Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Total Environ ; 927: 172343, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608890

ABSTRACT

The environmental risks of fluorinated alternatives are of great concern with the phasing out of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate. Here, multi-omics (i.e., metabolomics and transcriptomics) coupled with physiological and biochemical analyses were employed to investigate the stress responses of wheat seedings (Triticum aestivum L.) to perfluorobutanoic acid (PFBA), one of the short-chain per- and polyfluoroalkyl substances (PFAS) and PFOA alternatives, at environmentally relevant concentrations (0.1-100 ng/g). After 28 days of soil exposure, PFBA boosted the generation of OH and O2- in wheat seedlings, resulting in lipid peroxidation, protein perturbation and impaired photosynthesis. Non-enzymatic antioxidant defense systems (e.g., glutathione, phenolics, and vitamin C) and enzymatic antioxidant copper/zinc superoxide dismutase were strikingly activated (p < 0.05). PFBA-triggered oxidative stress induced metabolic and transcriptional reprogramming, including carbon and nitrogen metabolisms, lipid metabolisms, immune responses, signal transduction processes, and antioxidant defense-related pathways. Down-regulation of genes related to plant-pathogen interaction suggested suppression of the immune-response, offering a novel understanding on the production of reactive oxygen species in plants under the exposure to PFAS. The identified MAPK signaling pathway illuminated a novel signal transduction mechanism in plant cells in response to PFAS. These findings provide comprehensive understandings on the phytotoxicity of PFBA to wheat seedlings and new insights into the impacts of PFAS on plants.


Subject(s)
Fluorocarbons , Seedlings , Soil Pollutants , Triticum , Triticum/drug effects , Fluorocarbons/toxicity , Seedlings/drug effects , Soil Pollutants/toxicity , Oxidative Stress
2.
Chemosphere ; 329: 138657, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37040837

ABSTRACT

Owing to the high contents of organics and nitrogen in vacuum toilet wastewater (VTW) generated from high-speed trains, onsite pretreatment is usually required before VTW can be discharged into municipal sewers. In this study, a partial nitritation process was stably established in a sequential batch reactor to efficiently utilize the organics in synthetic and real VTWs for nitrogen removal and to produce an effluent suitable for anaerobic ammonia oxidation. In spite of the high fluctuations of COD and nitrogen in VTW, the organics used for nitrogen removal stabilized at 1.97 ± 0.18 mg COD mg N-1 removed, and the effluent NO2--N/NH4+-N ratios were maintained at 1.26 ± 0.13. The removal efficiencies of nitrogen and COD were 31.8 ± 3.5% and 65.2 ± 5.3% under the volumetric loading rates of 1.14 ± 0.15 kg N m-3 d-1 and 1.03 ± 0.26 kg COD m-3 d-1 for real VTW, respectively. Microbial community analysis revealed that Nitrosomonas (0.95%-1.71%) was the dominant autotrophic ammonium-oxidizing bacterial genus, but nitrite-oxidizing bacteria, Nitrolancea, was severely inhibited, with a relative abundance less than 0.05%. The relative abundance of denitrifying bacteria increased by 7.34% when the influent was switched to real VTW. Functional profile predictions of the biomass showed that the decrease in the COD/N ratio and the switch of reactor influent from synthetic to real VTW increased the relative abundance of enzymes and modules involved in carbon and nitrogen metabolisms.


Subject(s)
Ammonium Compounds , Bathroom Equipment , Wastewater , Denitrification , Nitrogen/metabolism , Vacuum , Oxidation-Reduction , Bioreactors/microbiology , Bacteria/metabolism , Sewage/microbiology
3.
Foods ; 10(6)2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34198567

ABSTRACT

Pork is perishable due to oxidation and microbial spoilage. Edible coating based on biopolymers and phenolic compounds is an effective way to preserve the quality of pork. In this study, ferulic acid-grafted-CS (ferulic acid-g-CS) with strong antioxidant and antimicrobial activities was synthesized through a carbodiimide-mediated coupling reaction. The obtained ferulic acid-g-CS was used as an edible coating material for fresh pork. The effect of ferulic acid-g-CS coating on the quality of pork during storage was investigated at 4 °C for 8 days. As compared to the uncoated pork, pork coated with CS and ferulic acid-g-CS showed lower total viable counts, total volatile basic nitrogen values, pH values, thiobarbituric acid reactive substances, and drip losses. Besides, pork coated with CS and ferulic acid-g-CS presented more compact microstructures than the uncoated pork at the eighth day. Sensory evaluation assay showed pork coated with CS and ferulic acid-g-CS had better color, odor, and over acceptance in comparison with the uncoated pork. Ferulic acid-g-CS coating, due to its relatively higher antioxidant and antimicrobial activities compared to CS coating, had a better performance in refrigerated pork preservation. Ferulic acid-g-CS coating effectively extended the shelf life of refrigerated pork to 7 days. This study revealed ferulic acid-g-CS coating was a promising technology for refrigerated pork preservation.

4.
Oncol Lett ; 19(2): 1331-1337, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31966065

ABSTRACT

Epidemiologic studies demonstrated that the environment serves a crucial role in cancer development. Heavy metals, including arsenic (As), cadmium (cd), chromium (Cr), lead and mercury, are considered to be carcinogens or co-carcinogens. Furthermore, Cd has been detected in breast cancer (BC) tissue at high concentrations. The present study aimed to investigate the correlation between heavy metals detected in urine and urine metabolome of patients with BC, and their association with cancer development. Nuclear magnetic resonance was used to determine urine metabolites and an inductively coupled plasma mass spectrometry system was used to detect heavy metals in urine samples. The results demonstrated that Cd was markedly increased in the urine of patients with BC compared with the control population (approximately 2-fold). Cr and As were also increased in the urine of patients with BC. In addition, numerous small molecule metabolites were altered in the urine of patients with BC compared with the control population. This study also demonstrated that alterations in small molecule metabolites in the urine of patients with BC were very similar to results from a previous report. These findings indicated that environmental exposure to Cd, As, or Cr could influence the urine levels of metabolites, which may be involved in BC development. Further investigation is therefore required to examine a larger range of samples from different countries or areas in order to understand the impact of heavy metals on metabolism and BC development.

5.
Chemosphere ; 175: 210-218, 2017 May.
Article in English | MEDLINE | ID: mdl-28222375

ABSTRACT

Source separation and treatment of human urine have been recognized as a resource-efficient alternative to conventional urban drainage, not only reducing nutrient loads on municipal wastewater treatment plants, but recovering valuable resources from waste streams. In this work, on-site phosphorus (P) recovery from real urine was carried out by using the brine from a reverse osmosis process as the flush water for urine-diverting toilets and a P precipitant, while nitrogen (N) was removed via short-cut nitrification-denitrification (SCND) in a membrane bioreactor (MBR). More than 90% of P was recovered by mixing the urine with reverse osmosis brine (1:1, v/v) under the condition of pH > 9.0. The recovered precipitates contained 10-15% of P and can potentially be reused for phosphate fertilizer production. Stable SCND was achieved in a MBR, and 45% of N was removed with the organic compounds in urine as the electron donor for denitrification. Methanol addition significantly elevated denitrification, which in turn replenished the alkalinity required for nitrification. More than 99% of P, 90% of organics and 90% of N were removed in the combined precipitation and MBR process. Nitrosomonas was observed to be the predominant ammonium-oxidizing bacteria, while nitrite-oxidizing bacteria (NOB) were absent in the microbial communities as revealed by fluorescence in situ hybridization and pyrosequencing technique. High concentrations of free ammonia and nitrite acids, as well as low dissolved oxygen, are the prevailing factors to inhibit the growth of NOB, which allows for stable operation of SCND in the MBR.


Subject(s)
Phosphorus/chemistry , Salts/chemistry , Urine/chemistry , Ammonia/analysis , Bacteria/genetics , Bacteria/metabolism , Bioreactors/microbiology , Chemical Precipitation , Denitrification , Humans , In Situ Hybridization, Fluorescence , Male , Nitrification , Nitrites/analysis , Nitrogen/metabolism , Oxygen/analysis , Recycling/methods
6.
Chemosphere ; 165: 202-210, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27654223

ABSTRACT

Phosphorus (P) recovery from waste streams has recently been recognized as a key step in the sustainable supply of this indispensable and non-renewable resource. The feasibility of using brine from a reverse osmosis (RO) membrane unit treating cooling water as a precipitant for P recovery from source separated urine was evaluated in the present study. P removal efficiency, process parameters and precipitate properties were investigated in batch and continuous flow experiments. More than 90% of P removal was obtained from both undiluted fresh and hydrolyzed urines by mixing with RO brine (1:1, v/v) at a pH over 9.0. Around 2.58 and 1.24 Kg of precipitates could be recovered from 1 m3 hydrolyzed and fresh urine, respectively, and the precipitated solids contain 8.1-19.0% of P, 10.3-15.2% of Ca, 3.7-5.0% of Mg and 0.1-3.5% of ammonium nitrogen. Satisfactory P removal performance was also achieved in a continuous flow precipitation reactor with a hydraulic retention time of 3-6 h. RO brine could be considered as urinal and toilet flush water despite of a marginally higher precipitation tendency than tap water. This study provides a widely available, low - cost and efficient precipitant for P recovery in urban areas, which will make P recovery from urine more economically attractive.


Subject(s)
Phosphorus/chemistry , Phosphorus/isolation & purification , Salts/chemistry , Urine/chemistry , Wastewater/chemistry , Filtration , Humans , Male , Nitrogen/analysis , Osmosis , Phosphorus/analysis , Salts/analysis , Water/chemistry , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL