Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Arterioscler Thromb Vasc Biol ; 41(4): e208-e223, 2021 04.
Article in English | MEDLINE | ID: mdl-33535788
2.
Circulation ; 142(5): 483-498, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32354235

ABSTRACT

BACKGROUND: Abdominal aortic aneurysm (AAA) is a severe aortic disease with a high mortality rate in the event of rupture. Pharmacological therapy is needed to inhibit AAA expansion and prevent aneurysm rupture. Transcription factor EB (TFEB), a master regulator of autophagy and lysosome biogenesis, is critical to maintain cell homeostasis. In this study, we aim to investigate the role of vascular smooth muscle cell (VSMC) TFEB in the development of AAA and establish TFEB as a novel target to treat AAA. METHODS: The expression of TFEB was measured in human and mouse aortic aneurysm samples. We used loss/gain-of-function approaches to understand the role of TFEB in VSMC survival and explored the underlying mechanisms through transcriptome and functional studies. Using VSMC-selective Tfeb knockout mice and different mouse AAA models, we determined the role of VSMC TFEB and a TFEB activator in AAA in vivo. RESULTS: We found that TFEB is downregulated in both human and mouse aortic aneurysm lesions. TFEB potently inhibits apoptosis in VSMCs, and transcriptome analysis revealed that TFEB regulates apoptotic signaling pathways, especially apoptosis inhibitor B-cell lymphoma 2. B-cell lymphoma 2 is significantly upregulated by TFEB and is required for TFEB to inhibit VSMC apoptosis. We consistently observed that TFEB deficiency increases VSMC apoptosis and promotes AAA formation in different mouse AAA models. Furthermore, we demonstrated that 2-hydroxypropyl-ß-cyclodextrin, a clinical agent used to enhance the solubility of drugs, activates TFEB and inhibits AAA formation and progression in mice. Last, we found that 2-hydroxypropyl-ß-cyclodextrin inhibits AAA in a VSMC TFEB-dependent manner in mouse models. CONCLUSIONS: Our study demonstrated that TFEB protects against VSMC apoptosis and AAA. TFEB activation by 2-hydroxypropyl-ß-cyclodextrin may be a promising therapeutic strategy for the prevention and treatment of AAA.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Aortic Aneurysm, Abdominal/prevention & control , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Disease Models, Animal , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , 2-Hydroxypropyl-beta-cyclodextrin/pharmacology , Aminopropionitrile/toxicity , Aneurysm, Ruptured/etiology , Angiotensin II/toxicity , Animals , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Apoptosis/drug effects , Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cholesterol/metabolism , Down-Regulation , Drug Evaluation, Preclinical , Gain of Function Mutation , Gene Expression Regulation , Genetic Vectors/toxicity , Humans , Loss of Function Mutation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , Promoter Regions, Genetic , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/physiology , Transcriptome/drug effects
3.
Arterioscler Thromb Vasc Biol ; 40(10): 2494-2507, 2020 10.
Article in English | MEDLINE | ID: mdl-32787523

ABSTRACT

OBJECTIVE: Currently, there are no approved drugs for abdominal aortic aneurysm (AAA) treatment, likely due to limited understanding of the primary molecular mechanisms underlying AAA development and progression. BAF60a-a unique subunit of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex-is a novel regulator of metabolic homeostasis, yet little is known about its function in the vasculature and pathogenesis of AAA. In this study, we sought to investigate the role and underlying mechanisms of vascular smooth muscle cell (VSMC)-specific BAF60a in AAA formation. Approach and Results: BAF60a is upregulated in human and experimental murine AAA lesions. In vivo studies revealed that VSMC-specific knockout of BAF60a protected mice from both Ang II (angiotensin II)-induced and elastase-induced AAA formation with significant suppression of vascular inflammation, monocyte infiltration, and elastin fragmentation. Through RNA sequencing and pathway analysis, we found that the expression of inflammatory response genes in cultured human aortic smooth muscle cells was significantly downregulated by small interfering RNA-mediated BAF60a knockdown while upregulated upon adenovirus-mediated BAF60a overexpression. BAF60a regulates VSMC inflammation by recruiting BRG1 (Brahma-related gene-1)-a catalytic subunit of the SWI/SNF complex-to the promoter region of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) target genes. Furthermore, loss of BAF60a in VSMCs prevented the upregulation of the proteolytic enzyme cysteine protease CTSS (cathepsin S), thus ameliorating ECM (extracellular matrix) degradation within the vascular wall in AAA. CONCLUSIONS: Our study demonstrated that BAF60a is required to recruit the SWI/SNF complex to facilitate the epigenetic regulation of VSMC inflammation, which may serve as a potential therapeutic target in preventing and treating AAA.


Subject(s)
Aortic Aneurysm, Abdominal/prevention & control , Aortitis/prevention & control , Chromosomal Proteins, Non-Histone/deficiency , Extracellular Matrix/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Vascular Remodeling , Animals , Aorta, Abdominal/metabolism , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/pathology , Aortitis/genetics , Aortitis/metabolism , Aortitis/pathology , Case-Control Studies , Cathepsins/metabolism , Cells, Cultured , Chromosomal Proteins, Non-Histone/genetics , Disease Models, Animal , Extracellular Matrix/pathology , Humans , Inflammation Mediators/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Signal Transduction
4.
Cardiovasc Drugs Ther ; 35(5): 939-951, 2021 10.
Article in English | MEDLINE | ID: mdl-32671602

ABSTRACT

PURPOSE: Abdominal aortic aneurysm (AAA) is one of the leading causes of death in the developed world and is currently undertreated due to the complicated nature of the disease. Herein, we aimed to address the therapeutic potential of a novel class of pleiotropic mediators, specifically a new drug candidate, nitro-oleic acid (NO2-OA), on AAA, in a well-characterized murine AAA model. METHODS: We generated AAA using a mouse model combining AAV.PCSK9-D377Y induced hypercholesterolemia with angiotensin II given by chronic infusion. Vehicle control (PEG-400), oleic acid (OA), or NO2-OA were subcutaneously delivered to mice using an osmotic minipump. We characterized the effects of NO2-OA on pathophysiological responses and dissected the underlying molecular mechanisms through various in vitro and ex vivo strategies. RESULTS: Subcutaneous administration of NO2-OA significantly decreased the AAA incidence (8/28 mice) and supra-renal aorta diameters compared to mice infused with either PEG-400 (13/19, p = 0.0117) or OA (16/23, p = 0.0078). In parallel, the infusion of NO2-OA in the AAA model drastically decreased extracellular matrix degradation, inflammatory cytokine levels, and leucocyte/macrophage infiltration in the vasculature. Administration of NO2-OA reduced inflammation, cytokine secretion, and cell migration triggered by various biological stimuli in primary and macrophage cell lines partially through activation of the peroxisome proliferator-activated receptor-gamma (PPARγ). Moreover, the protective effect of NO2-OA relies on the inhibition of macrophage prostaglandin E2 (PGE2)-induced PGE2 receptor 4 (EP4) cAMP signaling, known to participate in the development of AAA. CONCLUSION: Administration of NO2-OA protects against AAA formation and multifactorial macrophage activation. With NO2-OA currently undergoing FDA approved phase II clinical trials, these findings may expedite the use of this nitro-fatty acid for AAA therapy.


Subject(s)
Aortic Aneurysm, Abdominal/physiopathology , Macrophage Activation/drug effects , Nitro Compounds/pharmacology , Oleic Acids/pharmacology , Angiotensin II/pharmacology , Animals , Cell Movement/drug effects , Disease Models, Animal , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL , RAW 264.7 Cells , Signal Transduction/drug effects
5.
Arterioscler Thromb Vasc Biol ; 39(3): 402-412, 2019 03.
Article in English | MEDLINE | ID: mdl-30602303

ABSTRACT

Objective- Mutations in Krüppel like factor-11 ( KLF11), a gene also known as maturity-onset diabetes mellitus of the young type 7, contribute to the development of diabetes mellitus. KLF11 has anti-inflammatory effects in endothelial cells and beneficial effects on stroke. However, the function of KLF11 in the cardiovascular system is not fully unraveled. In this study, we investigated the role of KLF11 in vascular smooth muscle cell biology and arterial thrombosis. Approach and Results- Using a ferric chloride-induced thrombosis model, we found that the occlusion time was significantly reduced in conventional Klf11 knockout mice, whereas bone marrow transplantation could not rescue this phenotype, suggesting that vascular KLF11 is critical for inhibition of arterial thrombosis. We further demonstrated that vascular smooth muscle cell-specific Klf11 knockout mice also exhibited significantly reduced occlusion time. The expression of tissue factor (encoded by the F3 gene), a main initiator of the coagulation cascade, was increased in the artery of Klf11 knockout mice, as determined by real-time quantitative polymerase chain reaction and immunofluorescence. Furthermore, vascular smooth muscle cells isolated from Klf11 knockout mouse aortas showed increased tissue factor expression, which was rescued by KLF11 overexpression. In human aortic smooth muscle cells, small interfering RNA-mediated knockdown of KLF11 increased tissue factor expression. Consistent results were observed on adenovirus-mediated overexpression of KLF11. Mechanistically, KLF11 downregulates F3 at the transcriptional level as determined by reporter and chromatin immunoprecipitation assays. Conclusions- Our data demonstrate that KLF11 is a novel transcriptional suppressor of F3 in vascular smooth muscle cells, constituting a potential molecular target for inhibition of arterial thrombosis.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Repressor Proteins/physiology , Thromboplastin/biosynthesis , Thrombosis/prevention & control , Animals , Antithrombin III/analysis , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Bone Marrow Transplantation , Cells, Cultured , Chlorides/toxicity , Chromatin Immunoprecipitation , Down-Regulation , Female , Ferric Compounds/toxicity , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Hydrolases/analysis , Platelet Aggregation , RNA Interference , Recombinant Proteins/metabolism , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/deficiency , Repressor Proteins/genetics , Thromboplastin/genetics , Thrombosis/chemically induced , Transcription, Genetic
6.
Nat Commun ; 15(1): 1440, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365914

ABSTRACT

The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD). Despite recent advances in both mouse models and humans, in vivo evidence for the importance of SEL1L in the ERAD complex formation and its (patho-)physiological relevance in mammals remains limited. Here we report that SEL1L variant p.Ser658Pro (SEL1LS658P) is a pathogenic hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Biochemical analyses reveal that SEL1LS658P variant not only reduces the protein stability of SEL1L, but attenuates the SEL1L-HRD1 interaction, likely via electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes reveal that SEL1L-HRD1 interaction is a prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L is required for the recruitment of E2 enzyme UBE2J1 as well as DERLIN to HRD1. These data not only establish the disease relevance of SEL1L-HRD1 ERAD, but also provide additional insight into the formation of a functional HRD1 ERAD complex.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Proteins , Animals , Mice , Disease Models, Animal , Mammals/metabolism , Proteins/metabolism , Proteomics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
7.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37943610

ABSTRACT

Recent studies using cell type-specific knockout mouse models have improved our understanding of the pathophysiological relevance of suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) endoplasmic reticulum-associated (ER-associated) degradation (ERAD); however, its importance in humans remains unclear, as no disease variant has been identified. Here, we report the identification of 3 biallelic missense variants of SEL1L and HRD1 (or SYVN1) in 6 children from 3 independent families presenting with developmental delay, intellectual disability, microcephaly, facial dysmorphisms, hypotonia, and/or ataxia. These SEL1L (p.Gly585Asp, p.Met528Arg) and HRD1 (p.Pro398Leu) variants were hypomorphic and impaired ERAD function at distinct steps of ERAD, including substrate recruitment (SEL1L p.Gly585Asp), SEL1L-HRD1 complex formation (SEL1L p.Met528Arg), and HRD1 activity (HRD1 p.Pro398Leu). Our study not only provides insights into the structure-function relationship of SEL1L-HRD1 ERAD, but also establishes the importance of SEL1L-HRD1 ERAD in humans.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Neurodevelopmental Disorders , Animals , Child , Humans , Mice , Endoplasmic Reticulum-Associated Degradation/genetics , Mice, Knockout , Neurodevelopmental Disorders/genetics , Proteins/metabolism , Ubiquitin-Protein Ligases/genetics
8.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-37943617

ABSTRACT

Suppressor of lin-12-like-HMG-CoA reductase degradation 1 (SEL1L-HRD1) ER-associated degradation (ERAD) plays a critical role in many physiological processes in mice, including immunity, water homeostasis, and energy metabolism; however, its relevance and importance in humans remain unclear, as no disease variant has been identified. Here, we report a biallelic SEL1L variant (p. Cys141Tyr) in 5 patients from a consanguineous Slovakian family. These patients presented with not only ERAD-associated neurodevelopmental disorders with onset in infancy (ENDI) syndromes, but infantile-onset agammaglobulinemia with no mature B cells, resulting in frequent infections and early death. This variant disrupted the formation of a disulfide bond in the luminal fibronectin II domain of SEL1L, largely abolishing the function of the SEL1L-HRD1 ERAD complex in part via proteasomal-mediated self destruction by HRD1. This study reports a disease entity termed ENDI-agammaglobulinemia (ENDI-A) syndrome and establishes an inverse correlation between SEL1L-HRD1 ERAD functionality and disease severity in humans.


Subject(s)
Agammaglobulinemia , Proteins , Humans , Mice , Animals , Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Endoplasmic Reticulum-Associated Degradation , Agammaglobulinemia/genetics , Mortality, Premature
9.
medRxiv ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39211871

ABSTRACT

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without effective medications. This study integrated genetic, proteomic, and metabolomic data to identify causation between increased triglyceride (TG)-rich lipoproteins and AAA risk. Three hypertriglyceridemia mouse models were employed to test the hypothesis that increased plasma TG concentrations accelerate AAA development and rupture. In the angiotensin II-infusion AAA model, most Lpl -deficient mice with severely high plasma TG concentrations died of aortic rupture. Consistently, Apoa5 -deficient mice with moderately increased TG concentrations had accelerated AAA development, while human APOC3 transgenic mice with dramatically increased TG concentrations exhibited aortic dissection and rupture. Increased TG concentrations and palmitate inhibited lysyl oxidase maturation. Administration of antisense oligonucleotide targeting Angptl3 profoundly inhibited AAA progression in human APOC3 transgenic mice and Apoe -deficient mice. These results indicate that hypertriglyceridemia is a key contributor to AAA pathogenesis, highlighting the importance of triglyceride-rich lipoprotein management in treating AAA.

10.
Nat Commun ; 14(1): 3132, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37253728

ABSTRACT

Endoplasmic reticulum (ER)-associated degradation (ERAD) and ER-phagy are two principal degradative mechanisms for ER proteins and aggregates, respectively; however, the crosstalk between these two pathways under physiological settings remains unexplored. Using adipocytes as a model system, here we report that SEL1L-HRD1 protein complex of ERAD degrades misfolded ER proteins and limits ER-phagy and that, only when SEL1L-HRD1 ERAD is impaired, the ER becomes fragmented and cleared by ER-phagy. When both are compromised, ER fragments containing misfolded proteins spatially coalesce into a distinct architecture termed Coalescence of ER Fragments (CERFs), consisted of lipoprotein lipase (LPL, a key lipolytic enzyme and an endogenous SEL1L-HRD1 substrate) and certain ER chaperones. CERFs enlarge and become increasingly insoluble with age. Finally, we reconstitute the CERFs through LPL and BiP phase separation in vitro, a process influenced by both redox environment and C-terminal tryptophan loop of LPL. Hence, our findings demonstrate a sequence of events centered around SEL1L-HRD1 ERAD to dispose of misfolded proteins in the ER of adipocytes, highlighting the profound cellular adaptability to misfolded proteins in the ER in vivo.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum/metabolism , Adipocytes/metabolism
11.
bioRxiv ; 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37333389

ABSTRACT

The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD); however, definitive evidence for the importance of SEL1L in HRD1 ERAD is lacking. Here we report that attenuation of the interaction between SEL1L and HRD1 impairs HRD1 ERAD function and has pathological consequences in mice. Our data show that SEL1L variant p.Ser658Pro ( SEL1L S 658 P ) previously identified in Finnish Hound suffering cerebellar ataxia is a recessive hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Mechanistically, SEL1L S 658 P variant attenuates the SEL1L-HRD1 interaction and causes HRD1 dysfunction by generating electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes revealed that the SEL1L-HRD1 interaction is prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L recruits not only the lectins OS9 and ERLEC1, but the E2 UBE2J1 and retrotranslocon DERLIN, to HRD1. These data underscore the pathophysiological importance and disease relevance of the SEL1L-HRD1 complex, and identify a key step in organizing the HRD1 ERAD complex.

12.
Cell Rep ; 42(10): 113171, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37768825

ABSTRACT

Atherosclerosis, a leading health concern, stems from the dynamic involvement of immune cells in vascular plaques. Despite its significance, the interplay between chromatin remodeling and transcriptional regulation in plaque macrophages is understudied. We discovered the reduced expression of Baf60a, a component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex, in macrophages from advanced plaques. Myeloid-specific Baf60a deletion compromised mitochondrial integrity and heightened adhesion, apoptosis, and plaque development. BAF60a preserves mitochondrial energy homeostasis under pro-atherogenic stimuli by retaining nuclear respiratory factor 1 (NRF1) accessibility at critical genes. Overexpression of BAF60a rescued mitochondrial dysfunction in an NRF1-dependent manner. This study illuminates the BAF60a-NRF1 axis as a mitochondrial function modulator in atherosclerosis, proposing the rejuvenation of perturbed chromatin remodeling machinery as a potential therapeutic target.


Subject(s)
Atherosclerosis , Transcription Factors , Humans , Atherosclerosis/genetics , Chromatin Assembly and Disassembly , Gene Expression Regulation , Homeostasis , Transcription Factors/genetics , Transcription Factors/metabolism
13.
Thromb Haemost ; 122(5): 777-788, 2022 May.
Article in English | MEDLINE | ID: mdl-34428834

ABSTRACT

Krüppel-like factors (KLFs) play essential roles in multiple biological functions, including maintaining vascular homeostasis. KLF11, a causative gene for maturity-onset diabetes of the young type 7, inhibits endothelial activation and protects against stroke. However, the role of KLF11 in venous thrombosis remains to be explored. Utilizing stasis-induced murine deep vein thrombosis (DVT) model and cultured endothelial cells (ECs), we identified an increase of KLF11 expression under prothrombotic conditions both in vivo and in vitro. The expression change of thrombosis-related genes was determined by utilizing gain- and loss-of-function approaches to alter KLF11 expression in ECs. Among these genes, KLF11 significantly downregulated tumor necrosis factor-α (TNF-α)-induced tissue factor (TF) gene transcription. Using reporter gene assay, chromatin immunoprecipitation assay, and co-immunoprecipitation, we revealed that KLF11 could reduce TNF-α-induced binding of early growth response 1 (EGR1) to TF gene promoter in ECs. In addition, we demonstrated that conventional Klf11 knockout mice were more susceptible to developing stasis-induced DVT. These results suggest that under prothrombotic conditions, KLF11 downregulates TF gene transcription via inhibition of EGR1 in ECs. In conclusion, KLF11 protects against venous thrombosis, constituting a potential molecular target for treating thrombosis.


Subject(s)
Apoptosis Regulatory Proteins , Repressor Proteins , Thrombosis , Venous Thrombosis , Animals , Apoptosis Regulatory Proteins/genetics , Endothelial Cells/metabolism , Humans , Mice , Mice, Knockout , Repressor Proteins/genetics , Thromboplastin/genetics , Transcription Factors/genetics , Tumor Necrosis Factor-alpha , Venous Thrombosis/genetics , Venous Thrombosis/prevention & control
14.
Cardiovasc Res ; 118(2): 475-488, 2022 01 29.
Article in English | MEDLINE | ID: mdl-33538785

ABSTRACT

AIMS: Atherosclerosis is the dominant pathologic basis of many cardiovascular diseases. Large genome-wide association studies have identified that single-nucleotide polymorphisms proximal to Krüppel-like factor 14 (KLF14), a member of the zinc finger family of transcription factors, are associated with higher cardiovascular risks. Macrophage dysfunction contributes to atherosclerosis development and has been recognized as a potential therapeutic target for treating many cardiovascular diseases. Herein, we address the biologic function of KLF14 in macrophages and its role during the development of atherosclerosis. METHODS AND RESULTS: KLF14 expression was markedly decreased in cholesterol loaded foam cells, and overexpression of KLF14 significantly increased cholesterol efflux and inhibited the inflammatory response in macrophages. We generated myeloid cell-selective Klf14 knockout (Klf14LysM) mice in the ApoE-/- background for the atherosclerosis study. Klf14LysMApoE-/- and litter-mate control mice (Klf14fl/flApoE-/-) were placed on the Western Diet for 12 weeks to induce atherosclerosis. Macrophage Klf14 deficiency resulted in increased atherosclerosis development without affecting the plasma lipid profiles. Klf14-deficient peritoneal macrophages showed significantly reduced cholesterol efflux resulting in increased lipid accumulation and exacerbated inflammatory response. Mechanistically, KLF14 upregulates the expression of a key cholesterol efflux transporter, ABCA1 (ATP-binding cassette transporter A1), while it suppresses the expression of several critical components of the inflammatory cascade. In macrophages, activation of KLF14 by its activator, perhexiline, a drug clinically used to treat angina, significantly inhibited the inflammatory response and increased cholesterol efflux in a KLF14-dependent manner in macrophages without triggering hepatic lipogenesis. CONCLUSIONS: This study provides insights into the anti-atherosclerotic effects of myeloid KLF14 through promoting cholesterol efflux and suppressing the inflammatory response. Activation of KLF14 may represent a potential new therapeutic approach to prevent or treat atherosclerosis.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Atherosclerosis/metabolism , Kruppel-Like Transcription Factors/deficiency , Macrophages/metabolism , Plaque, Atherosclerotic , ATP Binding Cassette Transporter 1/metabolism , Animals , Aorta/immunology , Aorta/pathology , Aortic Diseases/genetics , Aortic Diseases/immunology , Aortic Diseases/pathology , Atherosclerosis/genetics , Atherosclerosis/immunology , Atherosclerosis/pathology , Cholesterol/metabolism , Disease Models, Animal , Disease Progression , Female , Hep G2 Cells , Humans , Interleukin-1beta/metabolism , Kruppel-Like Transcription Factors/genetics , Macrophages/immunology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Signal Transduction , THP-1 Cells , Transcription Factor RelA/metabolism
15.
J Clin Invest ; 132(21)2022 11 01.
Article in English | MEDLINE | ID: mdl-36066968

ABSTRACT

Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease. BAF60c, a unique subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex, is critical for cardiac and skeletal myogenesis, yet little is known about its function in the vasculature and, specifically, in AAA pathogenesis. Here, we found that BAF60c was downregulated in human and mouse AAA tissues, with primary staining to vascular smooth muscle cells (VSMCs), confirmed by single-cell RNA-sequencing. In vivo studies revealed that VSMC-specific knockout of Baf60c significantly aggravated both angiotensin II- (Ang II-) and elastase-induced AAA formation in mice, with a significant increase in elastin degradation, inflammatory cell infiltration, VSMC phenotypic switch, and apoptosis. In vitro studies showed that BAF60c knockdown in VSMCs resulted in loss of contractile phenotype, increased VSMC inflammation, and apoptosis. Mechanistically, we demonstrated that BAF60c preserved VSMC contractile phenotype by strengthening serum response factor (SRF) association with its coactivator P300 and the SWI/SNF complex and suppressing VSMC inflammation by promoting a repressive chromatin state of NF-κB target genes as well as preventing VSMC apoptosis through transcriptional activation of KLF5-dependent B cell lymphoma 2 (BCL2) expression. Our identification of the essential role of BAF60c in preserving VSMC homeostasis expands its therapeutic potential in preventing and treating AAA.


Subject(s)
Aortic Aneurysm, Abdominal , Muscle, Smooth, Vascular , Animals , Humans , Mice , Angiotensin II/metabolism , Aortic Aneurysm, Abdominal/chemically induced , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/prevention & control , Disease Models, Animal , Epigenesis, Genetic , Homeostasis , Inflammation/pathology , Mice, Inbred C57BL , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism
16.
EBioMedicine ; 74: 103725, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34879325

ABSTRACT

BACKGROUND: Atherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Cholesterol crystals (CCs) induce inflammation in atherosclerosis and are associated with unstable plaques and poor prognosis, but no drug can remove CCs in the clinic currently. METHODS: We generated a phospholipid-based and high-density lipoprotein (HDL)-like nanoparticle, miNano, and determined CC-dissolving capacity, cholesterol efflux property, and anti-inflammation effects of miNano in vitro. Both normal C57BL/6J and Apoe-deficient mice were used to explore the accumulation of miNano in atherosclerotic plaques. The efficacy and safety of miNano administration to treat atherosclerosis were evaluated in the Ldlr-deficient atherosclerosis model. The CC-dissolving capacity of miNano was also detected using human atherosclerotic plaques ex vivo. FINDINGS: We found that miNano bound to and dissolved CCs efficiently in vitro, and miNano accumulated in atherosclerotic plaques, co-localized with CCs and macrophages in vivo. Administration of miNano inhibited atherosclerosis and improved plaque stability by reducing CCs and macrophages in Ldlr-deficient mice with favorable safety profiles. In macrophages, miNano prevented foam cell formation by enhancing cholesterol efflux and suppressed inflammatory responses via inhibiting TLR4-NF-κB pathway. Finally, in an ex vivo experiment, miNano effectively dissolved CCs in human aortic atherosclerotic plaques. INTERPRETATION: Together, our work finds that phospholipid-based and HDL-like nanoparticle, miNano, has the potential to treat atherosclerosis by targeting CCs and stabilizing plaques. FUNDING: This work was supported by the National Institutes of Health HL134569, HL109916, HL136231, and HL137214 to Y.E.C, HL138139 to J.Z., R21NS111191 to A.S., by the American Heart Association 15SDG24470155, Grant Awards (U068144 from Bio-interfaces and G024404 from M-BRISC) at the University of Michigan to Y.G., by the American Heart Association 19PRE34400017 and Rackham Helen Wu award to M.Y., NIH T32 GM07767 to K. H., Barbour Fellowship to D.L.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Lipoproteins, HDL/administration & dosage , Macrophages/metabolism , Phospholipids/administration & dosage , Animals , Anti-Inflammatory Agents/pharmacology , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cell Line , Cholesterol/metabolism , Disease Models, Animal , Female , Gene Knockout Techniques , Humans , Lipoproteins, HDL/pharmacology , Male , Mice , Mice, Inbred C57BL , Nanoparticles , Phospholipids/chemistry , Phospholipids/pharmacology , Primary Cell Culture , THP-1 Cells
17.
J Control Release ; 329: 361-371, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33188828

ABSTRACT

Liver X nuclear receptor (LXR) agonists are promising anti-atherosclerotic agents that increase the expression of cholesterol transporters on atheroma macrophages leading to increased efflux of cholesterol to endogenous high-density lipoprotein (HDL) acceptors. HDL subsequently delivers effluxed cholesterol to the liver by the process of reverse cholesterol transport, resulting in reduction of atherosclerotic plaques. However, LXR agonists administration triggers undesirable liver steatosis and hypertriglyceridemia due to increased fatty acid and sterol synthesis. LXR-induced liver toxicity, poor drug aqueous solubility and low levels of endogenous HDL acceptors in target patient populations limit the clinical translation of LXR agonists. Here, we propose a dual-antiatherogenic strategy for administration of the LXR agonist, T0901317 (T1317), by encapsulating in synthetic HDL (sHDL) nanoparticles. sHDL had been clinically proven to serve as cholesterol acceptors, resulting in plaque reduction in atherosclerosis patients. In addition, the hydrophobic core and endogenous atheroma-targeting ability of sHDL allow for encapsulation of water-insoluble drugs and their subsequent delivery to atheroma. Several compositions of sHDL were tested to optimize both T1317 encapsulation efficiency and ability of T1317-sHDL to efflux cholesterol. Optimized T1317-sHDL exhibited more efficient cholesterol efflux from macrophages and enhanced atheroma-targeting relative to free drug. Most importantly, in an apolipoprotein E deficient (ApoE-/-) atherosclerosis progression murine model, T1317-sHDL showed superior inhibition of atherogenesis and reduced hypertriglyceridemia side effects in comparison to the free drug and blank sHDL. The T1317-sHDL pharmacological efficacy was observed at doses lower than those previously described for LXR agents, which may have additional safety benefits. In addition, the established clinical manufacturing, safety and efficacy of blank sHDL nanoparticles used in this study could facilitate future clinical translation of LXR-loaded sHDLs.


Subject(s)
Atherosclerosis , Pharmaceutical Preparations , Animals , Cholesterol , Humans , Lipoproteins, HDL , Liver X Receptors , Mice
18.
JCI Insight ; 6(5)2021 03 08.
Article in English | MEDLINE | ID: mdl-33507881

ABSTRACT

Abdominal aortic aneurysm (AAA) is a life-threatening degenerative vascular disease. Endothelial cell (EC) dysfunction is implicated in AAA. Our group recently demonstrated that Krüppel-like factor 11 (KLF11) plays an essential role in maintaining vascular homeostasis, at least partially through inhibition of EC inflammatory activation. However, the functions of endothelial KLF11 in AAA remain unknown. Here we found that endothelial KLF11 expression was reduced in the ECs from human aneurysms and was time dependently decreased in the aneurysmal endothelium from both elastase- and Pcsk9/AngII-induced AAA mouse models. KLF11 deficiency in ECs markedly aggravated AAA formation, whereas EC-selective KLF11 overexpression markedly inhibited AAA formation. Mechanistically, KLF11 not only inhibited the EC inflammatory response but also diminished MMP9 expression and activity and reduced NADPH oxidase 2-mediated production of reactive oxygen species in ECs. In addition, KLF11-deficient ECs induced smooth muscle cell dedifferentiation and apoptosis. Overall, we established endothelial KLF11 as a potentially novel factor protecting against AAA and a potential target for intervention in aortic aneurysms.


Subject(s)
Aortic Aneurysm, Abdominal/metabolism , Apoptosis Regulatory Proteins/physiology , Endothelial Cells , Repressor Proteins/physiology , Animals , Apoptosis , Cell Dedifferentiation , Cell Line , Endothelial Cells/metabolism , Endothelial Cells/pathology , Humans , Male , Mice , Mice, Inbred C57BL
19.
Cell Rep ; 36(4): 109420, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34320345

ABSTRACT

Dysregulated glycine metabolism is emerging as a common denominator in cardiometabolic diseases, but its contribution to atherosclerosis remains unclear. In this study, we demonstrate impaired glycine-oxalate metabolism through alanine-glyoxylate aminotransferase (AGXT) in atherosclerosis. As found in patients with atherosclerosis, the glycine/oxalate ratio is decreased in atherosclerotic mice concomitant with suppression of AGXT. Agxt deletion in apolipoprotein E-deficient (Apoe-/-) mice decreases the glycine/oxalate ratio and increases atherosclerosis with induction of hepatic pro-atherogenic pathways, predominantly cytokine/chemokine signaling and dysregulated redox homeostasis. Consistently, circulating and aortic C-C motif chemokine ligand 5 (CCL5) and superoxide in lesional macrophages are increased. Similar findings are observed following dietary oxalate overload in Apoe-/- mice. In macrophages, oxalate induces mitochondrial dysfunction and superoxide accumulation, leading to increased CCL5. Conversely, AGXT overexpression in Apoe-/- mice increases the glycine/oxalate ratio and decreases aortic superoxide, CCL5, and atherosclerosis. Our findings uncover dysregulated oxalate metabolism via suppressed AGXT as a driver and therapeutic target in atherosclerosis.


Subject(s)
Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Molecular Targeted Therapy , Oxalates/metabolism , Animals , Aorta/metabolism , Apolipoproteins E/deficiency , Apolipoproteins E/metabolism , Bile Acids and Salts/metabolism , Cell Line , Chemokine CCL5/metabolism , Cholesterol/metabolism , Dependovirus/metabolism , Female , Glycine/metabolism , Homeostasis , Humans , Inflammation/pathology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Superoxides/metabolism , Transaminases/deficiency , Transaminases/metabolism
20.
Sci Transl Med ; 12(572)2020 12 02.
Article in English | MEDLINE | ID: mdl-33268508

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) including nonalcoholic steatohepatitis (NASH) has reached epidemic proportions with no pharmacological therapy approved. Lower circulating glycine is consistently reported in patients with NAFLD, but the causes for reduced glycine, its role as a causative factor, and its therapeutic potential remain unclear. We performed transcriptomics in livers from humans and mice with NAFLD and found suppression of glycine biosynthetic genes, primarily alanine-glyoxylate aminotransferase 1 (AGXT1). Genetic (Agxt1 -/- mice) and dietary approaches to limit glycine availability resulted in exacerbated diet-induced hyperlipidemia and steatohepatitis, with suppressed mitochondrial/peroxisomal fatty acid ß-oxidation (FAO) and enhanced inflammation as the underlying pathways. We explored glycine-based compounds with dual lipid/glucose-lowering properties as potential therapies for NAFLD and identified a tripeptide (Gly-Gly-L-Leu, DT-109) that improved body composition and lowered circulating glucose, lipids, transaminases, proinflammatory cytokines, and steatohepatitis in mice with established NASH induced by a high-fat, cholesterol, and fructose diet. We applied metagenomics, transcriptomics, and metabolomics to explore the underlying mechanisms. The bacterial genus Clostridium sensu stricto was markedly increased in mice with NASH and decreased after DT-109 treatment. DT-109 induced hepatic FAO pathways, lowered lipotoxicity, and stimulated de novo glutathione synthesis. In turn, inflammatory infiltration and hepatic fibrosis were attenuated via suppression of NF-κB target genes and TGFß/SMAD signaling. Unlike its effects on the gut microbiome, DT-109 stimulated FAO and glutathione synthesis independent of NASH. In conclusion, impaired glycine metabolism may play a causative role in NAFLD. Glycine-based treatment attenuates experimental NAFLD by stimulating hepatic FAO and glutathione synthesis, thus warranting clinical evaluation.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Fatty Acids , Glutathione , Glycine , Humans , Liver , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL