dermatitis, Atopic/immunology , Dermatitis, Atopic/pathology , Disease Models, Animal , Histamine/metabolism , Humans , Immunoglobulin E/immunology , Inflammation/pathology , Leukotrienes/metabolism , Mast Cells/immunology , Mice, Inbred C57BL , Phenotype , Pruritus/immunology , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/metabolism
2.
Cell ; 173(2): 371-385.e18, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625053

ABSTRACT

Identifying molecular cancer drivers is critical for precision oncology. Multiple advanced algorithms to identify drivers now exist, but systematic attempts to combine and optimize them on large datasets are few. We report a PanCancer and PanSoftware analysis spanning 9,423 tumor exomes (comprising all 33 of The Cancer Genome Atlas projects) and using 26 computational tools to catalog driver genes and mutations. We identify 299 driver genes with implications regarding their anatomical sites and cancer/cell types. Sequence- and structure-based analyses identified >3,400 putative missense driver mutations supported by multiple lines of evidence. Experimental validation confirmed 60%-85% of predicted mutations as likely drivers. We found that >300 MSI tumors are associated with high PD-1/PD-L1, and 57% of tumors analyzed harbor putative clinically actionable events. Our study represents the most comprehensive discovery of cancer genes and mutations to date and will serve as a blueprint for future biological and clinical endeavors.


Subject(s)
Neoplasms/pathology , Algorithms , B7-H1 Antigen/genetics , Computational Biology , Databases, Genetic , Entropy , Humans , Microsatellite Instability , Mutation , Neoplasms/genetics , Neoplasms/immunology , Principal Component Analysis , Programmed Cell Death 1 Receptor/genetics
3.
Immunity ; 52(5): 753-766, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32433948

ABSTRACT

Although the medical definition of itch has been in existence for 360 years, only in the last 20 years have we begun to understand the basic mechanisms that underlie this unique sensation. Therapeutics that specifically target chronic itch as a pathologic entity are currently still not available. Recent seminal advances in itch circuitry within the nervous system have intersected with discoveries in immunology in unexpected ways to rapidly inform emerging treatment strategies. The current review aims to introduce these basic concepts in itch biology and highlight how distinct immunologic pathways integrate with recently identified itch-sensory circuits in the nervous system to inform a major new paradigm of neuroimmunology and therapeutic development for chronic itch.


Subject(s)
Ganglia, Spinal/immunology , Pruritus/immunology , Sensory Receptor Cells/immunology , Skin/immunology , Somatosensory Cortex/immunology , Animals , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Humans , Models, Immunological , Models, Neurological , Pruritus/diagnosis , Pruritus/physiopathology , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Signal Transduction/immunology , Signal Transduction/physiology , Skin/innervation , Somatosensory Cortex/physiopathology
4.
Cell ; 156(4): 836-43, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24486104

ABSTRACT

Monkeys serve as important model species for studying human diseases and developing therapeutic strategies, yet the application of monkeys in biomedical researches has been significantly hindered by the difficulties in producing animals genetically modified at the desired target sites. Here, we first applied the CRISPR/Cas9 system, a versatile tool for editing the genes of different organisms, to target monkey genomes. By coinjection of Cas9 mRNA and sgRNAs into one-cell-stage embryos, we successfully achieve precise gene targeting in cynomolgus monkeys. We also show that this system enables simultaneous disruption of two target genes (Ppar-γ and Rag1) in one step, and no off-target mutagenesis was detected by comprehensive analysis. Thus, coinjection of one-cell-stage embryos with Cas9 mRNA and sgRNAs is an efficient and reliable approach for gene-modified cynomolgus monkey generation.


Subject(s)
Gene Targeting/methods , Macaca fascicularis/genetics , Animals , Base Sequence , Cell Line , Embryo, Mammalian/metabolism , Female , Humans , Molecular Sequence Data , Mosaicism , Sequence Alignment
5.
Immunity ; 50(5): 1163-1171.e5, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31027996

ABSTRACT

Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.


Subject(s)
Mast Cells/immunology , Nerve Tissue Proteins/metabolism , Pruritus/pathology , Receptors, G-Protein-Coupled/metabolism , Receptors, IgE/metabolism , Receptors, Neuropeptide/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Female , Histamine/metabolism , Histamine Antagonists/therapeutic use , Humans , Immunoglobulin E/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Peptide Fragments/metabolism , Receptors, G-Protein-Coupled/genetics , Serotonin/metabolism , Skin/metabolism , Tryptases/metabolism , Young Adult
7.
EMBO J ; 42(17): e113415, 2023 09 04.
Article in English | MEDLINE | ID: mdl-37485728

ABSTRACT

The human ABC transporter ABCC3 (also known as MRP3) transports a wide spectrum of substrates, including endogenous metabolites and exogenous drugs. Accordingly, it participates in multiple physiological processes and is involved in diverse human diseases such as intrahepatic cholestasis of pregnancy, which is caused by the intracellular accumulation of bile acids and estrogens. Here, we report three cryogenic electron microscopy structures of ABCC3: in the apo-form and in complexed forms bound to either the conjugated sex hormones ß-estradiol 17-(ß-D-glucuronide) and dehydroepiandrosterone sulfate. For both hormones, the steroid nuclei that superimpose against each other occupy the hydrophobic center of the transport cavity, whereas the two conjugation groups are separated and fixed by the hydrophilic patches in two transmembrane domains. Structural analysis combined with site-directed mutagenesis and ATPase activity assays revealed that ABCC3 possesses an amphiphilic substrate-binding pocket able to hold either conjugated hormone in an asymmetric pattern. These data build on consensus features of the substrate-binding pocket of MRPs and provide a structural platform for the rational design of inhibitors.


Subject(s)
ATP-Binding Cassette Transporters , Estradiol , Humans , ATP-Binding Cassette Transporters/genetics , Estradiol/pharmacology , Estradiol/metabolism , Mutagenesis, Site-Directed
8.
Nat Methods ; 21(4): 623-634, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38504113

ABSTRACT

Single-cell proteomics sequencing technology sheds light on protein-protein interactions, posttranslational modifications and proteoform dynamics in the cell. However, the uncertainty estimation for peptide quantification, data missingness, batch effects and high noise hinder the analysis of single-cell proteomic data. It is important to solve this set of tangled problems together, but the existing methods tailored for single-cell transcriptomes cannot fully address this task. Here we propose a versatile framework designed for single-cell proteomics data analysis called scPROTEIN, which consists of peptide uncertainty estimation based on a multitask heteroscedastic regression model and cell embedding generation based on graph contrastive learning. scPROTEIN can estimate the uncertainty of peptide quantification, denoise protein data, remove batch effects and encode single-cell proteomic-specific embeddings in a unified framework. We demonstrate that scPROTEIN is efficient for cell clustering, batch correction, cell type annotation, clinical analysis and spatially resolved proteomic data exploration.


Subject(s)
Learning , Proteomics , Cluster Analysis , Protein Processing, Post-Translational , Peptides
9.
Blood ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046762

ABSTRACT

Atypical acute promyelocytic leukemia (aAPL) presents a complex landscape of retinoic acid receptor (RAR) fusion genes beyond the well-known PML::RARA fusion. Among these, 31 individually rare RARA and RARG fusion genes have been documented, often reported in the canonical X::RAR bipartite fusion form. Intriguingly, some artificially mimicked bipartite X::RAR fusions respond well to all-trans retinoic acid (ATRA) in vitro, contrasting with the ATRA resistance observed in patients. To unravel the underlying mechanisms, we conducted a comprehensive molecular investigation into the fusion transcripts in 27 RARA fusion gene-positive aAPL (RARA-aAPL) and 21 RARG-aAPL cases. Our analysis revealed an unexpected novel form of X::RAR::X or X::RAR::Y-type tripartite fusions in certain RARA- and all RARG-aAPL cases, with shared features and notable differences between these two disease subgroups. In RARA-aAPL cases, the occurrence of RARA 3' splices was associated with their 5' fusion partner genes, mapping across the coding region of helix 11_12 (H11_12) within the ligand-binding domain (LBD), resulting in LBD-H12 or H11_12 truncation. In RARG-aAPL cases, RARG 3' splices were consistently localized to the terminus of exon 9, leading to LBD-H11_12 truncation. Significant differences were also observed between RARA and RARG 5' splice patterns. Our analysis also revealed extensive involvement of transposable elements in constructing RARA and RARG 3' fusions, suggesting transposition mechanisms for fusion gene ontogeny. Both protein structural analysis and experimental results highlighted the pivotal role of LBD-H11_12/H12 truncation in driving ATRA unresponsiveness and leukemogenesis in tripartite fusion-positive aAPL, through a protein allosteric dysfunction mechanism.

10.
Circ Res ; 134(5): 505-525, 2024 03.
Article in English | MEDLINE | ID: mdl-38422177

ABSTRACT

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Subject(s)
Cardiomyopathies , Insulin Resistance , Animals , Mice , Rats , Adenosine Triphosphatases , Arginine , Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , CD36 Antigens/genetics , Fibrosis , Inflammation , Leucine , Lipids , Lysine , Mechanistic Target of Rapamycin Complex 1 , Myocytes, Cardiac , Nicotinamide Mononucleotide , Toll-Like Receptor 4/genetics
11.
Nucleic Acids Res ; 52(D1): D562-D571, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953313

ABSTRACT

The single-cell proteomics enables the direct quantification of protein abundance at the single-cell resolution, providing valuable insights into cellular phenotypes beyond what can be inferred from transcriptome analysis alone. However, insufficient large-scale integrated databases hinder researchers from accessing and exploring single-cell proteomics, impeding the advancement of this field. To fill this deficiency, we present a comprehensive database, namely Single-cell Proteomic DataBase (SPDB, https://scproteomicsdb.com/), for general single-cell proteomic data, including antibody-based or mass spectrometry-based single-cell proteomics. Equipped with standardized data process and a user-friendly web interface, SPDB provides unified data formats for convenient interaction with downstream analysis, and offers not only dataset-level but also protein-level data search and exploration capabilities. To enable detailed exhibition of single-cell proteomic data, SPDB also provides a module for visualizing data from the perspectives of cell metadata or protein features. The current version of SPDB encompasses 133 antibody-based single-cell proteomic datasets involving more than 300 million cells and over 800 marker/surface proteins, and 10 mass spectrometry-based single-cell proteomic datasets involving more than 4000 cells and over 7000 proteins. Overall, SPDB is envisioned to be explored as a useful resource that will facilitate the wider research communities by providing detailed insights into proteomics from the single-cell perspective.


Subject(s)
Proteins , Proteomics , Antibodies , Knowledge Bases , Mass Spectrometry , Humans , Animals , Single-Cell Analysis
12.
Nucleic Acids Res ; 52(10): e49, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38709875

ABSTRACT

Over 150 types of chemical modifications have been identified in RNA to date, with pseudouridine (Ψ) being one of the most prevalent modifications in RNA. Ψ plays vital roles in various biological processes, and precise, base-resolution detection methods are fundamental for deep analysis of its distribution and function. In this study, we introduced a novel base-resolution Ψ detection method named pseU-TRACE. pseU-TRACE relied on the fact that RNA containing Ψ underwent a base deletion after treatment of bisulfite (BS) during reverse transcription, which enabled efficient ligation of two probes complementary to the cDNA sequence on either side of the Ψ site and successful amplification in subsequent real-time quantitative PCR (qPCR), thereby achieving selective and accurate Ψ detection. Our method accurately and sensitively detected several known Ψ sites in 28S, 18S, 5.8S, and even mRNA. Moreover, pseU-TRACE could be employed to measure the Ψ fraction in RNA and explore the Ψ metabolism of different pseudouridine synthases (PUSs), providing valuable insights into the function of Ψ. Overall, pseU-TRACE represents a reliable, time-efficient and sensitive Ψ detection method.


Subject(s)
Pseudouridine , Real-Time Polymerase Chain Reaction , Sulfites , Humans , Pseudouridine/chemistry , Pseudouridine/genetics , Pseudouridine/isolation & purification , Real-Time Polymerase Chain Reaction/methods , RNA/chemistry , RNA/genetics , RNA, Messenger/genetics , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Sulfites/chemistry
13.
Proc Natl Acad Sci U S A ; 120(41): e2221653120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37788309

ABSTRACT

Fatty acid oxidation (FAO) fuels many cancers. However, knowledge of pathways that drive FAO in cancer remains unclear. Here, we revealed that valosin-containing protein (VCP) upregulates FAO to promote colorectal cancer growth. Mechanistically, nuclear VCP binds to histone deacetylase 1 (HDAC1) and facilitates its degradation, thus promoting the transcription of FAO genes, including the rate-limiting enzyme carnitine palmitoyltransferase 1A (CPT1A). FAO is an alternative fuel for cancer cells in environments exhibiting limited glucose availability. We observed that a VCP inhibitor blocked the upregulation of FAO activity and CPT1A expression triggered by metformin in colorectal cancer (CRC) cells. Combined VCP inhibitor and metformin prove more effective than either agent alone in culture and in vivo. Our study illustrates the molecular mechanism underlying the regulation of FAO by nuclear VCP and demonstrates the potential therapeutic utility of VCP inhibitor and metformin combination treatment for colorectal cancer.


Subject(s)
Colorectal Neoplasms , Metformin , Humans , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism , Neoplastic Processes , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Fatty Acids/metabolism , Metformin/pharmacology , Carnitine O-Palmitoyltransferase/metabolism , Oxidation-Reduction
14.
PLoS Genet ; 19(10): e1010905, 2023 10.
Article in English | MEDLINE | ID: mdl-37819938

ABSTRACT

Retinal Müller glia (MG) can act as stem-like cells to generate new neurons in both zebrafish and mice. In zebrafish, retinal regeneration is innate and robust, resulting in the replacement of lost neurons and restoration of visual function. In mice, exogenous stimulation of MG is required to reveal a dormant and, to date, limited regenerative capacity. Zebrafish studies have been key in revealing factors that promote regenerative responses in the mammalian eye. Increased understanding of how the regenerative potential of MG is regulated in zebrafish may therefore aid efforts to promote retinal repair therapeutically. Developmental signaling pathways are known to coordinate regeneration following widespread retinal cell loss. In contrast, less is known about how regeneration is regulated in the context of retinal degenerative disease, i.e., following the loss of specific retinal cell types. To address this knowledge gap, we compared transcriptomic responses underlying regeneration following targeted loss of rod photoreceptors or bipolar cells. In total, 2,531 differentially expressed genes (DEGs) were identified, with the majority being paradigm specific, including during early MG activation phases, suggesting the nature of the injury/cell loss informs the regenerative process from initiation onward. For example, early modulation of Notch signaling was implicated in the rod but not bipolar cell ablation paradigm and components of JAK/STAT signaling were implicated in both paradigms. To examine candidate gene roles in rod cell regeneration, including several immune-related factors, CRISPR/Cas9 was used to create G0 mutant larvae (i.e., "crispants"). Rod cell regeneration was inhibited in stat3 crispants, while mutating stat5a/b, c7b and txn accelerated rod regeneration kinetics. These data support emerging evidence that discrete responses follow from selective retinal cell loss and that the immune system plays a key role in regulating "fate-biased" regenerative processes.


Subject(s)
Transcriptome , Zebrafish , Animals , Mice , Zebrafish/genetics , Animals, Genetically Modified , Transcriptome/genetics , Retina/metabolism , Neurons , Cell Proliferation , Mammals
15.
Proc Natl Acad Sci U S A ; 120(24): e2220867120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37279265

ABSTRACT

The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.


Subject(s)
Cochlea , Hair Cells, Auditory , Animals , Mice , Cochlea/metabolism , Hair Cells, Auditory/physiology , Hearing/physiology , Mammals , Spiral Ganglion , Transcription Factors/genetics , Transcription Factors/metabolism
16.
J Biol Chem ; 300(4): 107199, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508309

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV), a highly infectious virus, causes severe losses in the swine industry by regulating the inflammatory response, inducing tissue damage, suppressing the innate immune response, and promoting persistent infection in hosts. Interleukin-13 (IL-13) is a cytokine that plays a critical role in regulating immune responses and inflammation, particularly in immune-related disorders, certain types of cancer, and numerous bacterial and viral infections; however, the underlying mechanisms of IL-13 regulation during PRRSV infection are not well understood. In this study, we demonstrated that PRRSV infection elevates IL-13 levels in porcine alveolar macrophages. PRRSV enhances m6A-methylated RNA levels while reducing the expression of fat mass and obesity associated protein (FTO, an m6A demethylase), thereby augmenting IL-13 production. PRRSV nonstructural protein 9 (nsp9) was a key factor for this modulation. Furthermore, we found that the residues Asp567, Tyr586, Leu593, and Asp595 were essential for nsp9 to induce IL-13 production via attenuation of FTO expression. These insights delineate PRRSV nsp9's role in FTO-mediated IL-13 release, advancing our understanding of PRRSV's impact on host immune and inflammatory responses.


Subject(s)
Interleukin-13 , Macrophages, Alveolar , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Viral Nonstructural Proteins , Animals , Porcine respiratory and reproductive syndrome virus/genetics , Swine , Interleukin-13/metabolism , Interleukin-13/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Up-Regulation
17.
EMBO J ; 40(4): e104729, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33349972

ABSTRACT

The regulatory circuitry underlying embryonic stem (ES) cell self-renewal is well defined, but how this circuitry is disintegrated to enable lineage specification is unclear. RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and preliminary data suggest that they might regulate ES cell fate. By combining bioinformatic analyses with functional screening, we identified seven RBPs played important roles for the exit from pluripotency of ES cells. We characterized hnRNPLL, which mainly functions as a global regulator of alternative splicing in ES cells. Specifically, hnRNPLL promotes multiple ES cell-preferred exon skipping events during the onset of ES cell differentiation. hnRNPLL depletion thus leads to sustained expression of ES cell-preferred isoforms, resulting in a differentiation deficiency that causes developmental defects and growth impairment in hnRNPLL-KO mice. In particular, hnRNPLL-mediated alternative splicing of two transcription factors, Bptf and Tbx3, is important for pluripotency exit. These data uncover the critical role of RBPs in pluripotency exit and suggest the application of targeting RBPs in controlling ES cell fate.


Subject(s)
Alternative Splicing , Antigens, Nuclear/metabolism , Cell Differentiation , Embryonic Stem Cells/cytology , Heterogeneous-Nuclear Ribonucleoproteins/physiology , Nerve Tissue Proteins/metabolism , Pluripotent Stem Cells/cytology , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism , Animals , Antigens, Nuclear/genetics , Embryonic Stem Cells/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/genetics , Pluripotent Stem Cells/metabolism , Protein Isoforms , T-Box Domain Proteins/genetics , Transcription Factors/genetics
18.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37791583

ABSTRACT

Copy number alterations (CNAs) are a key characteristic of tumor development and progression. The accumulation of various CNAs during tumor development plays a critical role in driving tumor evolution. Heterogeneous clones driven by distinct CNAs have different selective advantages, leading to differential patterns of tumor evolution that are essential for developing effective cancer therapies. Recent advances in single-cell sequencing technology have enabled genome-wide copy number profiling of tumor cell populations at single-cell resolution. This has made it possible to explore the evolutionary patterns of CNAs and accurately discover the mechanisms of intra-tumor heterogeneity. Here, we propose a two-step statistical approach that distinguishes neutral, linear, branching and punctuated evolutionary patterns for a tumor cell population based on single-cell copy number profiles. We assessed our approach using a variety of simulated and real single-cell genomic and transcriptomic datasets, demonstrating its high accuracy and robustness in predicting tumor evolutionary patterns. We applied our approach to single-cell DNA sequencing data from 20 breast cancer patients and observed that punctuated evolution is the dominant evolutionary pattern in breast cancer. Similar conclusions were drawn when applying the approach to single-cell RNA sequencing data obtained from 132 various cancer patients. Moreover, we found that differential immune cell infiltration is associated with specific evolutionary patterns. The source code of our study is available at https://github.com/FangWang-SYSU/PTEM.


Subject(s)
Breast Neoplasms , DNA Copy Number Variations , Humans , Female , Breast Neoplasms/genetics , Software , Sequence Analysis, DNA , Genomics
19.
Bioinformatics ; 40(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38547397

ABSTRACT

MOTIVATION: Constructing a phylogenetic tree requires calculating the evolutionary distance between samples or species via large-scale resequencing data, a process that is both time-consuming and computationally demanding. Striking the right balance between accuracy and efficiency is a significant challenge. RESULTS: To address this, we introduce a new algorithm, MIKE (MinHash-based k-mer algorithm). This algorithm is designed for the swift calculation of the Jaccard coefficient directly from raw sequencing reads and enables the construction of phylogenetic trees based on the resultant Jaccard coefficient. Simulation results highlight the superior speed of MIKE compared to existing state-of-the-art methods. We used MIKE to reconstruct a phylogenetic tree, incorporating 238 yeast, 303 Zea, 141 Ficus, 67 Oryza, and 43 Saccharum spontaneum samples. MIKE demonstrated accurate performance across varying evolutionary scales, reproductive modes, and ploidy levels, proving itself as a powerful tool for phylogenetic tree construction. AVAILABILITY AND IMPLEMENTATION: MIKE is publicly available on Github at https://github.com/Argonum-Clever2/mike.git.


Subject(s)
Algorithms , Phylogeny , Computer Simulation , Sequence Analysis, DNA
20.
Nature ; 569(7754): 73-78, 2019 05.
Article in English | MEDLINE | ID: mdl-30996346

ABSTRACT

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that are crucial for the regulation of immune responses in cancer. These cells contribute to the failure of cancer therapies and are associated with poor clinical outcomes. Despite recent advances in the understanding of PMN-MDSC biology, the mechanisms responsible for the pathological activation of neutrophils are not well defined, and this limits the selective targeting of these cells. Here we report that mouse and human PMN-MDSCs exclusively upregulate fatty acid transport protein 2 (FATP2). Overexpression of FATP2 in PMN-MDSCs was controlled by granulocyte-macrophage colony-stimulating factor, through the activation of the STAT5 transcription factor. Deletion of FATP2 abrogated the suppressive activity of PMN-MDSCs. The main mechanism of FATP2-mediated suppressive activity involved the uptake of arachidonic acid and the synthesis of prostaglandin E2. The selective pharmacological inhibition of FATP2 abrogated the activity of PMN-MDSCs and substantially delayed tumour progression. In combination with checkpoint inhibitors, FATP2 inhibition blocked tumour progression in mice. Thus, FATP2 mediates the acquisition of immunosuppressive activity by PMN-MDSCs and represents a target to inhibit the functions of PMN-MDSCs selectively and to improve the efficiency of cancer therapy.


Subject(s)
Fatty Acid Transport Proteins/metabolism , Fatty Acids/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Neutrophils/metabolism , Aged , Animals , Arachidonic Acid/metabolism , Dinoprostone/metabolism , Fatty Acid Transport Proteins/antagonists & inhibitors , Female , Humans , Lipid Metabolism , Lipids , Male , Mice , Middle Aged , Neutrophils/pathology , STAT5 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL