Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.982
Filter
Add more filters

Publication year range
1.
Cell ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971152

ABSTRACT

We identify a population of Protogenin-positive (PRTG+ve) MYChigh NESTINlow stem cells in the four-week-old human embryonic hindbrain that subsequently localizes to the ventricular zone of the rhombic lip (RLVZ). Oncogenic transformation of early Prtg+ve rhombic lip stem cells initiates group 3 medulloblastoma (Gr3-MB)-like tumors. PRTG+ve stem cells grow adjacent to a human-specific interposed vascular plexus in the RLVZ, a phenotype that is recapitulated in Gr3-MB but not in other types of medulloblastoma. Co-culture of Gr3-MB with endothelial cells promotes tumor stem cell growth, with the endothelial cells adopting an immature phenotype. Targeting the PRTGhigh compartment of Gr3-MB in vivo using either the diphtheria toxin system or chimeric antigen receptor T cells constitutes effective therapy. Human Gr3-MBs likely arise from early embryonic RLVZ PRTG+ve stem cells inhabiting a specific perivascular niche. Targeting the PRTGhigh compartment and/or the perivascular niche represents an approach to treat children with Gr3-MB.

2.
Cell ; 186(2): 346-362.e17, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36638793

ABSTRACT

Ribosomes frequently stall during mRNA translation, resulting in the context-dependent activation of quality control pathways to maintain proteostasis. However, surveillance mechanisms that specifically respond to stalled ribosomes with an occluded A site have not been identified. We discovered that the elongation factor-1α (eEF1A) inhibitor, ternatin-4, triggers the ubiquitination and degradation of eEF1A on stalled ribosomes. Using a chemical genetic approach, we unveiled a signaling network comprising two E3 ligases, RNF14 and RNF25, which are required for eEF1A degradation. Quantitative proteomics revealed the RNF14 and RNF25-dependent ubiquitination of eEF1A and a discrete set of ribosomal proteins. The ribosome collision sensor GCN1 plays an essential role by engaging RNF14, which directly ubiquitinates eEF1A. The site-specific, RNF25-dependent ubiquitination of the ribosomal protein RPS27A/eS31 provides a second essential signaling input. Our findings illuminate a ubiquitin signaling network that monitors the ribosomal A site and promotes the degradation of stalled translation factors, including eEF1A and the termination factor eRF1.


Subject(s)
RNA-Binding Proteins , Trans-Activators , Carrier Proteins/metabolism , Peptide Elongation Factors/genetics , Protein Biosynthesis , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Humans , HeLa Cells , HEK293 Cells , RNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Peptide Elongation Factor 1/metabolism
3.
Cell ; 186(20): 4454-4471.e19, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37703875

ABSTRACT

Macrophages are heterogeneous and play critical roles in development and disease, but their diversity, function, and specification remain inadequately understood during human development. We generated a single-cell RNA sequencing map of the dynamics of human macrophage specification from PCW 4-26 across 19 tissues. We identified a microglia-like population and a proangiogenic population in 15 macrophage subtypes. Microglia-like cells, molecularly and morphologically similar to microglia in the CNS, are present in the fetal epidermis, testicle, and heart. They are the major immune population in the early epidermis, exhibit a polarized distribution along the dorsal-lateral-ventral axis, and interact with neural crest cells, modulating their differentiation along the melanocyte lineage. Through spatial and differentiation trajectory analysis, we also showed that proangiogenic macrophages are perivascular across fetal organs and likely yolk-sac-derived as microglia. Our study provides a comprehensive map of the heterogeneity and developmental dynamics of human macrophages and unravels their diverse functions during development.


Subject(s)
Macrophages , Humans , Cell Differentiation , Cell Lineage , Macrophages/cytology , Microglia , Organ Specificity
4.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34051138

ABSTRACT

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Subject(s)
Ecotype , Genetic Variation , Genome, Plant , Oryza/genetics , Adaptation, Physiological/genetics , Agriculture , Domestication , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genomic Structural Variation , Molecular Sequence Annotation , Phenotype
5.
Cell ; 179(4): 864-879.e19, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31675497

ABSTRACT

Physical or mental stress leads to neuroplasticity in the brain and increases the risk of depression and anxiety. Stress exposure causes the dysfunction of peripheral T lymphocytes. However, the pathological role and underlying regulatory mechanism of peripheral T lymphocytes in mood disorders have not been well established. Here, we show that the lack of CD4+ T cells protects mice from stress-induced anxiety-like behavior. Physical stress-induced leukotriene B4 triggers severe mitochondrial fission in CD4+ T cells, which further leads to a variety of behavioral abnormalities including anxiety, depression, and social disorders. Metabolomic profiles and single-cell transcriptome reveal that CD4+ T cell-derived xanthine acts on oligodendrocytes in the left amygdala via adenosine receptor A1. Mitochondrial fission promotes the de novo synthesis of purine via interferon regulatory factor 1 accumulation in CD4+ T cells. Our study implicates a critical link between a purine metabolic disorder in CD4+ T cells and stress-driven anxiety-like behavior.


Subject(s)
Anxiety/metabolism , Behavior, Animal/physiology , Brain Diseases, Metabolic/metabolism , Stress, Psychological/metabolism , Amygdala/metabolism , Amygdala/pathology , Animals , Anxiety/genetics , Anxiety/immunology , Anxiety/physiopathology , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/physiopathology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , Disease Models, Animal , Humans , Mice , Mitochondrial Dynamics/genetics , Oligodendroglia/metabolism , Oligodendroglia/pathology , Single-Cell Analysis , Stress, Psychological/genetics , Stress, Psychological/physiopathology , Transcriptome/genetics , Xanthine/metabolism
6.
Nat Immunol ; 22(9): 1127-1139, 2021 09.
Article in English | MEDLINE | ID: mdl-34413521

ABSTRACT

Follicular helper T (TFH) cells are a specialized subset of CD4+ T cells that essentially support germinal center responses where high-affinity and long-lived humoral immunity is generated. The regulation of TFH cell survival remains unclear. Here we report that TFH cells show intensified lipid peroxidation and altered mitochondrial morphology, resembling the features of ferroptosis, a form of programmed cell death that is driven by iron-dependent accumulation of lipid peroxidation. Glutathione peroxidase 4 (GPX4) is the major lipid peroxidation scavenger and is necessary for TFH cell survival. The deletion of GPX4 in T cells selectively abrogated TFH cells and germinal center responses in immunized mice. Selenium supplementation enhanced GPX4 expression in T cells, increased TFH cell numbers and promoted antibody responses in immunized mice and young adults after influenza vaccination. Our findings reveal the central role of the selenium-GPX4-ferroptosis axis in regulating TFH homeostasis, which can be targeted to enhance TFH cell function in infection and following vaccination.


Subject(s)
Ferroptosis/physiology , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Selenium/pharmacology , T Follicular Helper Cells/physiology , Adolescent , Adult , Animals , Cell Survival/immunology , Child , Female , Germinal Center/cytology , Germinal Center/immunology , Homeostasis/drug effects , Homeostasis/genetics , Humans , Immunity, Humoral/immunology , Influenza Vaccines/immunology , Lipid Peroxidation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/physiology , Ovalbumin , T Follicular Helper Cells/immunology , Vaccination , Young Adult
7.
Mol Cell ; 84(2): 375-385.e7, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38103556

ABSTRACT

Cyclic-oligonucleotide-based anti-phage signaling system (CBASS) is a common immune system that uses cyclic oligonucleotide signals to limit phage replication. In turn, phages encode anti-CBASS (Acb) proteins such as Acb2, which can sequester some cyclic dinucleotides (CDNs) and limit downstream effector activation. Here, we identified that Acb2 sequesters many CDNs produced by CBASS systems and inhibits stimulator of interferon genes (STING) activity in human cells. Surprisingly, the Acb2 hexamer also binds with high affinity to CBASS cyclic trinucleotides (CTNs) 3'3'3'-cyclic AMP-AMP-AMP and 3'3'3'-cAAG at a distinct site from CDNs. One Acb2 hexamer can simultaneously bind two CTNs and three CDNs. Phage-encoded Acb2 provides protection from type III-C CBASS that uses cA3 signaling molecules. Moreover, phylogenetic analysis of >2,000 Acb2 homologs encoded by diverse phages and prophages revealed that most are expected to bind both CTNs and CDNs. Altogether, Acb2 sequesters nearly all known CBASS signaling molecules through two distinct binding pockets and therefore serves as a broad-spectrum inhibitor of cGAS-based immunity.


Subject(s)
Bacteriophages , Nucleotides, Cyclic , Humans , Nucleotides, Cyclic/metabolism , Bacteriophages/genetics , Bacteriophages/metabolism , Phylogeny , Cyclic AMP , Oligonucleotides
8.
Immunity ; 54(8): 1728-1744.e7, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34343498

ABSTRACT

Inflammatory bowel disease (IBD) mainly includes Crohn's disease (CD) and ulcerative colitis (UC). Immune disorders play an essential role in the pathogenesis of these two IBDs, but the differences in the immune microenvironment of the colon and their underlying mechanisms remain poorly investigated. Here we examined the immunological features and metabolic microenvironment of untreated individuals with IBD by multiomics analyses. Modulation of CD-specific metabolites, particularly reduced selenium, can obviously shape type 1 T helper (Th1) cell differentiation, which is specifically enriched in CD. Selenium supplementation suppressed the symptoms and onset of CD and Th1 cell differentiation via selenoprotein W (SELW)-mediated cellular reactive oxygen species scavenging. SELW promoted purine salvage pathways and inhibited one-carbon metabolism by recruiting an E3 ubiquitin ligase, tripartite motif-containing protein 21, which controlled the stability of serine hydroxymethyltransferase 2. Our work highlights selenium as an essential regulator of T cell responses and potential therapeutic targets in CD.


Subject(s)
Antioxidants/pharmacology , Crohn Disease/drug therapy , Crohn Disease/immunology , Selenium/pharmacology , Selenoprotein W/metabolism , Th1 Cells/cytology , Cell Differentiation/immunology , Cell Polarity , Colon/immunology , Colon/pathology , Glycine Hydroxymethyltransferase/metabolism , Humans , Reactive Oxygen Species/metabolism , Ribonucleoproteins/metabolism , Th1 Cells/immunology , Ubiquitin-Protein Ligases/metabolism
9.
Cell ; 163(1): 230-45, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26365490

ABSTRACT

Embryonic stem cells (ESCs) repress the expression of exogenous proviruses and endogenous retroviruses (ERVs). Here, we systematically dissected the cellular factors involved in provirus repression in embryonic carcinomas (ECs) and ESCs by a genome-wide siRNA screen. Histone chaperones (Chaf1a/b), sumoylation factors (Sumo2/Ube2i/Sae1/Uba2/Senp6), and chromatin modifiers (Trim28/Eset/Atf7ip) are key determinants that establish provirus silencing. RNA-seq analysis uncovered the roles of Chaf1a/b and sumoylation modifiers in the repression of ERVs. ChIP-seq analysis demonstrates direct recruitment of Chaf1a and Sumo2 to ERVs. Chaf1a reinforces transcriptional repression via its interaction with members of the NuRD complex (Kdm1a, Hdac1/2) and Eset, while Sumo2 orchestrates the provirus repressive function of the canonical Zfp809/Trim28/Eset machinery by sumoylation of Trim28. Our study reports a genome-wide atlas of functional nodes that mediate proviral silencing in ESCs and illuminates the comprehensive, interconnected, and multi-layered genetic and epigenetic mechanisms by which ESCs repress retroviruses within the genome.


Subject(s)
Embryonic Stem Cells/virology , Endogenous Retroviruses/genetics , Proviruses/genetics , Animals , Chromatin Assembly Factor-1/genetics , Chromatin Assembly Factor-1/metabolism , Embryonal Carcinoma Stem Cells/virology , Epigenesis, Genetic , Mice , Small Ubiquitin-Related Modifier Proteins/metabolism
10.
Nature ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961301

ABSTRACT

Pericentric heterochromatin is a critical component of chromosomes marked by histone H3 K9 (H3K9) methylation1-3. However, what recruits H3K9-specific histone methyltransferases to pericentric regions in vertebrates remains unclear4, as does why pericentric regions in different species share the same H3K9 methylation mark despite lacking highly conserved DNA sequences2,5. Here we show that zinc-finger proteins ZNF512 and ZNF512B specifically localize at pericentric regions through direct DNA binding. Notably, both ZNF512 and ZNF512B are sufficient to initiate de novo heterochromatin formation at ectopically targeted repetitive regions and pericentric regions, as they directly recruit SUV39H1 and SUV39H2 (SUV39H) to catalyse H3K9 methylation. SUV39H2 makes a greater contribution to H3K9 trimethylation, whereas SUV39H1 seems to contribute more to silencing, probably owing to its preferential association with HP1 proteins. ZNF512 and ZNF512B from different species can specifically target pericentric regions of other vertebrates, because the atypical long linker residues between the zinc-fingers of ZNF512 and ZNF512B offer flexibility in recognition of non-consecutively organized three-nucleotide triplets targeted by each zinc-finger. This study addresses two long-standing questions: how constitutive heterochromatin is initiated and how seemingly variable pericentric sequences are targeted by the same set of conserved machinery in vertebrates.

11.
Mol Cell ; 82(23): 4503-4518.e8, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36306795

ABSTRACT

In the type III-E CRISPR-Cas system, a Cas effector (gRAMP) is associated with a TPR-CHAT to form Craspase (CRISPR-guided caspase). However, both the structural features of gRAMP and the immunity mechanism remain unknown for this system. Here, we report structures of gRAMP-crRNA and gRAMP:cRNA:target RNA as well as structures of Craspase and Craspase complexed with cognate target RNA (CTR) or non-cognate target RNA (NTR). Importantly, the 3' anti-tag region of NTR and CTR binds at two distinct channels in Craspase, and CTR with a non-complementary 3' anti-tag induces a marked conformational change of the TPR-CHAT, which allosterically activates its protease activity to cleave an ancillary protein Csx30. This cleavage then triggers an abortive infection as the antiviral strategy of the type III-E system. Together, our study provides crucial insights into both the catalytic mechanism of the gRAMP and the immunity mechanism of the type III-E system.


Subject(s)
CRISPR-Associated Proteins , CRISPR-Associated Proteins/genetics , RNA/metabolism , Antiviral Agents , CRISPR-Cas Systems , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism
12.
Nature ; 617(7959): 200-207, 2023 05.
Article in English | MEDLINE | ID: mdl-37020024

ABSTRACT

In all species, ribosomes synthesize proteins by faithfully decoding messenger RNA (mRNA) nucleotide sequences using aminoacyl-tRNA substrates. Current knowledge of the decoding mechanism derives principally from studies on bacterial systems1. Although key features are conserved across evolution2, eukaryotes achieve higher-fidelity mRNA decoding than bacteria3. In human, changes in decoding fidelity are linked to ageing and disease and represent a potential point of therapeutic intervention in both viral and cancer treatment4-6. Here we combine single-molecule imaging and cryogenic electron microscopy methods to examine the molecular basis of human ribosome fidelity to reveal that the decoding mechanism is both kinetically and structurally distinct from that of bacteria. Although decoding is globally analogous in both species, the reaction coordinate of aminoacyl-tRNA movement is altered on the human ribosome and the process is an order of magnitude slower. These distinctions arise from eukaryote-specific structural elements in the human ribosome and in the elongation factor eukaryotic elongation factor 1A (eEF1A) that together coordinate faithful tRNA incorporation at each mRNA codon. The distinct nature and timing of conformational changes within the ribosome and eEF1A rationalize how increased decoding fidelity is achieved and potentially regulated in eukaryotic species.


Subject(s)
Bacteria , Protein Biosynthesis , Humans , Bacteria/genetics , Bacteria/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer, Amino Acyl/genetics , RNA, Transfer, Amino Acyl/metabolism , Single Molecule Imaging , Cryoelectron Microscopy , Ribosomes/genetics , Ribosomes/metabolism
13.
Nature ; 618(7963): 63-68, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37259002

ABSTRACT

Titanium alloys are advanced lightweight materials, indispensable for many critical applications1,2. The mainstay of the titanium industry is the α-ß titanium alloys, which are formulated through alloying additions that stabilize the α and ß phases3-5. Our work focuses on harnessing two of the most powerful stabilizing elements and strengtheners for α-ß titanium alloys, oxygen and iron1-5, which are readily abundant. However, the embrittling effect of oxygen6,7, described colloquially as 'the kryptonite to titanium'8, and the microsegregation of iron9 have hindered their combination for the development of strong and ductile α-ß titanium-oxygen-iron alloys. Here we integrate alloy design with additive manufacturing (AM) process design to demonstrate a series of titanium-oxygen-iron compositions that exhibit outstanding tensile properties. We explain the atomic-scale origins of these properties using various characterization techniques. The abundance of oxygen and iron and the process simplicity for net-shape or near-net-shape manufacturing by AM make these α-ß titanium-oxygen-iron alloys attractive for a diverse range of applications. Furthermore, they offer promise for industrial-scale use of off-grade sponge titanium or sponge titanium-oxygen-iron10,11, an industrial waste product at present. The economic and environmental potential to reduce the carbon footprint of the energy-intensive sponge titanium production12 is substantial.

15.
Immunity ; 50(3): 576-590.e6, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30770249

ABSTRACT

Elevated glucose metabolism in immune cells represents a hallmark feature of many inflammatory diseases, such as sepsis. However, the role of individual glucose metabolic pathways during immune cell activation and inflammation remains incompletely understood. Here, we demonstrate a previously unrecognized anti-inflammatory function of the O-linked ß-N-acetylglucosamine (O-GlcNAc) signaling associated with the hexosamine biosynthesis pathway (HBP). Despite elevated activities of glycolysis and the pentose phosphate pathway, activation of macrophages with lipopolysaccharide (LPS) resulted in attenuated HBP activity and protein O-GlcNAcylation. Deletion of O-GlcNAc transferase (OGT), a key enzyme for protein O-GlcNAcylation, led to enhanced innate immune activation and exacerbated septic inflammation. Mechanistically, OGT-mediated O-GlcNAcylation of the serine-threonine kinase RIPK3 on threonine 467 (T467) prevented RIPK3-RIPK1 hetero- and RIPK3-RIPK3 homo-interaction and inhibited downstream innate immunity and necroptosis signaling. Thus, our study identifies an immuno-metabolic crosstalk essential for fine-tuning innate immune cell activation and highlights the importance of glucose metabolism in septic inflammation.


Subject(s)
Apoptosis/physiology , Inflammation/metabolism , N-Acetylglucosaminyltransferases/metabolism , Necrosis/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Cell Line , Glucose/metabolism , Humans , Immunity, Innate/physiology , Mice , Mice, Inbred C57BL , Serine/metabolism , Signal Transduction/physiology , Threonine/metabolism
16.
Nature ; 610(7932): 569-574, 2022 10.
Article in English | MEDLINE | ID: mdl-36198799

ABSTRACT

Deoxyribonucleic acid in eukaryotes wraps around the histone octamer to form nucleosomes1, the fundamental unit of chromatin. The N termini of histone H4 interact with nearby nucleosomes and play an important role in the formation of high-order chromatin structure and heterochromatin silencing2-4. NuA4 in yeast and its homologue Tip60 complex in mammalian cells are the key enzymes that catalyse H4 acetylation, which in turn regulates chromatin packaging and function in transcription activation and DNA repair5-10. Here we report the cryo-electron microscopy structure of NuA4 from Saccharomyces cerevisiae bound to the nucleosome. NuA4 comprises two major modules: the catalytic histone acetyltransferase (HAT) module and the transcription activator-binding (TRA) module. The nucleosome is mainly bound by the HAT module and is positioned close to a polybasic surface of the TRA module, which is important for the optimal activity of NuA4. The nucleosomal linker DNA carrying the upstream activation sequence is oriented towards the conserved, transcription activator-binding surface of the Tra1 subunit, which suggests a potential mechanism of NuA4 to act as a transcription co-activator. The HAT module recognizes the disk face of the nucleosome through the H2A-H2B acidic patch and nucleosomal DNA, projecting the catalytic pocket of Esa1 to the N-terminal tail of H4 and supporting its function in selective acetylation of H4. Together, our findings illustrate how NuA4 is assembled and provide mechanistic insights into nucleosome recognition and transcription co-activation by a HAT.


Subject(s)
Cryoelectron Microscopy , Histone Acetyltransferases , Nucleosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , Acetylation , DNA/chemistry , DNA/metabolism , DNA/ultrastructure , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/ultrastructure , Histones/chemistry , Histones/metabolism , Histones/ultrastructure , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Transcription Factors/metabolism
17.
Nature ; 605(7908): 63-68, 2022 05.
Article in English | MEDLINE | ID: mdl-35508778

ABSTRACT

Moiré superlattices have led to observations of exotic emergent electronic properties such as superconductivity and strong correlated states in small-rotation-angle twisted bilayer graphene (tBLG)1,2. Recently, these findings have inspired the search for new properties in moiré plasmons. Although plasmon propagation in the tBLG basal plane has been studied by near-field nano-imaging techniques3-7, the general electromagnetic character and properties of these plasmons remain elusive. Here we report the direct observation of two new plasmon modes in macroscopic tBLG with a highly ordered moiré superlattice. Using spiral structured nanoribbons of tBLG, we identify signatures of chiral plasmons that arise owing to the uncompensated Berry flux of the electron gas under optical pumping. The salient features of these chiral plasmons are shown through their dependence on optical pumping intensity and electron fillings, in conjunction with distinct resonance splitting and Faraday rotation coinciding with the spectral window of maximal Berry flux. Moreover, we also identify a slow plasmonic mode around 0.4 electronvolts, which stems from the interband transitions between the nested subbands in lattice-relaxed AB-stacked domains. This mode may open up opportunities for strong light-matter interactions within the highly sought after mid-wave infrared spectral window8. Our results unveil the new electromagnetic dynamics of small-angle tBLG and exemplify it as a unique quantum optical platform.

18.
Nature ; 611(7937): 702-708, 2022 11.
Article in English | MEDLINE | ID: mdl-36289339

ABSTRACT

Realizing an efficient electron transfer process in the oxygen evolution reaction by modifying the electronic states around the Fermi level is crucial in developing high-performing and robust electrocatalysts1-3. Typically, electron transfer proceeds solely through either a metal redox chemistry (an adsorbate evolution mechanism (AEM), with metal bands around the Fermi level) or an oxygen redox chemistry (a lattice oxygen oxidation mechanism (LOM), with oxygen bands around the Fermi level), without the concurrent occurrence of both metal and oxygen redox chemistries in the same electron transfer pathway1-15. Here we report an electron transfer mechanism that involves a switchable metal and oxygen redox chemistry in nickel-oxyhydroxide-based materials with light as the trigger. In contrast to the traditional AEM and LOM, the proposed light-triggered coupled oxygen evolution mechanism requires the unit cell to undergo reversible geometric conversion between octahedron (NiO6) and square planar (NiO4) to achieve electronic states (around the Fermi level) with alternative metal and oxygen characters throughout the oxygen evolution process. Utilizing this electron transfer pathway can bypass the potential limiting steps, that is, oxygen-oxygen bonding in AEM and deprotonation in LOM1-5,8. As a result, the electrocatalysts that operate through this route show superior activity compared with previously reported electrocatalysts. Thus, it is expected that the proposed light-triggered coupled oxygen evolution mechanism adds a layer of understanding to the oxygen evolution research scene.

19.
Nature ; 605(7909): 268-273, 2022 05.
Article in English | MEDLINE | ID: mdl-35292753

ABSTRACT

Optoelectronic devices consist of heterointerfaces formed between dissimilar semiconducting materials. The relative energy-level alignment between contacting semiconductors determinately affects the heterointerface charge injection and extraction dynamics. For perovskite solar cells (PSCs), the heterointerface between the top perovskite surface and a charge-transporting material is often treated for defect passivation1-4 to improve the PSC stability and performance. However, such surface treatments can also affect the heterointerface energetics1. Here we show that surface treatments may induce a negative work function shift (that is, more n-type), which activates halide migration to aggravate PSC instability. Therefore, despite the beneficial effects of surface passivation, this detrimental side effect limits the maximum stability improvement attainable for PSCs treated in this way. This trade-off between the beneficial and detrimental effects should guide further work on improving PSC stability via surface treatments.

20.
Nature ; 605(7909): 349-356, 2022 05.
Article in English | MEDLINE | ID: mdl-35477763

ABSTRACT

Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.


Subject(s)
Gain of Function Mutation , Lupus Erythematosus, Systemic , Toll-Like Receptor 7 , Animals , Autoimmunity/genetics , B-Lymphocytes , Cyclic GMP/analogs & derivatives , Guanosine , Humans , Lupus Erythematosus, Systemic/genetics , Mice , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL