Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Environ Sci Technol ; 58(15): 6457-6474, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38568682

ABSTRACT

The circular economy (CE) aims to decouple the growth of the economy from the consumption of finite resources through strategies, such as eliminating waste, circulating materials in use, and regenerating natural systems. Due to the rapid development of data science (DS), promising progress has been made in the transition toward CE in the past decade. DS offers various methods to achieve accurate predictions, accelerate product sustainable design, prolong asset life, optimize the infrastructure needed to circulate materials, and provide evidence-based insights. Despite the exciting scientific advances in this field, there still lacks a comprehensive review on this topic to summarize past achievements, synthesize knowledge gained, and navigate future research directions. In this paper, we try to summarize how DS accelerated the transition to CE. We conducted a critical review of where and how DS has helped the CE transition with a focus on four areas including (1) characterizing socioeconomic metabolism, (2) reducing unnecessary waste generation by enhancing material efficiency and optimizing product design, (3) extending product lifetime through repair, and (4) facilitating waste reuse and recycling. We also introduced the limitations and challenges in the current applications and discussed opportunities to provide a clear roadmap for future research in this field.


Subject(s)
Data Science , Waste Management , Recycling
2.
Angew Chem Int Ed Engl ; 63(20): e202318754, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38407918

ABSTRACT

In the pursuit of highly efficient perovskite solar cells, spiro-OMeTAD has demonstrated recorded power conversion efficiencies (PCEs), however, the stability issue remains one of the bottlenecks constraining its commercial development. In this study, we successfully synthesize a novel self-polymerized spiro-type interfacial molecule, termed v-spiro. The linearly arranged molecule exhibits stronger intermolecular interactions and higher intrinsic hole mobility compared to spiro-OMeTAD. Importantly, the vinyl groups in v-spiro enable in situ polymerization, forming a polymeric protective layer on the perovskite film surface, which proves highly effective in suppressing moisture degradation and ion migration. Utilizing these advantages, poly-v-spiro-based device achieves an outstanding efficiency of 24.54 %, with an enhanced open-circuit voltage of 1.173 V and a fill factor of 81.11 %, owing to the reduced defect density, energy level alignment and efficient interfacial hole extraction. Furthermore, the operational stability of unencapsulated devices is significantly enhanced, maintaining initial efficiencies above 90 % even after 2000 hours under approximately 60 % humidity or 1250 hours under continuous AM 1.5G sunlight exposure. This work presents a comprehensive approach to achieving both high efficiency and long-term stability in PSCs through innovative interfacial design.

3.
Angew Chem Int Ed Engl ; 63(30): e202404289, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38712497

ABSTRACT

Interfacial engineering of perovskite films has been the main strategies in improving the efficiency and stability of perovskite solar cells (PSCs). In this study, three new donor-acceptor (D-A)-type interfacial dipole (DAID) molecules with hole-transporting and different anchoring units are designed and employed in PSCs. The formation of interface dipoles by the DAID molecules on the perovskite film can efficiently modulate the energy level alignment, improve charge extraction, and reduce non-radiative recombination. Among the three DAID molecules, TPA-BAM with amide group exhibits the best chemical and optoelectrical properties, achieving a champion PCE of 25.29 % with the enhanced open-circuit voltage of 1.174 V and fill factor of 84.34 %, due to the reduced defect density and improved interfacial hole extraction. Meanwhile, the operational stability of the unencapsulated device has been significantly improved. Our study provides a prospect for rationalized screening of interfacial dipole materials for efficient and stable PSCs.

4.
Anim Biotechnol ; 33(6): 1150-1160, 2022 Nov.
Article in English | MEDLINE | ID: mdl-33530818

ABSTRACT

This study aimed to investigate the effects of active dry yeast (ADY) on growth performance, rumen microbial composition and carcass performance of beef cattle. Thirty-two finishing beef cattle (yak ♂ × cattle-yaks ♀), with an average body weight of 110 ± 12.85 kg, were randomly assigned to one of four treatments: the low plane of nutrition group (control), low plane of nutrition group + ADY 2 g/head daily (ADY2), low plane of nutrition group + ADY 4 g/head daily (ADY4) and the high plane of nutrition group (HPN). Supplementation of ADY increased average daily gain compared to the control group. The neutral detergent fiber and acid detergent fiber apparent digestibility in HPN group was greater than that in control group. The propionic acid concentration in the rumen in ADY2, ADY4, and HPN groups was greater than that in control group. The Simpson and Shannon indexes in control and HPN groups were higher than that in ADY4 group. At the phylum level, the relative abundance of Firmicutes in the HPN group was higher than that in ADY4 group. The relative abundance of Ruminococcaceae UCG-002 in ADY4 group was higher than that in control and HPN groups. In conclusion, supplementation ADY 4 g/head daily shift the rumen microbial composition of beef cattle fed low plane of nutrition to a more similar composition with cattle fed with HPN diet and produce the similar carcass weight with HPN diet.HighlightsThe ADY can improve the utilization of nitrogen and decrease the negative impact on the environment in beef cattle.Cattle fed low plane of nutrition diet supplemented with ADY 4 g/head daily increased growth performance.Supplementation ADY 4 g/head daily in low plane of nutrition diet might be produced comparable carcass weight to HPN diet.


Subject(s)
Microbiota , Rumen , Cattle , Animals , Rumen/metabolism , Saccharomyces cerevisiae , Fermentation , Animal Feed/analysis , Detergents/metabolism , Diet/veterinary , Dietary Supplements
5.
Plant Physiol ; 175(2): 774-785, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28811335

ABSTRACT

Maize (Zea mays) is a major staple crop. Maize kernel size and weight are important contributors to its yield. Here, we measured kernel length, kernel width, kernel thickness, hundred kernel weight, and kernel test weight in 10 recombinant inbred line populations and dissected their genetic architecture using three statistical models. In total, 729 quantitative trait loci (QTLs) were identified, many of which were identified in all three models, including 22 major QTLs that each can explain more than 10% of phenotypic variation. To provide candidate genes for these QTLs, we identified 30 maize genes that are orthologs of 18 rice (Oryza sativa) genes reported to affect rice seed size or weight. Interestingly, 24 of these 30 genes are located in the identified QTLs or within 1 Mb of the significant single-nucleotide polymorphisms. We further confirmed the effects of five genes on maize kernel size/weight in an independent association mapping panel with 540 lines by candidate gene association analysis. Lastly, the function of ZmINCW1, a homolog of rice GRAIN INCOMPLETE FILLING1 that affects seed size and weight, was characterized in detail. ZmINCW1 is close to QTL peaks for kernel size/weight (less than 1 Mb) and contains significant single-nucleotide polymorphisms affecting kernel size/weight in the association panel. Overexpression of this gene can rescue the reduced weight of the Arabidopsis (Arabidopsis thaliana) homozygous mutant line in the AtcwINV2 gene (Arabidopsis ortholog of ZmINCW1). These results indicate that the molecular mechanisms affecting seed development are conserved in maize, rice, and possibly Arabidopsis.


Subject(s)
Oryza/genetics , Quantitative Trait Loci/genetics , Zea mays/genetics , Oryza/growth & development , Phenotype , Seeds/genetics , Seeds/growth & development , Zea mays/growth & development
6.
Opt Express ; 26(5): 6392-6399, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29529831

ABSTRACT

An experimental system to observe the inner phenomenon of keyhole and molten pool through glass plate by high speed camera and spectrometer in high power density laser welding was set up. Two circular flows in the molten pool were observed by high speed camera, which transferred the mass from the front to the rear of the keyhole to keep the mass balance. Temperature distribution in the molten pool was firstly detected by spectrometer, which indicated that the circular flows acted as the cooling system to take heat away from the keyhole. The porosity formation process was also observed and the mechanism was discussed.

7.
Opt Express ; 26(18): 22626-22636, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184920

ABSTRACT

The inner characteristics of solidification and crack propagation in laser spot welding of four representative aluminum alloys, A1050, A2024, A5083 and A6061, were firstly observed with the X-ray phase contrast method. Keyhole disappeared within 1 ms after the laser was shut down. The solidification process finished in 2 ms for A1050, 3 ms for A2024, 5 ms for A5083, and 3 ms for A6061, respectively. Longitudinal view area of the molten pool decreased as the thermal conductivity increased, while the average solidification rate increased with increase of the thermal conductivity. Hot crack was observed to propagate from the bottom to the upper surface in the center of spot weld of A2024, A5083, and A6061, which was also the first in situ observation of crack during the welding process. Both the SEM, EBSD and Micro-X-ray computed tomography (CT) results validated that there was a crack propagation in the spot weld, and the mechanism for this crack formation was discussed. This paper provides a better understanding of solidification and crack formation in laser manufacturing.

8.
Opt Lett ; 43(19): 4667-4670, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30272710

ABSTRACT

A 100 kW fiber laser was first used to weld steel. Speeds at the range between 0.3 and 5.0 m/min were tested, and the maximum weld bead depth of 70 mm was achieved by single pass welding. Solidification cracking and porosity occurred when the welding speed was lower than 0.5 m/min, while undercut appeared when the welding speed was higher than 3.0 m/min. Both the ratio of depth to width and the cross section area of the weld bead had a positively linear relationship with the welding speed. A high speed camera was used to observe the characteristics of the keyhole and molten pool. The average number of spatters increased with the welding speed, while the keyhole diameter and the length of the molten pool in front of the keyhole decreased with the welding speed. This Letter validates the application potential of a 100 kW ultra high power fiber laser in manufacturing, e.g., welding, cutting, and additive manufacturing.

9.
Behav Pharmacol ; 29(4): 306-315, 2018 06.
Article in English | MEDLINE | ID: mdl-29035920

ABSTRACT

Sinomenine is a bioactive alkaloid extracted from Sinomenium acutum. Here, we investigated the antidepressant effects of sinomenine in mice. The antidepressant actions of sinomenine were first examined in the forced-swim test and the tail-suspension test, and then assessed in the chronic social defeat stress (CSDS) model of depression. Changes in the brain-derived neurotrophic factor (BDNF) signaling pathway after CSDS and sinomenine treatment were also investigated. A tryptophan hydroxylase inhibitor and a BDNF signaling inhibitor were also used to determine the pharmacological mechanisms of sinomenine. It was found that sinomenine induced antidepressant-like effects in the forced-swim test and tail-suspension test without affecting the locomotor activity of mice. Sinomenine also prevented the CSDS-induced depressive-like symptoms. Moreover, sinomenine fully restored the CSDS-induced decrease in the hippocampal BDNF signaling pathway, whereas a BDNF signaling inhibitor, but not a tryptophan hydroxylase inhibitor, blocked the antidepressant effects of sinomenine. In conclusion, sinomenine exerts antidepressant effects in mice by promoting the hippocampal BDNF signaling pathway.


Subject(s)
Depression/drug therapy , Morphinans/pharmacology , Animals , Antidepressive Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Depressive Disorder/drug therapy , Disease Models, Animal , Hippocampus/drug effects , Male , Mice , Mice, Inbred C57BL , Morphinans/metabolism , Neurogenesis/drug effects , Serotonin/metabolism , Signal Transduction/drug effects , Stress, Psychological/drug therapy
10.
Opt Lett ; 42(12): 2251-2254, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28614324

ABSTRACT

A blue diode laser has a higher absorption rate than a traditional laser, while the maximum power is limited. We report the structure and laser beam profile of a 250 W high-power blue laser (445 nm) for material processing. The absorption rate of the blue laser system for the steel was 2.75 times that of a single-mode fiber laser system (1070 nm). The characteristics of the steel after laser irradiation were determined, validating the potential of this high-power blue laser for material processing, such as heat treatment and cladding. The cost of the developed laser system was lower than that of the existing one. To the best of our knowledge, this is the first blue laser with a power as high as 250 W.

11.
Anaerobe ; 44: 78-86, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28188879

ABSTRACT

This study aimed to investigate the effects of dietary supplementation of different dosages of active dried yeast (ADY) on the fecal methanogenic archaea community of dairy cattle. Twelve multiparous, healthy, mid-lactating Holstein dairy cows (body weight: 584 ± 23.2 kg, milk produced: 26.3 ± 1.22 kg/d) were randomly assigned to one of three treatments (control, ADY2, and ADY4) according to body weight with four replicates per treatment. Cows in the control group were fed conventional rations without ADY supplementation, while cows in the ADY2 and ADY4 group were fed rations supplemented with ADY at 2 or 4 g/d/head. Real-time PCR analysis showed the populations of total methanogens in the feces were significantly decreased (P < 0.05) in the ADY4 group compared with control. High-throughput sequencing technology was applied to examine the differences in methanogenic archaea diversity in the feces of the three treatment groups. A total of 155,609 sequences were recovered (a mean of 12,967 sequences per sample) from the twelve fecal samples, which consisted of a number of operational taxonomic units (OTUs) ranging from 1451 to 1,733, were assigned to two phyla, four classes, five orders, five families and six genera. Bioinformatic analyses illustrated that the natural fecal archaeal community of the control group was predominated by Methanobrevibacter (86.9% of the total sequence reads) and Methanocorpusculum (10.4%), while the relative abundance of the remaining four genera were below 1% with Methanosphaera comprising 0.8%, Thermoplasma composing 0.4%, and the relative abundance of Candidatus Nitrososphaera and Halalkalicoccus being close to zero. At the genus level, the relative abundances of Methanocorpusculum and Thermoplasma were increased (P < 0.05) with increasing dosage of ADY. Conversely, the predominant methanogen genus Methanobrevibacter was decreased with ADY dosage (P < 0.05). Dietary supplementation of ADY had no significant effect (P > 0.05) on the abundances of genera unclassified, Candidatus Nitrososphaera, and Halalkalicoccus. In conclusion, supplementation of ADY to the rations of dairy cattle could alter the population sizes and composition of fecal methanogenic archaea in the feces of dairy cattle. The decrease in Methanobrevibacter happened with a commensurate increase in the genera Methanocorpusculum and Thermoplasma.


Subject(s)
Archaea/isolation & purification , Biodiversity , Diet/methods , Dietary Supplements , Feces/microbiology , Methane/metabolism , Yeast, Dried/administration & dosage , Animals , Archaea/classification , Archaea/genetics , Archaea/metabolism , Cattle , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction
12.
Biofabrication ; 16(2)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38507799

ABSTRACT

The application of additive manufacturing (AM) technology plays a significant role in various fields, incorporating a wide range of cutting-edge technologies such as aerospace, medical treatment, electronic information, and materials. It is currently widely adopted for medical services, national defense, and industrial manufacturing. In recent years, AM has also been extensively employed to produce bone scaffolds and implant materials. Through AM, products can be manufactured without being constrained by complex internal structures. AM is particularly advantageous in the production of macroscopically irregular and microscopically porous biomimetic bone scaffolds, with short production cycles required. In this paper, AM commonly used to produce bone scaffolds and orthopedic implants is overviewed to analyze the different materials and structures adopted for AM. The applications of antibacterial bone scaffolds and bone scaffolds in biologically relevant animal models are discussed. Also, the influence on the comprehensive performance of product mechanics, mass transfer, and biology is explored. By identifying the reasons for the limited application of existing AM in the biomedical field, the solutions are proposed. This study provides an important reference for the future development of AM in the field of orthopedic healthcare. In conclusion, various AM technologies, the requirements of bone scaffolds and the important role of AM in building bridges between biomaterials, additives, and bone tissue engineering scaffolds are described and highlighted. Nevertheless, more caution should be exercised when designing bone scaffolds and conducting in vivo trials, due to the lack of standardized processes, which prevents the accuracy of results and reduces the reliability of information.


Subject(s)
Biocompatible Materials , Tissue Scaffolds , Animals , Reproducibility of Results , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Tissue Scaffolds/chemistry , Tissue Engineering , Bone and Bones
13.
Heliyon ; 10(3): e25196, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38322845

ABSTRACT

A hybrid laser composed of infrared and blue laser is applied in fabricating TiB2/AlSi7Mg composites on AlSi7Mg substrate by LPBF. The effect on formability, molten pool morphology, molten pool size and microstructure under infrared, blue and hybrid laser were compared. It was confirmed that hybrid laser can make up for the unbalanced energy distribution of infrared laser and the low energy density of blue laser. The increased energy input improves the molten pool size and cellular dendrites size. Therefore, the hybrid laser can improve the formability and forming stability in the LPBF process of low absorption rate alloys.

14.
AMB Express ; 14(1): 37, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622373

ABSTRACT

This research aimed to investigate effects of different yeast culture (YC) levels on in vitro fermentation characteristics and bacterial and fungal community under high concentrate diet. A total of 5 groups were included in the experiment: control group without YC (CON), YC1 (0.5% YC proportion of substrate dry matter), YC2 (1%), YC3 (1.5%) and YC4 (2%). After 48 h of fermentation, the incubation fluids and residues were collected to analyze the ruminal fermentation parameters and bacterial and fungal community. Results showed that the ruminal fluid pH of YC2 and YC4 groups was higher (P < 0.05) than that of CON group. Compared with CON group, the microbial protein, propionate and butyrate concentrations and cumulative gas production at 48 h of YC2 group were significantly increased (P < 0.05), whereas an opposite trend of ammonia nitrogen and lactate was observed between two groups. Microbial analysis showed that the Chao1 and Shannon indexes of YC2 group were higher (P < 0.05) than those of CON group. Additionally, YC supplementation significantly decreased (P < 0.05) Succinivibrionaceae_UCG-001, Streptococcus bovis and Neosetophoma relative abundances. An opposite tendency of Aspergillus abundance was found between CON and YC treatments. Compared with CON group, the relative abundances of Prevotella, Succiniclasticum, Butyrivibrio and Megasphaera elsdenii were significantly increased (P < 0.05) in YC2 group, while Apiotrichum and unclassified Clostridiales relative abundances were decreased (P < 0.05). In conclusion, high concentrate substrate supplemented with appropriate YC (1%) can improve ruminal fermentation and regulate bacterial and fungal composition.

15.
Nat Commun ; 14(1): 573, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36732540

ABSTRACT

Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.

16.
Nat Commun ; 14(1): 3216, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270581

ABSTRACT

Although the power conversion efficiency values of perovskite solar cells continue to be refreshed, it is still far from the theoretical Shockley-Queisser limit. Two major issues need to be addressed, including disorder crystallization of perovskite and unbalanced interface charge extraction, which limit further improvements in device efficiency. Herein, we develop a thermally polymerized additive as the polymer template in the perovskite film, which can form monolithic perovskite grain and a unique "Mortise-Tenon" structure after spin-coating hole-transport layer. Importantly, the suppressed non-radiative recombination and balanced interface charge extraction benefit from high-quality perovskite crystals and Mortise-Tenon structure, resulting in enhanced open-circuit voltage and fill-factor of the device. The PSCs achieve certified efficiency of 24.55% and maintain >95% initial efficiency over 1100 h in accordance with the ISOS-L-2 protocol, as well as excellent endurance according to the ISOS-D-3 accelerated aging test.

17.
Rev Sci Instrum ; 93(7): 071501, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35922306

ABSTRACT

Welding has been widely used in industry for hundreds of years, and pursuing higher weld quality requires a better understanding of the welding process. The x-ray imaging technique is a powerful tool to in situ observe the inner characteristics of the melt pool in the welding process. Here, current progress in in situ x-ray imaging of the welding process is concluded, including the experiments based on the laboratory-based single x-ray imaging system, the laboratory-based double x-ray imaging system, and the synchrotron radiation tomography system. The corresponding experimental results with the in situ x-ray imaging technique about the formation and evolution of the keyhole, melt pool, pore, solidification crack, etc., have been introduced. A new understanding of welding based on the current progress in in situ x-ray imaging of additive manufacturing is concluded. In addition, the future development trend of applying x-ray imaging technology in the field of monitoring the welding process is proposed.

18.
ACS Appl Mater Interfaces ; 14(47): 53331-53339, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36395380

ABSTRACT

To date, numbers of polymeric hole-transporting materials (HTMs) have been developed to improve interfacial charge transport to achieve high-performance inverted perovskite solar cells (PSCs). However, molecular design for passivating the underlying surface defects between perovskite and HTMs is a neglected issue, which is a major bottleneck to further enhance the performance of the inverted devices. Herein, we design and synthesize a new polymeric HTM PsTA-mPV with the methylthiol group, in which a lone pair of electrons of sulfur atoms can passivate the underlying interface defects of the perovskite more efficiently by coordinating Pb2+ vacancies. Furthermore, PsTA-mPV exhibits a deeper highest occupied molecular orbital (HOMO) level aligned with perovskite due to the π-acceptor capability of sulfur, which improves interfacial charge transfer between perovskite and the HTM layer. Using PsTA-mPV as a dopant-free HTM, the inverted PSCs show 20.2% efficiency and long-term stability, which is ascribed to surface defect passivation, well energy-level matching with perovskite, and efficient charge extraction.

19.
Nat Commun ; 13(1): 4392, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906218

ABSTRACT

Broad-spectrum resistance has great values for crop breeding. However, its mechanisms are largely unknown. Here, we report the cloning of a maize NLR gene, RppK, for resistance against southern corn rust (SCR) and its cognate Avr gene, AvrRppK, from Puccinia polysora (the causal pathogen of SCR). The AvrRppK gene has no sequence variation in all examined isolates. It has high expression level during infection and can suppress pattern-triggered immunity (PTI). Further, the introgression of RppK into maize inbred lines and hybrids enhances resistance against multiple isolates of P. polysora, thereby increasing yield in the presence of SCR. Together, we show that RppK is involved in resistance against multiple P. polysora isolates and it can recognize AvrRppK, which is broadly distributed and conserved in P. polysora isolates.


Subject(s)
Basidiomycota , Zea mays , Basidiomycota/genetics , Chromosome Mapping , Cloning, Molecular , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Puccinia , Zea mays/genetics
20.
Mol Plant ; 14(11): 1846-1863, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34271176

ABSTRACT

Natural alleles that control multiple disease resistance (MDR) are valuable for crop breeding. However, only one MDR gene has been cloned in maize, and the molecular mechanisms of MDR remain unclear in maize. In this study, through map-based cloning we cloned a teosinte-derived allele of a resistance gene, Mexicana lesion mimic 1 (ZmMM1), which causes a lesion mimic phenotype and confers resistance to northern leaf blight (NLB), gray leaf spot (GLS), and southern corn rust (SCR) in maize. Strong MDR conferred by the teosinte allele is linked with polymorphisms in the 3' untranslated region of ZmMM1 that cause increased accumulation of ZmMM1 protein. ZmMM1 acts as a transcription repressor and negatively regulates the transcription of specific target genes, including ZmMM1-target gene 3 (ZmMT3), which functions as a negative regulator of plant immunity and associated cell death. The successful isolation of the ZmMM1 resistance gene will help not only in developing broad-spectrum and durable disease resistance but also in understanding the molecular mechanisms underlying MDR.


Subject(s)
Disease Resistance/genetics , Genes, Plant , Plant Diseases/immunology , Plant Proteins/genetics , Repressor Proteins/genetics , Zea mays/genetics , Alleles , Cloning, Molecular , Gene Expression Regulation, Plant , Phenotype , Plant Diseases/genetics , Plant Proteins/physiology , RNA, Plant/genetics , RNA, Plant/physiology , RNA, Untranslated/genetics , RNA, Untranslated/physiology , Repressor Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL