Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Anal Chem ; 96(23): 9653-9658, 2024 06 11.
Article in English | MEDLINE | ID: mdl-38807045

ABSTRACT

PdPt nanosheets decorated on SnS2 nanosheets (i.e., PdPt@SnS2 NSs) were fabricated for a novel electrochemiluminescence (ECL) biosensor for ultrasensitive detection of miRNA-21 based on catalytic hairpin assembly (CHA) cycles. The PdPt@SnS2 NSs serve as both the main luminophore and a highly effective coreaction accelerator in the ECL biosensor. In the CHA cycles, more miRNA-21 is captured, and the performance of the ECL biosensor is improved. When miRNA-21 is present, the hairpin chain DNA1 (i.e., H1) is opened, and the ferrocene (Fc)-modified hairpin chain DNA2 (i.e., Fc-H2) hybridizes with as-opened H1 by replacing miRNA-21 to stimulate CHA cycles of miRNA-21. During the CHA cycles, Fc-H2 quenches the ECL signal to monitor miRNA-21. As a result, the ECL biosensor shows ultrasensitive and highly selective detection of miRNA-21 from 1 aM to 1 nM with a detection limit (LOD) of 0.02 aM. In addition, the ECL biosensor exhibits excellent practicality for miRNA-21 detection in human serum samples.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Luminescent Measurements , MicroRNAs , Palladium , Platinum , Platinum/chemistry , Humans , MicroRNAs/blood , MicroRNAs/analysis , Biosensing Techniques/methods , Palladium/chemistry , Limit of Detection , Tin Compounds/chemistry , Sulfides/chemistry , Nanostructures/chemistry
2.
Anal Chem ; 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39303167

ABSTRACT

A smartphone-mediated self-powered biosensor is fabricated for miRNA-141 detection based on the CRISPR/Cas12a cross-cutting technique and a highly efficient nanozyme. As a novel nanozyme and a signal-amplified coreaction accelerator, the AuPtPd@GDY nanozyme exhibits an excellent ability to catalyze cascade color reactions and high conductivity to enhance the electrochemical signal for miRNA-141 assays. After CRISPR/Cas12a cross-cutting of S2-glucose oxidase (S2-GOD), the electrochemical signal is weakened, and miRNA-141 is detected by monitoring the decrease in the signal. On the other hand, a cascade reaction among glucose, H2O2, and TMB is catalyzed by GOD and AuPtPd@GDY, respectively, resulting in a color change of the solution, which senses miRNA-141. The self-powered biosensor enables value-assisted and visual detection of miRNA-141 with limits of detection of 3.1 and 15 aM, respectively. Based on the dual-modal self-powered sensing system, a smartphone-mediated "all-in-one" biosensing chip is designed to achieve the real-time and intelligent monitoring of miRNA-141. This work provides a new approach to design multifunctional biosensors to realize the visualization and portable detection of tumor biomarkers.

3.
Anal Chem ; 96(36): 14508-14515, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39177401

ABSTRACT

An ultrasensitive self-powered biosensor is constructed for miRNA-21 detection based on Au nanoparticles @ Pd nanorings (Au NPs@Pd NRs) and catalytic hairpin assembly (CHA). The Au NPs@Pd NRs possess excellent electrical conductivity to improve the electron transfer rate and show good elimination of byproduct H2O2 to assist glucose oxidase (GOD) to catalyze glucose; CHA is used as an amplification strategy to effectively enhance the sensitivity of the biosensor. To further amplify the output signal, a capacitor is integrated into the self-powered biosensor. With multiple signal amplification strategies, the self-powered biosensor possesses a linear range of 0.1-10-4 fM and a lower limit of detection (LOD) of 0.032 fM (S/N = 3). In addition, the as-prepared self-powered biosensor displays potential applicability in the assay toward miRNA-21 in human serum samples.


Subject(s)
Biosensing Techniques , Glucose Oxidase , Gold , Metal Nanoparticles , MicroRNAs , Palladium , MicroRNAs/analysis , MicroRNAs/blood , Biosensing Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Humans , Catalysis , Palladium/chemistry , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Limit of Detection , Electrochemical Techniques , Glucose/analysis , Hydrogen Peroxide/chemistry
4.
Anal Chem ; 96(36): 14464-14470, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39186685

ABSTRACT

A triple signal amplification strategy was integrated with a built-in double electrode and external energy storage device to fabricate a novel self-powered biosensor for ultrasensitive detection of miRNA-21. Specifically, DNA tetrahedra and haripin2-glucose oxidase are modified on the surface of the biocathode and bioanode by catalytic hairpin assembly (CHA) to achieve dual signal amplification. Moreover, triple signal amplification is realized by including an external capacitor. Consequently, the as-constructed self-powered biosensor demonstrates a low detection limit of 0.06 fM toward the miRNA-21 assay within the range of 0.1 fM to 10 pM. This study presents a practical and sensitive approach to timely cancer detection.


Subject(s)
Biosensing Techniques , Glucose Oxidase , MicroRNAs , MicroRNAs/analysis , Biosensing Techniques/methods , Humans , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Electrochemical Techniques/methods , Limit of Detection , Electrodes , DNA/chemistry , DNA/genetics , Nucleic Acid Amplification Techniques
5.
Anal Chem ; 95(14): 6046-6052, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36976790

ABSTRACT

A dual-biomarker, self-powered biosensor was fabricated for the ultrasensitive detection of microRNA-21 (miRNA-21) and miRNA-155 based on enzymatic biofuel cells (EBFCs), catalytic hairpin assembly (CHA), and DNA hybridization chain reaction (HCR), with a capacitor and digital multimeter (DMM). In the presence of miRNA-21, the CHA and HCR are triggered and lead to the generation of a double-helix chain, which stimulates [Ru(NH3)6]3+ to move to the biocathode surface due to electrostatic interaction. Subsequently, the biocathode obtains electrons from the bioanode and reduces [Ru(NH3)6]3+ to [Ru(NH3)6]2+, which significantly increases the open-circuit voltage (E1OCV). When miRNA-155 is present, CHA and HCR cannot be completed, resulting in a low E2OCV. The self-powered biosensor allows for the simultaneous ultrasensitive detection of miRNA-21 and miRNA-155 with detection limits of 0.15 and 0.66 fM, respectively. Moreover, this self-powered biosensor exhibits the highly sensitive detection for miRNA-21 and miRNA-155 assay in human serum samples.


Subject(s)
Biosensing Techniques , MicroRNAs , Humans , Electrochemical Techniques/methods , Limit of Detection , Biomarkers , Biosensing Techniques/methods , MicroRNAs/genetics
6.
Anal Chem ; 95(44): 16359-16365, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37889605

ABSTRACT

A self-powered biosensing system with multivariate signal amplification is designed for the ultrasensitive, highly efficient, rapid-response, and real-time detection of platelet-derived growth factor-BB (PDGF-BB). The biosensing system is composed of enzymatic biofuel cells (EBFCs), a capacitor, a digital multimeter (DMM), and a computer. Using the hybridization chain reaction (HCR), a few single DNA chains are transformed into abundant double-helix chains, which stimulates the reduction of [Ru(NH3)6]3+ to [Ru(NH3)6]2+ by electrostatic interaction, corresponding to the "on" state for HCR. As a result, the open-circuit voltage (EOCV) is significantly increased in this self-powered biosensing system. When PDGF-BB is present, a binding interaction between the target and the aptamer, i.e., PDGF-BB/Apt, corresponding to the "off" state for HCR, results in a decrease of EOCV. The PDGF-BB concentration is inversely proportional to EOCV, allowing readable, effective, and precise real-time detection of PDGF-BB. The detection limit of the biosensing system is 0.031 pg/mL (S/N = 3). This strategy provides a promising and powerful tool for the early clinical diagnosis of related colorectal cancer markers.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Becaplermin , Aptamers, Nucleotide/genetics , Biosensing Techniques/methods , Limit of Detection , DNA/genetics , Proto-Oncogene Proteins c-sis
7.
Anal Chem ; 95(40): 15042-15048, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37768137

ABSTRACT

A novel self-powered biosensor is fabricated for ultrasensitive microRNA-21 (miRNA-21) detection, which includes an enzymatic biofuel cell (EBFC), DNA walkers, a digital multimeter (DMM), and a capacitor. As a novel strategy for signal amplification, DNA walkers are designed in the cathode, while the capacitor stores electrochemical energy from the EBFC to further boost the instantaneous current displayed by the DMM. When miRNA-21 is present, the DNA walkers are provoked to walk from as-opened hairpin structures to other hairpin structures, generating double-strand DNA structures, which stimulate [Ru(NH3)6]3+ to be adsorbed on the cathode surface by electrostatic interaction. Afterward, [Ru(NH3)6]3+ is reduced to [Ru(NH3)6]2+, and the open circuit voltage (EOCV) is significantly increased. Depending on the approach of signal amplification from DNA walkers, this biosensor displays an ultrasensitive assay toward miRNA-21 in the range of 0.5 to 104 fM, with a detection limit of 0.15 fM. In addition, this self-powered biosensor displays high selectivity for miRNA-21 assay in human serum samples.

8.
Anal Chem ; 95(40): 15125-15132, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37774402

ABSTRACT

An ultralow-potential electrochemiluminescence (ECL) aptasensor has been designed for zearalenone (ZEN) assay based on a resonance energy transfer (RET) system with SnS2 QDs/g-C3N4 as a novel luminophore and CuO/NH2-UiO-66 as a dual-quencher. SnS2 QDs were loaded onto g-C3N4 nanosheets and enhanced the ECL luminescence via strong synergistic effects under an ultralow potential. The UV-vis absorption spectrum of CuO/NH2-UiO-66 exhibits considerable overlap with the ECL emission spectrum of SnS2 QDs/g-C3N4, an important consideration for the RET process. In order to stimulate RET, the ZEN aptamer and complementary DNA are introduced for conjugation between the donor and the acceptor. With the binding interaction between ZEN by its aptamer, CuO/NH2-UiO-66 is removed from the electrode surface, resulting in the inhibition of the RET system and an increase in the ECL signal. Under optimal conditions, the as-prepared aptasensor quantified ZEN from 0.5 µg·mL-1 to 0.1 fg·mL-1 with a low limit of detection of 0.085 fg·mL-1, and it exhibited good stability, excellent specificity, high reproducibility, and desirable practicality. The sensing strategy provides a method for mycotoxins assay to monitor food safety.

9.
J Environ Sci (China) ; 125: 499-512, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375933

ABSTRACT

Understanding the aerosol vertical characterization is of great importance to both climate and atmospheric environment. This study investigated the variations of aerosol profiles over eight regions of interest in China after clean air policy (2013-2019) and discussed the drivers of the vertical aerosol structure, using observations from active satellite measurements (CALIPSO). From the annual variation, the amplitude of extinction coefficient profiles showed a decreasing trend with fluctuations, and the maximum was 0.21 km-1 in Beijing-Tianjin-Hebei (JJJ). For regions suffered from air pollution, the variation was greatest below 0.45 km, while it was between 1-1.5 km for Sichuan Basin. The correlation coefficient between the relative humidity (RH) and the extinction coefficient indicated that the increase of RH inhibited the decrease of the extinction coefficient in the Yangtze River Delta. In most regions, the main aerosol subtypes were polluted dust and polluted continental, but they were coarser in JJJ and North West. The frequency of concurrency of dust and polluted dust aerosols decreased in JJJ, but polluted continental aerosols occurred more frequently. Further, the aerosol extinction coefficient profiles under different pollution conditions showed that it changed most during heavy pollution periods in JJJ, especially in 2017, with a significant aerosol loading between ∼700 and 1200 m. The atmospheric reanalysis data revealed that the weak convergence at low level and the divergence at high level supported the upward transport of aerosols in 2017. Overall, the differences in divergence allocation, RH, and wind filed were the main meteorological drivers.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Particulate Matter/analysis , Environmental Monitoring , Seasons , Aerosols/analysis , Air Pollution/analysis , Dust/analysis , China , Policy
10.
J Environ Sci (China) ; 123: 292-305, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36521991

ABSTRACT

Observations and numerical models are mainly used to investigate the spatiotemporal distribution and vertical structure characteristics of aerosols to understand aerosol pollution and its effects. However, the limitations of observations and the uncertainties of numerical models bias aerosol calculations and predictions. Data assimilation combines observations and numerical models to improve the accuracy of the initial, analytical fields of models and promote the development of atmospheric aerosol pollution research. Numerous studies have been conducted to integrate multi-source data, such as aerosol optical depth and aerosol extinction coefficient profile, into various chemical transport models using various data assimilation algorithms and have achieved good assimilation results. The definition of data assimilation and the main algorithms will be briefly presented, and the progress of aerosol assimilation according to two types of aerosol data, namely, aerosol optical depth and extinction coefficient, will be presented. The application of vertical aerosol data assimilation, as well as the future trends and challenges of aerosol data assimilation, will be further analysed.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Environmental Monitoring/methods , Aerosols/analysis , Models, Chemical , Technology
11.
Analyst ; 147(15): 3396-3414, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35748818

ABSTRACT

Rolling circle amplification (RCA) is a simple and isothermal DNA amplification technique that is used to generate thousands of repeating DNA sequences using circular templates under the catalysis of DNA polymerase. Compared to alternating temperature nucleic acid amplification such as polymerase chain reaction (PCR) amplification, RCA is more suitable for on-spot detection without the need for an expensive thermal cycler. In this study, the principle and classification of RCA are introduced, and the applications of RCA in the detection of pathogenic bacteria, nucleic acid tumor markers, viruses, and proteins are reviewed. Finally, the perspectives of RCA in biological detection are anticipated. The RCA method has a great potential for biological detection. This review aims to provide references for the further development and application of the RCA technique in biosensors.


Subject(s)
Biosensing Techniques , Nucleic Acids , Biosensing Techniques/methods , DNA-Directed DNA Polymerase , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction
12.
Drug Chem Toxicol ; 45(4): 1449-1460, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33106064

ABSTRACT

The current study has focused on the effects of enniatin B (ENN B, a major mycotoxin produced by Fusarium fungi) on early embryonic development. In in vitro analysis, mouse blastocysts were incubated in medium with ENN B (0-40 µM) or 0.5% DMSO (control group) for 24 hours. In an animal study, blastocysts were collected from mice which were intravenously injected with ENN B (1, 3, 5, and 7mg/kg body weight/day) for 4 days in order to analyze apoptosis and necrosis via Annexin V/PI staining assay; and proliferation using dual differential staining. Exposure to low ENN B concentration (10 µM in vitro and 3 mg/kg/day in vivo) promoted Reactive Oxygen Species (ROS) generation and apoptosis in the Inner Cell Mass (ICM), the mass of cells inside the blastocyst, impairing post-implantation development alone. On the other hand, exposure to a higher ENN B concentration (40 µM in vitro and 7 mg/kg/day in vivo) induced ROS generation and decreased in intracellular ATP which encouraged necrotic processes in both trophectoderm (TE) and ICM of blastocysts leading to impaired implantation and post-implantation development. Moreover, 5 and 7 mg/kg/day ENN B intraperitoneal injection to female mice for 4 days has caused downregulation of CXCL1, IL-1ß and IL-8 expressions and increased ROS generation in the liver of newborn mice. Over all, ENN B can induce apoptosis and/or necrosis depending on the treatment dosage in mouse blastocysts. ENN B-induced necrosis in blastocysts may exert long-term harmful effects on next-generation newborns.


Subject(s)
Apoptosis , Blastocyst , Depsipeptides , Embryonic Development , Necrosis , Animals , Blastocyst/drug effects , Depsipeptides/toxicity , Embryonic Development/drug effects , Female , Mice , Necrosis/chemically induced , Pregnancy , Reactive Oxygen Species/metabolism
13.
Anal Chem ; 93(46): 15225-15230, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34752059

ABSTRACT

The detection of microRNA (miRNA) in human serum has great significance for cancer prevention. Herein, a novel self-powered biosensing platform is developed, which effectively integrates an enzymatic biofuel cell (EBFC)-based self-powered biosensor with a matching capacitor for miRNA detection. A catalytic hairpin assembly and hybrid chain reaction are used to improve the analytical performance of EBFC. Furthermore, the matching capacitor is selected as an auxiliary signal amplifying device, and graphdiyne is applied as substrate material for EBFC. The results confirm that the developed method obviously increases the output current of EBFC, and the sensitivity can reach 2.75 µA/pM, which is 786% of pure EBFC. MiRNA can be detected in an expanded linear range of 0.1-100000 fM with a detection limit of 0.034 fM (S/N = 3). It can offer a selective and sensitive platform for nucleotide sequence detection with great potential in clinical diagnostics.


Subject(s)
Biosensing Techniques , MicroRNAs , Electrochemical Techniques , Graphite , Humans , Limit of Detection , MicroRNAs/isolation & purification
14.
Analyst ; 146(14): 4418-4435, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34195700

ABSTRACT

There has been an explosion of interest in the use of nanomaterials for biosensing applications, and carbonaceous nanomaterials in particular are at the forefront of this explosion. Carbon dots (CDs), a new type of carbon material, have attracted extensive attention due to their fascinating properties, such as small particle size, tunable optical properties, good conductivity, low cytotoxicity, and good biocompatibility. These properties have enabled them to be highly promising candidates for the fabrication of various high-performance biosensors. In this review, we summarize the top-down and bottom-up synthesis routes of CDs, highlight their modification strategies, and discuss their applications in the fields of photoluminescence biosensors, electrochemiluminescence biosensors, chemiluminescence biosensors, electrochemical biosensors and fluorescence biosensors. In addition, the challenges and future prospects of the application of CDs for biosensors are also proposed.


Subject(s)
Biosensing Techniques , Nanostructures , Carbon , Particle Size
15.
Environ Toxicol ; 34(9): 1001-1012, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31112002

ABSTRACT

Ginsenoside Rb1 (GRb1), the major saponin component of ginseng root, has a wide range of therapeutic applications for various diseases. Previously, our group showed that GRb1 triggers ROS-mediated apoptotic cascades in mouse blastocysts, leading to decreased cell viability and impairment of pre- and postimplantation embryonic development, both in vitro and in vivo. In this study, we further found that GRb1 exerted dose-dependent effects on oocyte maturation and sequent development in vitro. Oocytes preincubated with 25 µg/mL GRB1 displayed significantly enhanced maturation and in vitro fertilization (IVF) rates, along with progression of subsequent embryonic development. In contrast, treatment with 50 and 100 µg/mL GRB1 led to impairment of mouse oocyte maturation, decreased IVF rates, and injurious effects on subsequent embryonic development. In vivo, intravenous injection of 1 mg/kg body weight GRb1 significantly promoted mouse oocyte maturation, IVF, and early-stage embryo development after fertilization while administration of 5 mg/kg body weight GRb1 led to a marked decrease in oocyte maturation and IVF rates concomitant with impairment of early embryonic development in our animal model. In terms of the mechanisms underlying the regulatory effects of GRb1 demonstrated increased intracellular reactive oxygen species (ROS) production and apoptosis in the 100 µg/mL GRb1 treatment group. However, we observed a significant decrease in total intracellular ROS content and inhibition of apoptosis events in the 25 µg/mL GRb1 treatment group, signifying that the intracellular ROS content serves as a key upstream regulator of GRb1 that influences its dose-dependent beneficial or deleterious effects on oocyte maturation and sequent embryonic development. For further clarification of the mechanisms underlying GRb1-triggered injurious effects, oocytes were pretreated with Ac-DEVD-CHO, a caspase-3-specific inhibitor, which effectively blocked injury to oocyte maturation, fertilization, and sequent development. In sum, study findings highlight the potential involvement of p53-, p21-, and caspase-3-dependent regulatory signaling cascades in GRb1-mediated apoptotic processes.


Subject(s)
Fetal Development/drug effects , Ginsenosides , Oocytes/drug effects , Oogenesis/drug effects , Animals , Apoptosis/drug effects , Blastocyst/drug effects , Blastocyst/metabolism , Dose-Response Relationship, Drug , Embryonic Development/drug effects , Female , Fertilization in Vitro , Ginsenosides/administration & dosage , Ginsenosides/pharmacology , Ginsenosides/toxicity , In Vitro Techniques , Mice , Mice, Inbred ICR , Oocytes/metabolism , Pregnancy , Reactive Oxygen Species/metabolism , Signal Transduction
16.
Environ Toxicol ; 34(5): 573-584, 2019 May.
Article in English | MEDLINE | ID: mdl-30698892

ABSTRACT

Ochratoxin A (OTA), a mycotoxin constituent of a range of food commodities, including coffee, wine, beer, grains, and spices, exerts toxicological and pathological effects in vivo, such as nephrotoxicity, hepatotoxicity, and immunotoxicity. In a previous report, we highlighted the potential of OTA to induce apoptosis via reactive oxygen species (ROS) generation in mouse blastocysts that led to impaired preimplantation and postimplantation embryo development in vitro and in vivo. Here, we have shown that liquiritigenin (LQ), a type of flavonoid isolated from Glycyrrhiza radix, effectively protects against OTA-mediated apoptosis and inhibition of cell proliferation in mouse blastocysts. Preincubation of blastocysts with LQ clearly prevented OTA-triggered impairment of preimplantation and postimplantation embryonic development and fetal weight loss, both in vitro and in vivo. Detailed investigation of regulatory mechanisms revealed that OTA mediated apoptosis and embryotoxicity through ROS generation, loss of mitochondrial membrane potential (MMP), and activation of caspase-9 and caspase-3, which were effectively prevented by LQ. The embryotoxic effects of OTA were further validated in an animal model in vivo. Intravenous injection of dams with OTA (3 mg/kg/day) led to apoptosis of blastocysts, impairment of embryonic development from zygote to blastocyst stage and decrease in day 18 fetal weight. Notably, preinjection of dams with LQ (5 mg/kg/day) effectively prevented OTA-induced apoptosis and toxic effects on embryo development. Our collective results clearly demonstrate that OTA exposure via injection has the potential to damage preimplantation and postimplantation embryonic development against which LQ has a protective effect.


Subject(s)
Apoptosis/drug effects , Blastocyst/drug effects , Embryonic Development/drug effects , Flavanones/pharmacology , Ochratoxins/toxicity , Oxidative Stress/drug effects , Protective Agents/pharmacology , Animals , Blastocyst/metabolism , Blastocyst/pathology , Cell Proliferation/drug effects , Female , Membrane Potential, Mitochondrial/drug effects , Mice , Pregnancy
17.
Environ Toxicol ; 34(1): 48-59, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30259633

ABSTRACT

Enniatins are mycotoxins of Fusarium fungi that naturally exist as mixtures of cyclic depsipeptides. Previous reports have documented hazardous effects of enniatins on cells, such as apoptosis. However, their effects on pre- and post-implantation embryonic development require further clarification. Here, we showed for the first time that enniatin B1 (ENN B1) exerts cytotoxic effects on mouse blastocyst-stage embryos and induces intracellular oxidative stress and immunotoxicity in mouse fetuses. Co-incubation of blastocysts with ENN B1 triggered significant apoptosis and led to a decrease in total cell number predominantly through loss of inner cell mass. In addition, ENN B1 appeared to exert hazardous effects on pre and postimplantation embryo development potential in an in vitro development assay. Treatment of blastocysts with 1-10 µM ENN B1 led to increased resorption of post-implantation embryos and decreased fetal weight in the embryo transfer assay in a dose-dependent manner. Importantly, in an in vivo model, intravenous injection with ENN B1 (1, 3, and 5 mg/kg body weight/d) for 4 days resulted in apoptosis of blastocyst-stage embryos and impairment of embryonic development from the zygote to blastocyst stage, subsequent degradation of embryos, and further decrease in fetal weight. Intravenous injection with 5 mg/kg body weight/d ENN B1 additionally induced a significant increase in total reactive oxygen species (ROS) content and transcription levels of genes encoding antioxidant proteins in mouse fetal liver. Moreover, ENN B1 triggered apoptosis through ROS generation and strategies to prevent apoptotic processes effectively rescued ENN B1-mediated hazardous effects on embryonic development. Transcription levels of CXCL1, IL-1ß, and IL-8 related to innate immunity were downregulated after intravenous injection of ENN B1. These results collectively highlight the potential of ENN B1 to exert cytotoxic effects on embryos as well as oxidative stress and immunotoxicity during mouse embryo development.


Subject(s)
Blastocyst/drug effects , Blastocyst/immunology , Cytotoxicity, Immunologic/drug effects , Depsipeptides/toxicity , Embryonic Development/drug effects , Oxidative Stress/drug effects , Animals , Apoptosis/drug effects , Blastocyst/cytology , Depsipeptides/pharmacology , Embryo, Mammalian , Embryonic Development/immunology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mycotoxins/pharmacology , Mycotoxins/toxicity , Pregnancy , Reactive Oxygen Species/metabolism
18.
Toxicol Res (Camb) ; 13(1): tfad122, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38162594

ABSTRACT

Methylmercury (MeHg) is a potent toxin that exerts deleterious effects on human health via environmental contamination. Significant effects of MeHg on neuronal development in embryogenesis have been reported. Recently, our group demonstrated that MeHg exerts toxic effects on pre- and post-implantation embryonic development processes from zygote to blastocyst stage. Our results showed that MeHg impairs embryo development by induction of apoptosis through reactive oxygen species (ROS) generation that triggers caspase-3 cleavage and activation, which, in turn, stimulates p21-activated kinase 2 (PAK2) activity. Importantly, ROS were identified as a key upstream regulator of apoptotic events in MeHg-treated blastocysts. Data from the current study further confirmed that MeHg exerts hazardous effects on cell proliferation, apoptosis, implantation, and pre- and post-implantation embryo development. Notably, MeHg-induced injury was markedly prevented by co-culture with adipose-derived mesenchymal stem cells (ADMSCs) in vitro. Furthermore, ADMSC injection significantly reduced MeHg-mediated deleterious effects on embryo, placenta, and fetal development in vivo. Further investigation of the regulatory mechanisms by which co-cultured ADMSCs could prevent MeHg-induced impairment of embryo development revealed that ADMSCs effectively reduced ROS generation and its subsequent downstream apoptotic events, including loss of mitochondrial membrane potential and activation of caspase-3 and PAK2. The collective findings indicate that co-culture with mesenchymal stem cells (MSCs) or utilization of MSC-derived cell-conditioned medium offers an effective potential therapeutic strategy to prevent impairment of embryo development by MeHg.

19.
ACS Appl Mater Interfaces ; 16(29): 37748-37756, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-38990678

ABSTRACT

Multitarget assay has always been a hot topic in electrochemiluminescence (ECL) methods. Herein, a "on-off-on" ECL aptasensor was developed for the ultrasensitive and sequential detection of possible biological warfare agents, deoxynivalenol (DON) and abrin (ABR). As a luminophore, polymer dots (Pdots) with aggregation-induced emission exhibit high ECL efficiency in the aptasensor, i.e., the signal "on" state. The DON assays mainly depend on ECL quenching due to the efficient quenching effect between ferrocene-H2-ferrocene (Fc-H2-Fc) and Pdots, i.e., the signal "off" state. When the aptasensor is incubated with the oligonucleotide sequence S2 to replace Fc-H2-Fc, obvious ECL recovery occurs, i.e., the signal "on" state, which can be used to sequentially detect ABR. The limit of detection (LOD) for DON is 0.73 fg·mL-1 in the range of 5.0 to 50 ng·mL-1; and the LOD for ABR is ∼0.38 pg·mL-1 in the range of 1.25 pg·mL-1 to 1.25 µg·mL-1. The as-designed ECL aptasensor exhibits good stability and reproducibility, high specificity, and favorable practicality. Therefore, this work provides a new approach for assays of DON and ABR in food safety and can be used as a model to design an ultrasensitive ECL biosensor for multitarget detection.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Luminescent Measurements , Polymers , Quantum Dots , Trichothecenes , Biosensing Techniques/methods , Luminescent Measurements/methods , Electrochemical Techniques/methods , Polymers/chemistry , Trichothecenes/analysis , Quantum Dots/chemistry , Abrin/analysis , Limit of Detection , Aptamers, Nucleotide/chemistry
20.
Nanoscale ; 16(2): 657-663, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38093620

ABSTRACT

Heterostructured materials have great potential as cathodes for zinc-ion batteries (ZIBs) because of their fast Zn2+ transport channels. Herein, hollow MoS2@C@Cu2S heterostructures are innovatively constructed using a template-engaged method. The carbon layer improves the electrical conductivity, provides a high in situ growth area, and effectively restricts volume expansion during the recycling process. MoS2 nanosheets are grown on the surfaces of hollow C@Cu2S nanocubes using the in situ template method, further expanding the specific surface area and exposing more active sites to enhance the electrical conductivity. As expected, an admirable reversible capacity of 197.2 mA h g-1 can be maintained after 1000 cycles with a coulombic efficiency of 91.1%. Therefore, we firmly believe that this work points the way forward for high-performance materials design and energy storage systems.

SELECTION OF CITATIONS
SEARCH DETAIL