Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cell Biochem Biophys ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136840

ABSTRACT

Osteoporosis (OP) is an epidemic bone remodeling disorder of growing relevance with the aging population. Considering that isorhamnetin (ISO), a flavonoid derived from plant, has been newly reckoned as an active ingredient in treating OP, our paper was conducted to investigate the regulatory role and mechanism of ISO in OP. CCK-8 method detected cell activity. Alkaline phosphatase (ALP) assay kit, ALP staining and alizarin red S staining measured osteogenic differentiation. RT-qPCR and Western blot examined the expressions of osteoblast-related proteins. Wound healing and cell adhesion assays severally detected cell migration and adhesion. Also, Western blot tested the expressions of extracellular signal-regulated kinase (ERK) signaling-associated proteins. As illustrated, after MC3T3-E1 pre-osteoblasts were stimulated to differentiate to osteoblasts, ISO markedly promoted the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts in a concentration-dependent manner. In addition, administration of ISO functioned as an activator of ERK-dependent BMP2-Smad signaling in MC3T3-E1 osteoblasts and pretreatment with ERK inhibitor PD98059 partially compensated the impacts of ISO on MC3T3-E1 osteoblasts differentiation, mineralization, migration as well as adhesion. To be summarized, ISO might activate ERK-dependent BMP2-Smad signaling to facilitate the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts, suggesting the protective potential of ISO in OP.

2.
J Ethnopharmacol ; 295: 115354, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35577160

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Weishi Huogu I (WH I) capsules, developed through traditional Chinese medicine, have been used to treat clinical osteonecrosis of the femoral head (ONFH) for decades. However, the mechanisms have not been systematically studied. AIM OF THE STUDY: In this study, the mechanisms of WH I capsules used in treating ONFH were examined through a systems pharmacology strategy, and one mechanism was validated with in vitro experiments. MATERIALS AND METHODS: WH I capsules compounds were identified by screening databases; then, a database of the potential active compounds was constructed after absorption, distribution, metabolism and excretion (ADME) evaluation. The compounds were identified through a systematic approach in which the probability of an interaction of every candidate compound with each corresponding target in the DrugBank database was calculated. Gene Ontology (GO) and pathway enrichment analyses of the targets was performed with the Metascape and KEGG DISEASE databases. Then, a compound-target network (C-T) and target-pathway network (T-P) of WH I capsule components were constructed, and network characteristics and related information were used for systematically identifying WH I capsule multicomponent-target interactions. Furthermore, the effects of WH I capsule compounds identified through the systematic pharmacology analysis of the osteogenic transformation of human umbilical mesenchymal stem cells (HUMSCs) were validated in vitro. RESULTS: In total, 152 potentially important compounds and 176 associated targets were identified. Twenty-two crucial GO biological process (BP) or pathways were related to ONFH, mainly in regulatory modules regulating blood circulation, modulating growth, and affecting pathological processes closely related to ONFH. Furthermore, the GO enrichment analysis showed that corydine, isorhamnetin, and bicuculline were enriched in "RUNX2 regulates osteoblast differentiation", significantly increased alkaline phosphatase activity and calcium deposition and upregulated runt-related transcription factor 2 mRNA and protein expression and osteocalcin mRNA expression in HUMSCs, suggesting that these compounds promoted the mesenchymal stem cell (MSC) osteogenic transformation. CONCLUSIONS: The study showed that the pharmacological mechanisms of WH I capsule attenuation of ONFH mainly involve three therapeutic modules: blood circulation, modulating growth, and regulating pathological processes. The crosstalk between GOBPs/pathways may constitute the basis of the synergistic effects of the compounds in WH I capsules in attenuating ONFH. One of the pharmacological mechanisms in the WH I capsule effect on ONFH involves enhancement of the osteogenic transformation of MSCs, as validated in experiments performed in vitro; however, more mechanisms should be validated in further studies.


Subject(s)
Femur Head Necrosis , Femur Head , Capsules/therapeutic use , Femur Head/metabolism , Femur Head/pathology , Femur Head Necrosis/drug therapy , Humans , Network Pharmacology , RNA, Messenger
3.
Pharmacol Biochem Behav ; 100(4): 712-25, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21463649

ABSTRACT

Chronic treatment with anti-bipolar drugs (lithium, carbamazepine, and valproic acid) down-regulates mRNA and protein expression of kainate receptor GluK2 in mouse brain and cultured astrocytes. It also abolishes glutamate-mediated, Ca(2+)-dependent ERK(1/2) phosphorylation in the astrocytes. Chronic treatment with the SSRI fluoxetine enhances astrocytic GluK2 expression, but increases mRNA editing, abolishing glutamate-mediated ERK(1/2) phosphorylation and [Ca(2+)](i) increase, which are shown to be GluK2-mediated. Neither drug group affects Glu4/Glu5 expression necessary for GluK2's ionotropic effect. Consistent with a metabotropic effect, the PKC inhibitor GF 109203X and the IP(3) inhibitor xestospongin C abolish glutamate stimulation in cultured astrocytes. In CA1/CA3 pyramidal cells in hippocampal slices, activation of extrasynaptic GluK2 receptors, presumably including astrocytic, metabotropic GluK2 receptors, causes long-lasting inhibition of slow neuronal afterhyperpolarization mediated by Ca(2+)-dependent K(+) flux. This may be secondary to the induced astrocytic [Ca(2+)](i) increase, causing release of 'gliotransmitter' glutamate. Neuronal NMDA receptors respond to astrocytic glutamate release with enhancement of excitatory glutamatergic activity. Since reduction of NMDA receptor activity is known to have antidepressant effect in bipolar depression and major depression, these observations suggest that the inactivation of astrocytic GluK2 activity by antidepressant/anti-bipolar therapy ameliorates depression by inhibiting astrocytic glutamate release. A resultant strengthening of neuronal afterhyperpolarization may cause reduced NMDA-mediated activity.


Subject(s)
Antidepressive Agents/therapeutic use , Astrocytes/drug effects , Bipolar Disorder/drug therapy , Down-Regulation/drug effects , N-Methylaspartate/physiology , Neurons/drug effects , Receptors, Kainic Acid/physiology , Antidepressive Agents/pharmacology , Astrocytes/physiology , Humans , Neurons/physiology , GluK2 Kainate Receptor
SELECTION OF CITATIONS
SEARCH DETAIL