Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
BMC Cancer ; 23(1): 929, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37784026

ABSTRACT

BACKGROUND: Immunoglobulin lambda (Igλ) has been reported to be expressed in many normal and tumor tissues and cells. However, the function and clinical significance of tumor-derived Igλ remain unclear. METHODS: The differential expressions of Immunoglobulin Lambda Constants (IGLCs) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC) were examined with The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Human Protein Atlas (HPA) databases. The effects of IGLCs on patient clinical phenotypes and prognosis were explored via bioinformatics analyses based on the TCGA databases. We used the bioinformatics analyses based on the TCGA and GTEx databases to elucidate the correlations among IGLC expressions, immunomodulator expressions, tumor stemness, and infiltration scores of tumor infiltrating immune cells. Co-immunoprecipitation (Co-IP) and silver staining combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to obtain potential tumor-derived Igλ-interacting proteins. Functional annotation of candidate proteins identified by LC-MS/MS was performed in Database for Annotation, Visualization and Integrated Discovery (DAVID). The bioinformatics analyses of 7 IGLCs in CESC and normal cervical tissues were performed based on TCGA, GTEx, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) databases. Protein-protein interaction (PPI) network was analyzed based on tumor-derived Igλ-interacting proteins in Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. Immunohistochemistry (IHC) was used to validate the expressions of IGLCs in CESC. RESULTS: We found that the expressions of the majority of IGLCs (IGLC1, IGLC2, IGLC3, IGLC4, IGLC5, IGLC6, and IGLC7) were upregulated in CESC tissues, compared with those in normal cervical tissues. The expressions of IGLC5 and IGLC7 had significant difference in different pathologic metastasis (M), one of tumor, node, and metastasis (TNM) staging system, categories of CESC. Except for disease-free interval (DFI), 4 IGLC (IGLC1, IGLC2, IGLC3, and IGLC7) expression levels were positively associated with patient overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) respectively in CESC tissues. 5 IGLC (IGLC1, IGLC2, IGLC3, IGLC6, and IGLC7) expressions were positively correlated with the expressions of a majority of immunomodulators respectively in CESC tissues. Tumor stemness was negatively correlated with the expressions of 4 IGLCs (IGLC1, IGLC2, IGLC3, and IGLC7) respectively in CESC tissues. Except for IGLC4, IGLC5, and IGLC7, 4 IGLC (IGLC1, IGLC2, IGLC3, and IGLC6) expressions were positively correlated with infiltration scores of 6 tumor-infiltrating immune cells (B cell, T cell CD4, T cell CD8, neutrophil, macrophage, and DC). After analyses of the above bioinformatics data of tumor-derived Igλ, Co-IP and LC-MS/MS were used to confirm that 4 proteins (RPL7, RPS3, H1-5, and H1-6) might interact with tumor-derived Igλ in cervical cancer cells. Functional analyses of these candidate proteins showed that they interacted with many proteins and were involved in various cellular biological processes. Finally, IHC was used to further confirm the above bioinformatics results, it was indicated that the expression level of Igλ in cervical adenocarcinoma and cervical squamous cell carcinoma was higher than that in normal cervical tissue. CONCLUSION: This study comprehensively investigated the functions of tumor-derived Igλ and its interacting proteins based on bioinformatics analysis and the potential value of Igλ as a prognostic and therapeutic marker for CESC, providing new direction and evidence for CESC therapy.


Subject(s)
Adenocarcinoma , Carcinoma, Squamous Cell , Uterine Cervical Neoplasms , Female , Humans , Adenocarcinoma/genetics , Adjuvants, Immunologic , Carcinoma, Squamous Cell/genetics , Chromatography, Liquid , Immunoglobulin lambda-Chains , Tandem Mass Spectrometry , Uterine Cervical Neoplasms/genetics
2.
Mar Drugs ; 21(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37367664

ABSTRACT

The endothelial cell lining creates an interface between circulating blood and adjoining tissue and forms one of the most critical barriers and targets for therapeutical intervention. Recent studies suggest that fucoidans, sulfated and fucose-rich polysaccharides from brown seaweed, show multiple promising biological effects, including anti-inflammatory properties. However, their biological activity is determined by chemical characteristics such as molecular weight, sulfation degree, and molecular structure, which vary depending on the source, species, and harvesting and isolation method. In this study, we investigated the impact of high molecular weight (HMW) fucoidan extract on endothelial cell activation and interaction with primary monocytes (MNCs) in lipopolysaccharide (LPS)-induced inflammation. Gentle enzyme-assisted extraction combined with fractionation by ion exchange chromatography resulted in well-defined and pure fucoidan fractions. FE_F3, with a molecular weight ranging from 110 to 800 kDa and a sulfate content of 39%, was chosen for further investigation of its anti-inflammatory potential. We observed that along with higher purity of fucoidan fractions, the inflammatory response in endothelial mono- and co-cultures with MNCs was reduced in a dose-dependent manner when testing two different concentrations. This was demonstrated by a decrease in IL-6 and ICAM-1 on gene and protein levels and a reduced gene expression of TLR-4, GSK3ß and NF-kB. Expression of selectins and, consequently, the adhesion of monocytes to the endothelial monolayer was reduced after fucoidan treatment. These data indicate that the anti-inflammatory effect of fucoidans increases with their purity and suggest that fucoidans might be useful in limiting the inflammatory response of endothelial cells in cases of LPS-induced bacterial infection.


Subject(s)
Endothelial Cells , Lipopolysaccharides , Lipopolysaccharides/pharmacology , Molecular Weight , Polysaccharides/chemistry , Anti-Inflammatory Agents , Leukocytes
3.
Int J Mol Sci ; 23(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35328815

ABSTRACT

Graphene oxide (GO) is a promising material for bone tissue engineering, but the validation of its molecular biological effects, especially in the context of clinically applied materials, is still limited. In this study, we compare the effects of graphene oxide framework structures (F-GO) and reduced graphene oxide-based framework structures (F-rGO) as scaffold material with a special focus on vascularization associated processes and mechanisms in the bone. Highly porous networks of zinc oxide tetrapods serving as sacrificial templates were used to create F-GO and F-rGO with porosities >99% consisting of hollow interconnected microtubes. Framework materials were seeded with human mesenchymal stem cells (MSC), and the cell response was evaluated by confocal laser scanning microscopy (CLSM), deoxyribonucleic acid (DNA) quantification, real-time polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and alkaline phosphatase activity (ALP) to define their impact on cellular adhesion, osteogenic differentiation, and secretion of vascular growth factors. F-GO based scaffolds improved adhesion and growth of MSC as indicated by CLSM and DNA quantification. Further, F-GO showed a better vascular endothelial growth factor (VEGF) binding capacity and improved cell growth as well as the formation of microvascular capillary-like structures in co-cultures with outgrowth endothelial cells (OEC). These results clearly favored non-reduced graphene oxide in the form of F-GO for bone regeneration applications. To study GO in the context of a clinically used implant material, we coated a commercially available xenograft (Bio-Oss® block) with GO and compared the growth of MSC in monoculture and in coculture with OEC to the native scaffold. We observed a significantly improved growth of MSC and formation of prevascular structures on coated Bio-Oss®, again associated with a higher VEGF binding capacity. We conclude that graphene oxide coating of this clinically used, but highly debiologized bone graft improves MSC cell adhesion and vascularization.


Subject(s)
Graphite , Mesenchymal Stem Cells , Cell Adhesion , Cell Differentiation , DNA/metabolism , Endothelial Cells , Graphite/chemistry , Humans , Mesenchymal Stem Cells/metabolism , Osteogenesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Vascular Endothelial Growth Factor A/metabolism
4.
Mar Drugs ; 19(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805470

ABSTRACT

Fucoidans, sulfated polysaccharides extracted from brown algae, are marine products with the potential to modulate bone formation and vascularization processes. The bioactivity and safety of fucoidans are highly associated with their chemical structure, which may vary with algae species and extraction method. Thus, in depth evaluation of fucoidan extracts in terms of endotoxin content, cytotoxicity, and their detailed molecular biological impact on the individual cell types in bone is needed. In this study, we characterized fucoidan extracts from three different Fucus species including Fucus vesiculosus (Fv), Fucus serratus (Fs), and Fucus distichus subsp. evanescens (Fe) for their chemical features, endotoxin content, cytotoxicity, and bioactive effects on human outgrowth endothelial cells (OEC) and human mesenchymal stem cells (MSC) as in vitro models for bone function and vascularization. Extracts contained mainly high molecular weight (HMW) fucoidans and were free of endotoxins that may cause inflammation or influence vascularization. OEC tolerated fucoidan concentrations up to 200 µg/mL, and no indication of cytotoxicity was observed. The inflammatory response, however, investigated by real-time PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) and endothelial barrier assessed by impedance measurement differed for the individual extracts. MSC in comparison with endothelial cells were more sensitive to fucoidans and showed partly reduced metabolic activity and proliferation at higher doses of fucoidans. Further results for MSC indicated impaired osteogenic functions in alkaline phosphatase and calcification assays. All tested extracts consistently lowered important molecular mediators involved in angiogenesis, such a VEGF (vascular endothelial growth factor), ANG-1 (angiopoietin 1), and ANG-2 (angiopoietin 2), as indicated by RT-PCR and ELISA. This was associated with antiangiogenic effects at the functional level using selected extracts in co-culture models to mimic bone vascularization processes during bone regeneration or osteosarcoma.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Endothelial Cells/drug effects , Fucus/metabolism , Mesenchymal Stem Cells/drug effects , Neovascularization, Physiologic/drug effects , Osteogenesis/drug effects , Polysaccharides/pharmacology , Angiogenesis Inhibitors/isolation & purification , Angiogenic Proteins/metabolism , Cell Proliferation/drug effects , Cells, Cultured , Coculture Techniques , Endothelial Cells/metabolism , Energy Metabolism/drug effects , Humans , Inflammation Mediators/metabolism , Mesenchymal Stem Cells/metabolism , Molecular Weight , Polysaccharides/isolation & purification , Signal Transduction
5.
Mar Drugs ; 18(9)2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32967359

ABSTRACT

Angiogenesis, the formation of new blood vessels from existing ones, is an essential process for successful bone regeneration. Further, angiogenesis is a key factor for the development of bone-related disorders like osteosarcoma or arthritis. Fucoidans, sulfated polysaccharides from brown algae, have been shown to affect angiogenesis as well as a series of other physiological processes including inflammation or infection. However, the chemical properties of fucoidan which define the biological activity vary tremendously, making a prediction of the bioactivity or the corresponding therapeutic effect difficult. In this study, we compare the effect of four chemically characterized high molecular weight fucoidan extracts from Fucus distichus subsp. evanescens (FE_crude and fractions F1, F2, F3) on angiogenic and osteogenic processes in bone-related primary mono- and co-culture cell systems. By determining the gene expression and protein levels of the regulatory molecules vascular endothelial growth factor (VEGF), angiopoietin-1 (ANG-1), ANG-2 and stromal-derived factor 1 (SDF-1), we show that the extracted fucoidans negatively influence angiogenic and osteogenic processes in both the mono- and co-culture systems. We demonstrate that purer fucoidan extracts with a high fucose and sulfate content show stronger effects on these processes. Immunocytochemistry of the co-culture system revealed that treatment with FE_F3, containing the highest fucose and sulfate content, impaired the formation of angiogenic tube-like structures, indicating the anti-angiogenic properties of the tested fucoidans. This study highlights how chemical properties of fucoidan influence its bioactivity in a bone-related context and discusses how the observed phenotypes can be explained on a molecular level-knowledge that is indispensable for future therapies based on fucoidans.


Subject(s)
Bone and Bones/drug effects , Fucus/chemistry , Osteogenesis/drug effects , Polysaccharides/pharmacology , Bone and Bones/metabolism , Humans , Molecular Weight , Neovascularization, Pathologic/drug therapy , Neovascularization, Physiologic/drug effects , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Primary Cell Culture
6.
J Cell Mol Med ; 22(2): 982-998, 2018 02.
Article in English | MEDLINE | ID: mdl-29210175

ABSTRACT

Infectious agents such as lipopolysaccharides (LPS) challenge the functional properties of the alveolar-capillary barrier (ACB) in the lung. In this study, we analyse the site-specific effects of LPS on the ACB and reveal the effects on the individual cell types and the ACB as a functional unit. Monocultures of H441 epithelial cells and co-cultures of H441 with endothelial cells cultured on Transwells® were treated with LPS from the apical or basolateral compartment. Barrier properties were analysed by the transepithelial electrical resistance (TEER), by transport assays, and immunostaining and assessment of tight junctional molecules at protein level. Furthermore, pro-inflammatory cytokines and immune-modulatory molecules were evaluated by ELISA and semiquantitative real-time PCR. Liquid chromatography-mass spectrometry-based proteomics (LS-MS) was used to identify proteins and effector molecules secreted by endothelial cells in response to LPS. In co-cultures treated with LPS from the basolateral compartment, we noticed a significant reduction of TEER, increased permeability and induction of pro-inflammatory cytokines. Conversely, apical treatment did not affect the barrier. No changes were noticed in H441 monoculture upon LPS treatment. However, LPS resulted in an increased expression of pro-inflammatory cytokines such as IL-6 in OEC and in turn induced the reduction of TEER and an increase in SP-A expression in H441 monoculture, and H441/OEC co-cultures after LPS treatment from basolateral compartment. LS-MS-based proteomics revealed factors associated with LPS-mediated lung injury such as ICAM-1, VCAM-1, Angiopoietin 2, complement factors and cathepsin S, emphasizing the role of epithelial-endothelial crosstalk in the ACB in ALI/ARDS.


Subject(s)
Capillaries/physiopathology , Endothelial Cells/pathology , Lipopolysaccharides/toxicity , Pulmonary Alveoli/physiopathology , Adult , Capillaries/drug effects , Caveolin 1/metabolism , Cell Line , Cell Membrane Permeability/drug effects , Coculture Techniques , Electric Impedance , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Humans , Inflammation/pathology , Phosphorylation/drug effects , Proteomics , Pulmonary Alveoli/drug effects , Pulmonary Surfactant-Associated Proteins/metabolism , Tight Junction Proteins/metabolism , Zonula Occludens-1 Protein/metabolism
7.
Mar Drugs ; 15(6)2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28632184

ABSTRACT

The marine origin polysaccharide fucoidan combines multiple biological activities. As demonstrated by various studies in vitro and in vivo, fucoidans show anti-viral, anti-tumor, anti-oxidant, anti-inflammatory and anti-coagulant properties, although the detailed molecular action remains to be elucidated. The aim of the present study is to assess the impact of crude fucoidan extracts, on the formation of vascular structures in co-culture models relevant for bone vascularization during bone repair and for vascularization processes in osteosarcoma. The co-cultures consisted of bone marrow derived mesenchymal stem cells, respectively the osteosarcoma cell line MG63, and human blood derived outgrowth endothelial cells (OEC). The concentration dependent effects on the metabolic activity on endothelial cells and osteoblast cells were first assessed using monocultures of OEC, MSC and MG63 suggesting a concentration of 100 µg/mL as a suitable concentration for further experiments. In co-cultures fucoidan significantly reduced angiogenesis in MSC/OEC but also in MG63/OEC co-cultures suggesting a potential application of fucoidan to lower the vascularization in bone tumors such as osteosarcoma. This was associated with a decrease in VEGF (vascular endothelial growth factor) and SDF-1 (stromal derived factor-1) on the protein level, both related to the control of angiogenesis and furthermore discussed as crucial factors in osteosarcoma progression and metastasis. In terms of bone formation, fucoidan slightly lowered on the calcification process in MSC monocultures and MSC/OEC co-cultures. In summary, these data suggest the suitability of lower fucoidan doses to limit angiogenesis for instance in osteosarcoma.


Subject(s)
Bone Neoplasms/blood supply , Bone Regeneration/drug effects , Chemokine CXCL12/analysis , Neovascularization, Pathologic/prevention & control , Osteosarcoma/blood supply , Polysaccharides/pharmacology , Vascular Endothelial Growth Factor A/analysis , Bone Neoplasms/drug therapy , Cells, Cultured , DNA/analysis , Endothelial Cells/physiology , Humans , Osteosarcoma/drug therapy
8.
Mar Drugs ; 15(7)2017 Jun 22.
Article in English | MEDLINE | ID: mdl-28640204

ABSTRACT

BACKGROUND: The polysaccharide fucoidan is widely investigated as an anti-cancer agent. Here, we tested the effect of fucoidan on uveal melanoma cell lines. METHODS: The effect of 100 µM fucoidan was investigated on five cell lines (92.1, Mel270 OMM1, OMM2.3, OMM2.5) and of 1 µg/mL-1 mg/mL fucoidan in two cell lines (OMM1, OMM2.3). Cell proliferation and viability were investigated with a WST-1 assay, migration in a wound healing (scratch) assay. Vascular Endothelial Growth Factor (VEGF) was measured in ELISA. Angiogenesis was evaluated in co-cultures with endothelial cells. Cell toxicity was induced by hydrogen-peroxide. Protein expression (Akt, ERK1/2, Bcl-2, Bax) was investigated in Western blot. RESULTS: Fucoidan increased proliferation in two and reduced it in one cell line. Migration was reduced in three cell lines. The effect of fucoidan on VEGF was cell type and concentration dependent. In endothelial co-culture with 92.1, fucoidan significantly increased tubular structures. Moreover, fucoidan significantly protected all tested uveal melanoma cell lines from hydrogen-peroxide induced cell death. Under oxidative stress, fucoidan did not alter the expression of Bcl-2, Bax or ERK1/2, while inducing Akt expression in 92.1 cells but not in any other cell line. CONCLUSION: Fucoidan did not show anti-tumorigenic effects but displayed protective and pro-angiogenic properties, rendering fucoidan unsuitable as a potential new drug for the treatment of uveal melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Melanoma/drug therapy , Polysaccharides/pharmacology , Uveal Neoplasms/drug therapy , Antineoplastic Agents/administration & dosage , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coculture Techniques , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Neoplastic/drug effects , Humans , Melanoma/pathology , Neovascularization, Pathologic/drug therapy , Oxidative Stress/physiology , Polysaccharides/administration & dosage , Uveal Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism
9.
Front Immunol ; 13: 731500, 2022.
Article in English | MEDLINE | ID: mdl-35237256

ABSTRACT

Pleckstrin homology-like domain, family A, member 1 (PHLDA1) has been reported to be expressed in many mammalian tissues and cells. However, the functions and exact mechanisms of PHLDA1 remain unclear. In this study, we found that PHLDA1 expression was significantly altered in macrophages after exposure to lipopolysaccharide (LPS) in vitro, suggesting that PHLDA1 may be involved in the regulation of TLR4 signaling pathway activated by LPS. PHLDA1 attenuated the production of LPS-stimulated proinflammatory cytokines (TNF-α, IL-6, and IL-1ß). Further research showed that the phosphorylation levels of some important signal molecules in TLR4/MyD88-mediated MAPK and NF-κB signaling pathways were reduced by PHLDA1, which in turn impaired the transcription factors NF-κB and AP1 nuclear translocation and their responsive element activities. Furthermore, we found that PHLDA1 repressed LPS-induced proinflammatory cytokine production via binding to Tollip which restrained TLR4 signaling pathway. A mouse model of endotoxemia was established to confirm the above similar results. In brief, our findings demonstrate that PHLDA1 is a negative regulator of LPS-induced proinflammatory cytokine production by Tollip, suggesting that PHLDA1 plays an anti-inflammatory role through inhibiting the TLR4/MyD88 signaling pathway with the help of Tollip. PHLDA1 may be a novel therapeutic target in treating endotoxemia.


Subject(s)
Endotoxemia , Lipopolysaccharides , Animals , Cytokines/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/pharmacology , Mammals/metabolism , Mice , Myeloid Differentiation Factor 88/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 4/metabolism , Transcription Factors
11.
Mol Immunol ; 139: 202-210, 2021 11.
Article in English | MEDLINE | ID: mdl-34583098

ABSTRACT

A balance between the positive and negative regulation of toll-like receptor (TLR) signaling pathways is required to avoid detrimental and inappropriate inflammatory responses. Although some protein post-translational modifications (PTMs) such as phosphorylation and ubiquitination have been demonstrated to potently modulate innate immune responses, the role of methylation, an important PTM, control of TLR4 signaling pathway remains unclear. In this study, we found that protein arginine methyltransferase 1, 2 and 3 (PRMT1, 2 and 3) were recruited to methylate TLR4-CD (cytoplasmic domain) after lipopolysaccharide (LPS) stimulation respectively, but the effect of PRMT2 on arginine methylation of TLR4-CD is the most significant among above three PRMTs, which prompted us to focus on PRMT2. Reduction of PRMT2 expression down-regulated arginine (R) methylation level of TLR4 with or without LPS treatment. Methionine 115 (M115) mediated PRMT2 catalyzed-arginine methylation of TLR4 on R731 and R812. Furthermore, PRMT1, 2 and 3 was recruited to methylate interferon regulatory factor 3 (IRF3) after LPS stimulation respectively, but the effect of PRMT2 on arginine methylation of IRF3 is the most significant among the above three PRMTs. Arginine methylation of TLR4 on R812 or arginine methylation of IRF3 on R285 mediated the interaction between TLR4 and IRF3 respectively. Arginine methylation of IRF3 on R285 induced by LPS led to its dimerization and promoted its translocation from the cytoplasm to the nucleus. In addition, the enhancement of arginine methylation of TLR4 induced by PRMT1 or 2 increased IRF3 transcription activity with or without LPS treatment, while PRMT2 with histidine 112 glutamine (H112Q) or methionine 115 isoleucine (M115I) mutation and TLR4 with arginine 812 lysine (R812K) mutation decreased it. Arginine methylation of TLR4 on R812 or PRMT2 enhanced interferon-ß (IFN-ß) production. Our study reveals a critical role for PRMT2 and protein arginine methylation in the enhancement of IFN-ß production via TLR4/IRF3 signaling pathway and may provide a therapeutic strategy to control endotoxemia.


Subject(s)
Arginine/metabolism , Gene Expression Regulation/immunology , Protein Processing, Post-Translational/physiology , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction/physiology , Animals , Endotoxemia/immunology , Endotoxemia/metabolism , HEK293 Cells , Humans , Interferon Regulatory Factor-3/immunology , Interferon Regulatory Factor-3/metabolism , Interferon-beta/immunology , Interferon-beta/metabolism , Methylation , Mice , Protein-Arginine N-Methyltransferases/immunology , RAW 264.7 Cells , Toll-Like Receptor 4/immunology , Toll-Like Receptor 4/metabolism
12.
Tissue Eng Part C Methods ; 26(1): 56-65, 2020 01.
Article in English | MEDLINE | ID: mdl-31802722

ABSTRACT

The increased incidence of bone defects, especially in cases of comminuted fractures or bone tumor resections demands suitable bone grafts and substitutes. The aim of this study was to establish an ex vivo bone defect model to evaluate new bone substitutes and associated repair processes under controlled conditions. Femoral heads derived from patients undergoing total hip replacement were cut into cylinders (20 mm diameter, 7 mm height). A central bone defect (6 mm diameter, 5 mm depth) was inserted centrally. The bone slides were cultured for 28 days and viability was evaluated by lactate dehydrogenase and alkaline phosphatase assay, and Calcein-AM viability staining and DNA quantification. Data revealed the viability of the bone tissue over the tested time period of 28 days, and an increase in cell numbers implicating active cell proliferation processes in the sections. To analyze the bone regeneration potential of this model in combination with a bone replacement material, we injected a collagen-type 1 hydrogel into the central defect. Cellular ingrowth into the gel was evaluated by microscopy and DNA quantification at different time points demonstrating an increase of cells in the defect over time. Finally, gene expression of osteogenic markers indicated an osteoblastic phenotype of the cells in the defect. In summary, the ex vivo bone defect model remains viable and shows active bone repair processes over 28 days. Additional advantages include high reproducibility, manageable costs, and a native bone-implant interface supporting the evaluation of bone substitute materials and associated regeneration processes. Impact statement Testing of new implant materials and bone repair strategies up to date rely mainly on in vivo and in vitro investigation models providing different pros and cons. In this study we established a novel human ex vivo bone defect model with a proven vitality of at least 28 days. The model provides a native bone implant interface and is designed to monitor cell invasion into a critically sized defect filled with the potential implant material. Furthermore, associated repair processes can be documented on the cell and molecular level, including additional advantages such as high reproducibility and manageable costs.


Subject(s)
Bone Diseases/therapy , Bone Regeneration , Bone Substitutes/pharmacology , Bone and Bones/cytology , Femur Head/cytology , Tissue Scaffolds/chemistry , Wound Healing , Adult , Aged , Aged, 80 and over , Cells, Cultured , Collagen/chemistry , Female , Humans , Hydrogels/chemistry , Male , Middle Aged , Models, Biological , Osteoarthritis, Hip/surgery , Reproducibility of Results
13.
PLoS One ; 14(6): e0218404, 2019.
Article in English | MEDLINE | ID: mdl-31220118

ABSTRACT

In an ever-aging society the demand for bone-defect filling grafts continues to gain in importance. While autologous grafting still prevails as the gold standard, allografts and xenografts present viable alternatives with promising results. Physiochemical properties of a graft strongly depend on the processing method such as the decellularization protocol. In addition, the physiochemical characteristics are critical factors for a successful integration of the graft after the implantation and might influence mesenchymal stem cell function in therapeutic approaches combining grafts and autologous mesenchymal stem cells (MSCs). Several decellularization methods have been proposed, however it still remains unclear which method results in favorable physiochemical properties or might be preferred in stem cell applications. In the first part of this study we compared two decellularization approaches resulting in chemically processed allografts (CPAs) or sonication-based processed allografts (SPAs). Each decellularization approach was compared for its decellularization efficacy and its influence on the grafts' surface texture and composition. In the second part of this study biocompatibility of grafts was assessed by testing the effect of extraction medium on MSC viability and comparing them to commercially available allografts and xenografts. Additionally, grafts' performance in terms of MSC functionality was assessed by reseeding with MSCs pre-differentiated in osteogenic medium and determining cell adhesion, proliferation, as well as alkaline phosphatase (ALP) activity and the degree of mineralization. In summary, results indicate a more effective decellularization for the SPA approach in comparison to the CPA approach. Even though SPA extracts induced a decrease in MSC viability, MSC performance after reseeding was comparable to commercially available grafts based on DNA quantification, alkaline phosphatase activity and quantification of mineralization. Commercial Tutoplast allografts showed overall the best effects on MSC functionality as indicated by extraction biocompatibility testing as well as by comparing proliferation and osteogenic differentiation.


Subject(s)
Allografts/ultrastructure , Bone Transplantation , Fractures, Bone/therapy , Mesenchymal Stem Cell Transplantation , Osteogenesis/physiology , Adult , Aged , Aged, 80 and over , Allografts/transplantation , Animals , Biocompatible Materials/therapeutic use , Bone Marrow Cells/ultrastructure , Cattle , Distillation , Female , Fractures, Bone/physiopathology , Humans , Male , Mesenchymal Stem Cells , Microscopy, Confocal , Microscopy, Electron, Scanning , Middle Aged , Minerals/therapeutic use , Sonication
14.
J Orthop Res ; 34(11): 1922-1932, 2016 11.
Article in English | MEDLINE | ID: mdl-26945676

ABSTRACT

Engineering of a vascularized bone construct is a highly challenging task which needs to take into account the impact of different components on the bone regeneration process. Bone repair influencing factors in such constructs range from the material properties and scaffold design, to the interaction of different cell types contributing to bone formation and remodeling or neovascularization, respectively. In this context, early endothelial progenitor cells (EPC), mononuclear cells isolated from the peripheral blood, express the endothelial marker CD31 but also a series of myeloid markers and have been shown to support the formation of vessel-like structures. These cells are also characterized by a highly adaptable phenotype influenced by other cells creating an instructive niche. The present study was designed to investigate the impact of EPC on bone formation or remodeling using a co-culture system of outgrowth endothelial cells, mature endothelial cells isolated from the peripheral blood cell cultures, and mesenchymal stem cells grown on hydroxyapatite poly(ester-urethane) scaffolds. The formation of vessel-like structures in these constructs was shown by CLSM and immunohistochemistry and further evaluated by real time RT-PCR. Osteogenic differentiation in these constructs was investigated by von Kossa, Alizarin Red, and real time PCR. Data indicated that osteogenic differentiation occurred within the constructs after 14 days of culture but without a direct influence by EPC in this process. Finally, although we observed a series of osteoclast related makers in the constructs when EPC were included, no indications for an increased osteoclast-like activity, which might lead to increased bone resorption, were observed. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1922-1932, 2016.


Subject(s)
Endothelial Progenitor Cells/physiology , Neovascularization, Physiologic , Osteoclasts/physiology , Osteogenesis , Tissue Scaffolds , Biomarkers/metabolism , Cathepsin K/metabolism , Cell Differentiation , Coculture Techniques , Durapatite , Humans , Myeloid Cells/physiology , Osteoclasts/cytology , Polyesters , Polyurethanes
SELECTION OF CITATIONS
SEARCH DETAIL