Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Soft Matter ; 16(23): 5450-5457, 2020 Jun 21.
Article in English | MEDLINE | ID: mdl-32483563

ABSTRACT

The adsorption and wetting on quartz surfaces by aqueous solutions of xylyl-substituted biquaternary ammonium salt gemini surfactants with different spacer groups (C3 and C6), have been investigated. The interfacial properties of surfactant solutions such as contact angle, adhesional tension (γLV cos θ), quartz-water interfacial tension (γSL) as well as adhesion work (WA) have been estimated. The obtained results show that C3 and C6 have similar adsorption behavior on quartz surfaces. Before critical micelle concentration (cmc) is reached, the contact angles of gemini surfactants slowly increase with the increasing concentration, and the adsorption amount at the water-air interface is almost the same as those at a quartz-water interface. After reaching cmc, the gemini surfactant Cn molecules form a more compact adsorption film through bending the flexible spacer chain, instead of forming a bi-layer. As a result, a further increase in quartz-liquid interfacial tension (γSL) and a consequent increase in contact angle have been observed after cmc. Gemini C6 shows a stronger ability towards hydrophobic modification at a quartz surface than C3, demonstrating the contribution of the longer methylene spacer to the hydrophobic modification of the quartz surface.

2.
Soft Matter ; 15(33): 6725-6731, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31389469

ABSTRACT

The adsorption of xylyl-substituted biquaternary ammonium salt Gemini surfactants with different spacer (C3 and C6) at polytetrafluoroethylene (PTFE) and polymethylmethacrylate (PMMA) surfaces has been investigated and the different adsorption parameters such as surface tension, contact angle, adhesional tension, solid-water interfacial tension and work of adhesion have been estimated. The results show that C3 and C6 have similar adsorption behaviors at PTFE and PMMA surfaces. C3 and C6 adsorb gradually at a PFTE-water interface via hydrophobic interactions and the adsorption amounts at the water-air interface are almost three times higher than those at the PTFE-water interface due to the steric hindrance effect. However, the contact angle keeps constant throughout the experimental concentration range because the decrease in surface tension just counterbalances the decrease in PFTE-water interfacial tension. On the other hand, C3 and C6 adsorb at the PMMA surface via polar interactions between xylyl and functional groups of PMMA before CMC. Similar to PTFE, the increase in PMMA-water interfacial tension compensates the decrease in surface tension and the contact angle also shows a stationary value before the CMC. A bi-layer structure of C3 and C6 will be formed at the PMMA-water interface via hydrophobic interaction and PMMA-water interfacial tension decreases consequently after the CMC, which results in the decrease in contact angle.

SELECTION OF CITATIONS
SEARCH DETAIL