Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 185(5): 896-915.e19, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35180381

ABSTRACT

The emerging SARS-CoV-2 variants of concern (VOCs) threaten the effectiveness of current COVID-19 vaccines administered intramuscularly and designed to only target the spike protein. There is a pressing need to develop next-generation vaccine strategies for broader and long-lasting protection. Using adenoviral vectors (Ad) of human and chimpanzee origin, we evaluated Ad-vectored trivalent COVID-19 vaccines expressing spike-1, nucleocapsid, and RdRp antigens in murine models. We show that single-dose intranasal immunization, particularly with chimpanzee Ad-vectored vaccine, is superior to intramuscular immunization in induction of the tripartite protective immunity consisting of local and systemic antibody responses, mucosal tissue-resident memory T cells and mucosal trained innate immunity. We further show that intranasal immunization provides protection against both the ancestral SARS-CoV-2 and two VOC, B.1.1.7 and B.1.351. Our findings indicate that respiratory mucosal delivery of Ad-vectored multivalent vaccine represents an effective next-generation COVID-19 vaccine strategy to induce all-around mucosal immunity against current and future VOC.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunity, Mucosal , Administration, Intranasal , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , COVID-19/virology , COVID-19 Vaccines/immunology , Cytokines/blood , Genetic Vectors/genetics , Genetic Vectors/immunology , Genetic Vectors/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutralization Tests , Nucleocapsid/genetics , Nucleocapsid/immunology , Nucleocapsid/metabolism , Pan troglodytes , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
2.
Nat Immunol ; 17(5): 514-522, 2016 May.
Article in English | MEDLINE | ID: mdl-27043414

ABSTRACT

Cytosolic DNA-mediated activation of the transcription factor IRF3 is a key event in host antiviral responses. Here we found that infection with DNA viruses induced interaction of the metabolic checkpoint kinase mTOR downstream effector and kinase S6K1 and the signaling adaptor STING in a manner dependent on the DNA sensor cGAS. We further demonstrated that the kinase domain, but not the kinase function, of S6K1 was required for the S6K1-STING interaction and that the TBK1 critically promoted this process. The formation of a tripartite S6K1-STING-TBK1 complex was necessary for the activation of IRF3, and disruption of this signaling axis impaired the early-phase expression of IRF3 target genes and the induction of T cell responses and mucosal antiviral immunity. Thus, our results have uncovered a fundamental regulatory mechanism for the activation of IRF3 in the cytosolic DNA pathway.


Subject(s)
DNA/immunology , Interferon Regulatory Factor-3/immunology , Membrane Proteins/immunology , Ribosomal Protein S6 Kinases, 90-kDa/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cells, Cultured , Cytosol/immunology , Cytosol/metabolism , Cytosol/virology , DNA/genetics , DNA/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , HEK293 Cells , Herpes Simplex/immunology , Herpes Simplex/virology , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/physiology , Humans , Immunization/methods , Immunoblotting , Interferon Regulatory Factor-3/genetics , Interferon Regulatory Factor-3/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Nucleotidyltransferases/genetics , Nucleotidyltransferases/immunology , Nucleotidyltransferases/metabolism , Ovalbumin/genetics , Ovalbumin/immunology , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Protein Serine-Threonine Kinases/metabolism , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Ribosomal Protein S6 Kinases, 90-kDa/metabolism
3.
Acc Chem Res ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38271669

ABSTRACT

ConspectusThe pursuit of in-depth studying the nature and law of life activity has been dominating current research fields, ranging from fundamental biological studies to applications that concern synthetic biology, bioanalysis, and clinical diagnosis. Motivated by this intention, the spatiotemporally controlled and in situ analysis of living cells has been a prospective branch by virtue of high-sensitivity imaging of key biomolecules, such as biomarkers. The past decades have attested that deoxyribonucleic acid (DNA), with biocompatibility, programmability, and customizable features, is a competitive biomaterial for constructing high-performance molecular sensing tools. To conquer the complexity of the wide extracellular-intracellular distribution of biomarkers, it is a meaningful breakthrough to explore high-efficiently amplified DNA circuits, which excel at operating complex yet captivating dynamic reaction networks for various bioapplications. In parallel, the multidimensional performance improvements of nucleic acid circuits, including the availability, detection sensitivity, and reliability, are critical parameters for realizing accurate imaging and cell regulation in bioanalysis.In this Account, we summarize our recent work on enzyme-free dynamic DNA reaction networks for bioanalysis from three main aspects: DNA circuitry functional extension of molecular recognition for epigenetic analysis and regulation, DNA circuitry amplification ability improvement for sensitive biomarker detection, and site-specific activation of DNA circuitry systems for reliable and accurate cell imaging. In the first part, we have designed an epigenetically responsive deoxyribozyme (DNAzyme) circuitry system for intracellular imaging and gene regulation, which enriches the possible analyzed species by chemically modifying conventional DNAzyme. For example, an exquisite N6-methyladenine (m6A)-caged DNAzyme was built for achieving the precise FTO (fat mass and obesity-associated protein)-directed gene regulation. In addition, varieties of DNAzyme-based nanoplatforms with self-sufficient cofactor suppliers were assembled, which subdued the speed-limiting hardness of DNAzyme cofactors in live-cell applications. In the second part, we have developed a series of hierarchically assembled DNA circuitry systems to improve the signal transduction ability of traditional DNA circuits. First, the amplification ability of the DNAzyme circuit has been significantly enhanced via several heterogeneously or homogeneously concatenated circuitry models. Furthermore, a feedback reaction pathway was integrated into these concatenated circuits, thus dramatically increasing the amplification efficiency. Second, considering the complex cellular environment, we have simplified the redundancy of multicomponents or reaction procedures of traditional cascaded circuits, relying on the minimal component complexity and merely one modular catalytic reaction, which guaranteed high cell-delivering uniformity while fostering reaction kinetics and analysis reliability. In the third part, we have constructed in-cell-selective endogenous-stimulated DNA circuitry systems via the multiply guaranteed molecular recognitions, which could not only eliminate the signal leakage, but could also retain its on-site and multiplex signal amplification. Based on the site-specific activation strategy, more circuitry availability in cellular scenarios has been acquired for reliable and precise biological sensing and regulation. These enzyme-free dynamic DNA reaction networks demonstrate the purpose-to-concreteness engineering for tailored multimolecule recognition and multiple signal amplification, achieving high-gain signal transduction and high-reliability targeted imaging in bioanalysis. We envision that the enzyme-free dynamic DNA reaction network can contribute to more bioanalytical layouts, which will facilitate the progression of clinical diagnosis and prognosis.

4.
Anal Chem ; 96(14): 5560-5569, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38529650

ABSTRACT

Catalytic DNA circuits are desirable for sensitive bioimaging in living cells; yet, it remains a challenge to monitor these intricate signal communications because of the uncontrolled circuitry leakage and insufficient cell selectivity. Herein, a simple yet powerful DNA-repairing enzyme (APE1) activation strategy is introduced to achieve the site-specific exposure of a catalytic DNA circuit for realizing the selectively amplified imaging of intracellular microRNA and robust evaluation of the APE1-involved drug resistance. Specifically, the circuitry reactants are firmly blocked by the enzyme recognition/cleavage site to prevent undesirable off-site circuitry leakage. The caged DNA circuit has no target-sensing activity until its circuitry components are activated via the enzyme-mediated structural reconstitution and finally transduces the amplified fluorescence signal within the miRNA stimulation. The designed DNA circuit demonstrates an enhanced signal-to-background ratio of miRNA assay as compared with the conventional DNA circuit and enables the cancer-cell-selective imaging of miRNA. In addition, it shows robust sensing performance in visualizing the APE1-mediated chemoresistance in living cells, which is anticipated to achieve in-depth clinical diagnosis and chemotherapy research.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/chemistry , DNA, Catalytic/chemistry , Nucleic Acid Hybridization , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , DNA/chemistry , Biosensing Techniques/methods
5.
Anal Chem ; 96(23): 9666-9675, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815126

ABSTRACT

Epigenetic modification plays an indispensable role in regulating routine molecular signaling pathways, yet it is rarely used to modulate molecular self-assembly networks. Herein, we constructed a bioorthogonal demethylase-stimulated DNA circuitry (DSC) system for high-fidelity imaging of microRNA (miRNA) in live cells and mice by eliminating undesired off-site signal leakage. The simple and robust DSC system is composed of a primary cell-specific circuitry regulation (CR) module and an ultimate signal-transducing amplifier (SA) module. After the modularly designed DSC system was delivered into target live cells, the DNAzyme of the CR module was site-specifically activated by endogenous demethylase to produce fuel strands for the subsequent miRNA-targeting SA module. Through the on-site and multiply guaranteed molecular recognitions, the lucid yet efficient DSC system realized the reliably amplified in vivo miRNA sensing and enabled the in-depth exploration of the demethylase-involved signal pathway with miRNA in live cells. Our bioorthogonally on-site-activated DSC system represents a universal and versatile biomolecular sensing platform via various demethylase regulations and shows more prospects for more different personalized theragnostics.


Subject(s)
DNA, Catalytic , MicroRNAs , MicroRNAs/analysis , MicroRNAs/metabolism , DNA, Catalytic/metabolism , DNA, Catalytic/chemistry , Animals , Mice , Humans , DNA Methylation , Optical Imaging
6.
Small ; 20(2): e2305672, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670211

ABSTRACT

The sensing performance of DNAzymes in live cells is tremendously hampered by the inefficient and inhomogeneous delivery of DNAzyme probes and their incontrollable off-site activation, originating from their susceptibility to nuclease digestion. This requires the development of a more compact and robust DNAzyme-delivering system with site-specific DNAzyme activation property. Herein, a highly compact and robust Zn@DDz nanoplatform is constructed by integrating the unimolecular microRNA-responsive DNA-cleaving DNAzyme (DDz) probe with the requisite DNAzyme Zn2+ -ion cofactors, and the amplified intracellular imaging of microRNA via the spatiotemporally programmed disassembly of Zn@DDz nanoparticles is achieved. The multifunctional Zn@DDz nanoplatform is simply composed of a structurally blocked self-hydrolysis DDz probe and the inorganic Zn2+ -ion bridge, with high loading capacity, and can effectively deliver the initially catalytic inert DDz probe and Zn2+ into living cells with enhanced stabilities. Upon their entry into the acidic microenvironment of living cells, the self-sufficient Zn@DDz nanoparticle is disassembled to release DDz probe and simultaneously supply Zn2+ -ion cofactors. Then, endogenous microRNA-21 catalyzes the reconfiguration and activation of DDz for generating the amplified readout signal with multiply guaranteed imaging performance. Thus, this work paves an effective way for promoting DNAzyme-based biosensing systems in living cells, and shows great promise in clinical diagnosis.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , Nanoparticles , DNA
7.
Chembiochem ; : e202400266, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801028

ABSTRACT

Nucleic acids exhibit exceptional functionalities for both molecular recognition and catalysis, along with the capability of predictable assembly through strand displacement reactions. The inherent programmability and addressability of DNA probes enable their precise, on-demand assembly and accurate execution of hybridization, significantly enhancing target detection capabilities. Decades of research in DNA nanotechnology have led to advances in the structural design of functional DNA probes, resulting in increasingly sensitive and robust DNA sensors. Moreover, increasing attention has been devoted to enhancing the accuracy and sensitivity of DNA-based biosensors by integrating multiple sensing procedures. In this review, we summarize various strategies aimed at enhancing the accuracy of DNA sensors. These strategies involve multiple guarantee procedures, utilizing dual signal output mechanisms, and implementing sequential regulation methods. Our goal is to provide new insights into the development of more accurate DNA sensors, ultimately facilitating their widespread application in clinical diagnostics and assessment.

8.
Inflamm Res ; 73(3): 475-484, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38341813

ABSTRACT

BACKGROUND: Lipid pathways play a crucial role in psoriatic arthritis development, and some lipid-lowering drugs are believed to have therapeutic benefits due to their anti-inflammatory properties. Traditional observational studies face issues with confounding factors, complicating the interpretation of causality. This study seeks to determine the genetic link between these medications and the risk of psoriatic arthritis. METHODS: This drug target study utilized the Mendelian randomization strategy. We harnessed high-quality data from population-level genome-wide association studies sourced from the UK Biobank and FinnGen databases. The inverse variance-weighted method, complemented by robust pleiotropy methods, was employed. We examined the causal relationships between three lipid-lowering agents and psoriatic arthritis to unveil the underlying mechanisms. RESULTS: A significant association was observed between genetically represented proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition and a decreased risk of psoriatic arthritis (odds ratio [OR]: 0.51; 95% CI 0.14-0.88; P < 0.01). This association was further corroborated in an independent dataset (OR 0.60; 95% CI 0.25-0.94; P = 0.03). Sensitivity analyses affirmed the absence of statistical evidence for pleiotropic or genetic confounding biases. However, no substantial associations were identified for either 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors or Niemann-Pick C1-like 1 inhibitors. CONCLUSIONS: This Mendelian randomization analysis underscores the pivotal role of PCSK9 in the etiology of psoriatic arthritis. Inhibition of PCSK9 is associated with reduced psoriatic arthritis risk, highlighting the potential therapeutic benefits of existing PCSK9 inhibitors.


Subject(s)
Arthritis, Psoriatic , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Genome-Wide Association Study , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/genetics , Hypolipidemic Agents/therapeutic use , Lipids
9.
Nano Lett ; 23(4): 1386-1394, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36719793

ABSTRACT

Rolling circle amplification (RCA) enables the facile construction of compact and versatile DNA nanoassemblies which are yet rarely explored for intracellular analysis. This is might be ascribed to the uncontrollable and inefficient probe integration/activation. Herein, by encoding with tandem allosteric deoxyribozyme (DNA-cleaving DNAzyme), a multifunctional RCA nanogel was established for realizing the efficient intracellular microRNA imaging via the successive activation of the RCA-disassembly module and signal amplification module. The endogenous microRNA stimulates the precise degradation of DNA nanocarriers, thus leading to the efficient exposure of RCA-entrapped DNAzyme biocatalyst for an amplified readout signal. Our bioorthogonal DNAzyme disassembly strategy achieved the robust analysis of intracellular biomolecules, thus showing more prospects in clinical diagnosis.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , MicroRNAs/analysis , Nanogels , Nucleic Acid Amplification Techniques/methods , DNA/analysis , Biosensing Techniques/methods , Limit of Detection
10.
Angew Chem Int Ed Engl ; 63(12): e202320179, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38288561

ABSTRACT

Nucleic acids in biofluids are emerging biomarkers for the molecular diagnostics of diseases, but their clinical use has been hindered by the lack of sensitive detection assays. Herein, we report the development of a sensitive nucleic acid detection assay named SPOT (sensitive loop-initiated DNAzyme biosensor for nucleic acid detection) by rationally designing a catalytic DNAzyme of endonuclease capability into a unified one-stranded allosteric biosensor. SPOT is activated once a nucleic acid target of a specific sequence binds to its allosteric module to enable continuous cleavage of molecular reporters. SPOT provides a highly robust platform for sensitive, convenient and cost-effective detection of low-abundance nucleic acids. For clinical validation, we demonstrated that SPOT could detect serum miRNAs for the diagnostics of breast cancer, gastric cancer and prostate cancer. Furthermore, SPOT exhibits potent detection performance over SARS-CoV-2 RNA from clinical swabs with high sensitivity and specificity. Finally, SPOT is compatible with point-of-care testing modalities such as lateral flow assays. Hence, we envision that SPOT may serve as a robust assay for the sensitive detection of a variety of nucleic acid targets enabling molecular diagnostics in clinics.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , DNA, Catalytic/metabolism , RNA, Viral , Endonucleases , Nucleic Acid Amplification Techniques
11.
J Am Chem Soc ; 145(5): 2999-3007, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36700894

ABSTRACT

Isothermal autocatalytic DNA circuits have been proven to be versatile and powerful biocomputing platforms by virtue of their self-sustainable and self-accelerating reaction profiles, yet they are currently constrained by their complicated designs, severe signal leakages, and unclear reaction mechanisms. Herein, we developed a simpler-yet-efficient autocatalytic assembly circuit (AAC) for highly robust bioimaging in live cells and mice. The scalable and sustainable AAC system was composed of a mere catalytic DNA assembly reaction with minimal strand complexity and, upon specific stimulation, could reproduce numerous new triggers to expedite the whole reaction. Through in-depth theoretical simulations and systematic experimental demonstrations, the catalytic efficiency of these reproduced triggers was found to play a vital role in the autocatalytic profile and thus could be facilely improved to achieve more efficient and characteristic autocatalytic signal amplification. Due to its exponentially high signal amplification and minimal reaction components, our self-stacking AAC facilitated the efficient detection of trace biomolecules with low signal leakage, thus providing great clinical diagnosis and therapeutic assessment potential.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Animals , Mice , Biosensing Techniques/methods , DNA , Catalysis
12.
Anal Chem ; 95(7): 3848-3855, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36745869

ABSTRACT

Accurate diagnosis requires the development of multiple-guaranteed DNA circuits. Nevertheless, for reliable multiplexed molecular imaging, existing DNA circuits are limited by poor cell-delivering homogeneity due to their cumbersome and dispersive reactants. Herein, we developed a compact-yet-efficient hierarchical DNA hybridization (HDH) circuit for in situ simultaneous analysis of multiple miRNAs, which could be further exploited for specifically discriminating cancer cells from normal ones. By integrating the traditional hybridization chain reaction and catalytic hairpin assembly reactants into two highly organized hairpins, the HDH circuit is fitted with condensed components and multiple response domains, thus permitting the programmable multiple microRNA-guaranteed sequential activations and the localized cascaded signal amplification. The synergistic multi-recognition and amplification features of the HDH circuit facilitate the magnified detection of multiplex endogenous miRNAs in living cells. The in vitro and cellular imaging experimental results revealed that the HDH circuit displayed a reliable sensing performance with high selective cell-identification capacity. We anticipate that this compact design can provide a powerful toolkit for accurate diagnostics and pathological evolution.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , MicroRNAs/genetics , MicroRNAs/analysis , Biosensing Techniques/methods , Nucleic Acid Hybridization , DNA/genetics , Molecular Imaging , DNA, Catalytic/metabolism
13.
Anal Chem ; 95(27): 10398-10404, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37382225

ABSTRACT

Building dynamic biological networks, especially DNA circuits, has provided a powerful prospect for exploring the intrinsic regulation processes of live cells. Nevertheless, for efficient intracellular microRNA analysis, the available multi-component circuits are constrained by their limited operating speed and efficiency due to the free diffusion of reactants. Herein, we developed an accelerated Y-shaped DNA catalytic (YDC) circuit for high-efficiency intracellular imaging of microRNA. By grafting the catalytic hairpin assembly (CHA) reactants into an integrated Y-shaped scaffold, the CHA probes were concentrated in a compact space, thus achieving high signal amplification. Profiting from the spatially confined reaction and the self-sustainably assembled DNA products, the YDC system facilitated reliable and in situ microRNA imaging in live cells. Compared with the homogeneously dispersed CHA reactants, the integrated YDC system could efficiently promote the reaction kinetics as well as the uniform delivery of CHA probes, thus providing a robust and reliable analytical tool for disease diagnosis and monitoring.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , MicroRNAs/analysis , DNA , Diagnostic Imaging , Biosensing Techniques/methods
14.
Anal Chem ; 95(51): 18731-18738, 2023 12 26.
Article in English | MEDLINE | ID: mdl-38096424

ABSTRACT

The engineering of catalytic hybridization DNA circuits represents versatile ways to orchestrate a complex flux of molecular information at the nanoscale, with potential applications in DNA-encoded biosensing, drug discovery, and therapeutics. However, the diffusive escape of intermediates and unintentional binding interactions remain an unsolved challenge. Herein, we developed a compact, yet efficient, self-regulatory assembly circuit (SAC) for achieving robust microRNA (miRNA) imaging in live cells through DNA-templated guaranteed catalytic hybridization. By integrating the toehold strand with a preblocked palindromic fragment in the stem domain, the proposed miniature SAC system allows the reactant-to-template-controlled proximal hybridization, thus facilitating the bidirectional-sustained assembly and the localization-intensified signal amplification without undesired crosstalk. With condensed components and low reactant complexity, the SAC amplifier realized high-contrast intracellular miRNA imaging. We anticipate that this simple and template-controlled design can enrich the clinical diagnosis and prognosis toolbox.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , MicroRNAs/genetics , Biosensing Techniques/methods , Limit of Detection , DNA/genetics , DNA/chemistry , Nucleic Acid Hybridization/methods , DNA, Catalytic/chemistry
15.
Anal Chem ; 95(23): 9076-9082, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37264502

ABSTRACT

Serotonin is a vital neurotransmitter for regulating organism functions, and its abnormal level indicates multiple diseases. Aptamer has emerged as an innovative tool for serotonin analysis very recently; however, the current aptameric sensing platform lacks design flexibility and portability. Here, we introduce a light-up aptameric sensor using designer DNA molecules with tunable affinity and dynamic response and achieve mobile phone-based detection for point-of-care use. We develop a type of allosteric DNA sensor through flanking the serotonin recognition domain with split fluorogenic sequences, where both linker lengths and split sites of the aptamer affect its function. In addition, we design a series of molecular constructs that contain nucleotide mutations and systematically investigate the structure folding and ligand binding of the aptameric molecules. The results show distinct effects of variant mutation sites on conformation change and sensing responses. Notably, the variable aptameric molecules allow affinity and dynamic response regulation, which are adaptable to diverse sensing applications that require different threshold levels. Furthermore, we demonstrate a simple surface-based assay that can use smartphone imaging to visualize results for diagnosis. In a portable and simple manner, highly sensitive and selective serotonin assay is achieved in different biofluids, with detection limits in the low nanomolar range. This study offers an alternative approach for serotonin assay using engineered aptameric molecular probes. We expect that the practical utility may make the method promising in resource-limited settings.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Serotonin , Point-of-Care Systems , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Smartphone
16.
Small ; 19(17): e2207961, 2023 04.
Article in English | MEDLINE | ID: mdl-36717281

ABSTRACT

Trace analyte detection in complex intracellular environment requires the development of simple yet robust self-sufficient molecular circuits with high signal-gain and anti-interference features. Herein, a minimal non-enzymatic self-replicate DNA circuitry (SDC) system is proposed with high-signal-gain for highly efficient biosensing in living cells. It is facilely engineered through the self-stacking of only one elementary cascade hybridization reaction (CHR), thus is encoding with more economic yet effective amplification pathways and reactants. Trigger (T) stimulates the activation of CHR for producing numerous T replica that reversely motivate new CHR reaction cycles, thus achieving the successive self-replication of CHR system with an exponentially magnified readout signal. The intrinsic self-replicate circuity design and the self-accelerated reaction format of SDC system is experimentally demonstrated and theoretically simulated. With simple circuitry configuration and low reactant complexity, the SDC amplifier enables the high-contrast and accurate visualization of microRNA (miRNA), ascribing to its robust molecular recognition and self-sufficient signal amplification, thus offering a promising strategy for monitoring these clinically significant analytes.


Subject(s)
Biosensing Techniques , MicroRNAs , MicroRNAs/genetics , Nucleic Acid Amplification Techniques/methods , DNA , Nucleic Acid Hybridization , Diagnostic Imaging , Biosensing Techniques/methods
17.
Chemistry ; 29(33): e202300861, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-36988136

ABSTRACT

Laser-free photodynamic therapy (PDT) is a promising noninvasive therapeutic modality for deep-seated tumor, yet is constrained by low efficiency due to the limited stimulation strategies. Herein, a novel miRNA-responsive laser-free PDT was developed through metal-organic frameworks (MOFs)-mediated chemiluminescence resonance energy transfer (CRET) nanoplatform. The photosensitizer chlorin e6 (Ce6)-loaded MOFs were functionalized with hairpin nucleic acids for sensitive responsiveness of tumor biomarker miRNA through catalytic hairpin assembly (CHA), which enabled the amplified assembly of horseradish peroxidase (HRP)-mimicking hemin/G-quadruplex DNAzyme on MOFs. Simultaneously, the on-MOF assembled DNAzymes efficiently catalyzed chemiluminescence reaction to stimulate adjacent Ce6 in the presence of luminol and H2 O2 , thus allowing the CRET-mediated Ce6 luminescence and reactive oxygen species (ROS) generation for self-illuminating PDT. The CRET nanoplatform achieved significant malignant cell apoptosis and tumor inhibition effects without external laser irradiation. It is envisioned that the miRNA-amplified CRET nanoplatform might be a selective and highly efficient antitumor nanomedicine for precise theranostic.


Subject(s)
DNA, Catalytic , Metal-Organic Frameworks , MicroRNAs , Neoplasms , Photochemotherapy , Porphyrins , Humans , Luminescence , Energy Transfer , Photosensitizing Agents/pharmacology , Neoplasms/drug therapy , Cell Line, Tumor , Porphyrins/pharmacology
18.
Langmuir ; 39(30): 10453-10463, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37486222

ABSTRACT

Cascaded signal amplification technologies play an important role in the sensitive detection of lowly expressed biomarkers of interests yet are constrained by severe background interference and low cellular accessibility. Herein, we constructed a metal-organic framework-encapsulating dual-signal cascaded nucleic acid sensor for precise intracellular miRNA imaging. ZIF-8 nanoparticles load and deliver FAM-labeled upstream catalytic hairpin assembly (CHA) and Cy5-modified downstream hybridization chain reaction (HCR) hairpin reactants to tumor cells, enabling visualization of the target-initiated signal amplification process for double-insurance detection of analytes. The pH-responsive ZIF-8 nanoparticles effectively protect DNA hairpins from degradation and allow the release of them in the acid tumor microenvironment. Then, intracellular target miRNAs orderly trigger cascaded nucleic acid signal amplification reaction, of which the exact progress is investigated through the analysis of the fluorescence recovering process of FAM and Cy5. In addition, DNA@ZIF-8 nanoparticles improve measurement accuracy by dual-signal colocalization imaging, effectively avoiding nonspecific false-positive signals and enabling in situ imaging of miRNAs in living cells. A dual-signal colocalization strategy allows accurate target detection in living cells, and DNA@ZIF-8 provides a promising intracellular sensing platform for signal amplification and visual monitoring.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks , MicroRNAs , MicroRNAs/genetics , MicroRNAs/analysis , DNA/genetics , Carbocyanines , Nucleic Acid Hybridization , Biosensing Techniques/methods
19.
Analyst ; 148(12): 2683-2691, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37195805

ABSTRACT

Chemiluminescence resonance energy transfer (CRET)-based assays have shown great potential in biosensing due to their negligible background autofluorescence, yet are still limited by their low sensitivity and short half-life luminescence. Herein, a multistage CRET-based DNA circuit was constructed with amplified luminescence signals for accurate miRNA detection and fixed reactive oxygen species (ROS) signals for cell imaging. The DNA circuit is designed through an ingenious programmable catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), and the use of DNAzyme to realize target-triggered precise regulation of distance between the donor and acceptor for CRET-mediated excitation of photosensitizers. In detail, the analyte catalyzes the hybridization of CHA reactants, which leads to the assembly of multiple HCR-mediated DNAzyme nanowires. Subsequently, DNAzymes catalyze the oxidation of luminol by H2O2, and the adjacent photosensitizer chlorin e6 (Ce6) anchored on the DNA nanostructure is stimulated by the CRET process, resulting in the amplified long-wavelength luminescence and the generation of single oxygen signals through further energy transfer to oxygen. The biomarker miRNA can be detected with great sensitivity by integrating the recognition module into a universal platform. Furthermore, the DNA circuit enables CRET-mediated intracellular miRNA imaging, by detecting singlet oxygen signals through a ROS probe. The significant amplification effect is attributed to the robust multiple recognition of the target and the guaranteed transduction of the CRET signal through programmable engineering of DNA nanostructures. The CRET-based DNA circuit achieves amplified long-wavelength luminescence for accurate miRNA detection with low background and ROS-mediated signal fixation for cell imaging, making it a promising candidate for early diagnosis and theranostics.


Subject(s)
Biosensing Techniques , DNA, Catalytic , MicroRNAs , MicroRNAs/chemistry , Luminescence , DNA, Catalytic/chemistry , Hydrogen Peroxide/chemistry , Reactive Oxygen Species , DNA/genetics , Energy Transfer , Nucleic Acid Hybridization , Biosensing Techniques/methods
20.
Hepatobiliary Pancreat Dis Int ; 22(6): 605-614, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35977873

ABSTRACT

BACKGROUND: About 10%-20% of all individuals who develop hepatocellular carcinoma (HCC) do not have cirrhosis. Comparisons are rarely reported regarding the effectiveness of radiofrequency ablation (RFA) and liver resection (LR) in survival of HCC without cirrhosis and stratification by tumor size ≤ 5 cm. METHODS: We used the Surveillance, Epidemiology, and End Results (SEER) database and identified 1505 patients with a solitary HCC tumor ≤ 5 cm who underwent RFA or LR during 2004-2015. Patients were classified into non-cirrhosis and cirrhosis groups and each group was categorized into three subgroups, according to tumor size (≤ 30 mm, 31-40 mm, 41-50 mm). RESULTS: In patients without cirrhosis, LR showed better 5-year HCC cancer-specific survival than RFA in all tumor size subgroups (≤ 30 mm: 82.51% vs. 56.42%; 31-40 mm: 71.31% vs. 46.83%; 41-50 mm: 74.7% vs. 37.5%; all P < 0.05). Compared with RFA, LR was an independent protective factor for HCC cancer-specific survival in multivariate Cox analysis [≤ 30 mm: hazard ratio (HR) = 0.533, 95% confidence interval (CI): 0.313-0.908; 31-40 mm: HR = 0.439, 95% CI: 0.201-0.957; 41-50 mm: HR = 0.382; 95% CI: 0.159-0.916; all P < 0.05]. In patients with cirrhosis, for both tumor size ≤ 30 mm and 31-40 mm groups, there were no significant survival differences between RFA and LR in multivariate analysis (all P > 0.05). However, in those with tumor size 41-50 mm, LR showed significantly better 5-year HCC cancer-specific survival than RFA in both univariate (54.72% vs. 23.06%; P < 0.001) and multivariate analyses (HR = 0.297; 95% CI: 0.136-0.648; P = 0.002). CONCLUSIONS: RFA is an inferior treatment option to LR for patients without cirrhosis who have a solitary HCC tumor ≤ 5 cm.


Subject(s)
Carcinoma, Hepatocellular , Catheter Ablation , Liver Neoplasms , Radiofrequency Ablation , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Treatment Outcome , Catheter Ablation/adverse effects , Catheter Ablation/methods , Liver Cirrhosis/complications , Liver Cirrhosis/diagnosis , Liver Cirrhosis/surgery , Radiofrequency Ablation/adverse effects , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL