Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.102
Filter
Add more filters

Publication year range
1.
Nature ; 630(8016): 484-492, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811729

ABSTRACT

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Subject(s)
Bacteria , Bacteriophages , CRISPR-Associated Protein 9 , CRISPR-Cas Systems , Bacteria/virology , Bacteria/genetics , Bacteria/immunology , Bacteriophages/genetics , Bacteriophages/immunology , Chryseobacterium/genetics , Chryseobacterium/immunology , Chryseobacterium/virology , CRISPR-Associated Protein 9/chemistry , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/genetics , CRISPR-Cas Systems/immunology , DNA Cleavage , Genetic Loci/genetics , Models, Molecular , Protein Domains
2.
Nature ; 609(7929): 964-968, 2022 09.
Article in English | MEDLINE | ID: mdl-36171375

ABSTRACT

Mandibular teeth and dentitions are features of jawed vertebrates that were first acquired by the Palaeozoic ancestors1-3 of living chondrichthyans and osteichthyans. The fossil record currently points to the latter part of the Silurian period4-7 (around 425 million years ago) as a minimum date for the appearance of gnathostome teeth and to the evolution of growth and replacement mechanisms of mandibular dentitions in the subsequent Devonian period2,8-10. Here we provide, to our knowledge, the earliest direct evidence for jawed vertebrates by describing Qianodus duplicis, a new genus and species of an early Silurian gnathostome based on isolated tooth whorls from Guizhou province, China. The whorls possess non-shedding teeth arranged in a pair of rows that demonstrate a number of features found in modern gnathostome groups. These include lingual addition of teeth in offset rows and maintenance of this patterning throughout whorl development. Our data extend the record of toothed gnathostomes by 14 million years from the late Silurian into the early Silurian (around 439 million years ago) and are important for documenting the initial diversification of vertebrates. Our analyses add to mounting fossil evidence that supports an earlier emergence of jawed vertebrates as part of the Great Ordovician Biodiversification Event (approximately 485-445 million years ago).


Subject(s)
Fossils , Tooth , Vertebrates , Animals , China , Fishes/anatomy & histology , History, Ancient , Phylogeny , Tooth/anatomy & histology , Vertebrates/anatomy & histology , Vertebrates/classification
3.
Nature ; 609(7929): 969-974, 2022 09.
Article in English | MEDLINE | ID: mdl-36171377

ABSTRACT

Modern representatives of chondrichthyans (cartilaginous fishes) and osteichthyans (bony fishes and tetrapods) have contrasting skeletal anatomies and developmental trajectories1-4 that underscore the distant evolutionary split5-7 of the two clades. Recent work on upper Silurian and Devonian jawed vertebrates7-10 has revealed similar skeletal conditions that blur the conventional distinctions between osteichthyans, chondrichthyans and their jawed gnathostome ancestors. Here we describe the remains (dermal plates, scales and fin spines) of a chondrichthyan, Fanjingshania renovata gen. et sp. nov., from the lower Silurian of China that pre-date the earliest articulated fossils of jawed vertebrates10-12. Fanjingshania possesses dermal shoulder girdle plates and a complement of fin spines that have a striking anatomical similarity to those recorded in a subset of stem chondrichthyans5,7,13 (climatiid 'acanthodians'14). Uniquely among chondrichthyans, however, it demonstrates osteichthyan-like resorptive shedding of scale odontodes (dermal teeth) and an absence of odontogenic tissues in its spines. Our results identify independent acquisition of these conditions in the chondrichthyan stem group, adding Fanjingshania to an increasing number of taxa7,15 nested within conventionally defined acanthodians16. The discovery of Fanjingshania provides the strongest support yet for a proposed7 early Silurian radiation of jawed vertebrates before their widespread appearance5 in the fossil record in the Lower Devonian series.


Subject(s)
Fishes , Fossils , Phylogeny , Animals , China , Fishes/anatomy & histology , Fishes/classification , Jaw/anatomy & histology , Tooth
4.
Nature ; 609(7929): 954-958, 2022 09.
Article in English | MEDLINE | ID: mdl-36171378

ABSTRACT

Molecular studies suggest that the origin of jawed vertebrates was no later than the Late Ordovician period (around 450 million years ago (Ma))1,2. Together with disarticulated micro-remains of putative chondrichthyans from the Ordovician and early Silurian period3-8, these analyses suggest an evolutionary proliferation of jawed vertebrates before, and immediately after, the end-Ordovician mass extinction. However, until now, the earliest complete fossils of jawed fishes for which a detailed reconstruction of their morphology was possible came from late Silurian assemblages (about 425 Ma)9-13. The dearth of articulated, whole-body fossils from before the late Silurian has long rendered the earliest history of jawed vertebrates obscure. Here we report a newly discovered Konservat-Lagerstätte, which is marked by the presence of diverse, well-preserved jawed fishes with complete bodies, from the early Silurian (Telychian age, around 436 Ma) of Chongqing, South China. The dominant species, a 'placoderm' or jawed stem gnathostome, which we name Xiushanosteus mirabilis gen. et sp. nov., combines characters from major placoderm subgroups14-17 and foreshadows the transformation of the skull roof pattern from the placoderm to the osteichthyan condition10. The chondrichthyan Shenacanthus vermiformis gen. et sp. nov. exhibits extensive thoracic armour plates that were previously unknown in this lineage, and include a large median dorsal plate as in placoderms14-16, combined with a conventional chondrichthyan bauplan18,19. Together, these species reveal a previously unseen diversification of jawed vertebrates in the early Silurian, and provide detailed insights into the whole-body morphology of the jawed vertebrates of this period.


Subject(s)
Fossils , Jaw , Vertebrates , Animals , China , Fishes/anatomy & histology , Fishes/classification , Jaw/anatomy & histology , Phylogeny , Skull/anatomy & histology , Vertebrates/anatomy & histology , Vertebrates/classification
5.
Development ; 150(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38031990

ABSTRACT

Balanced control of stem cell proliferation and differentiation underlines tissue homeostasis. Disruption of tissue homeostasis often results in many diseases. However, how endogenous factors influence the proliferation and differentiation of intestinal stem cells (ISCs) under physiological and pathological conditions remains poorly understood. Here, we find that the evolutionarily conserved endoplasmic reticulum membrane protein complex (EMC) negatively regulates ISC proliferation and intestinal homeostasis. Compromising EMC function in progenitors leads to excessive ISC proliferation and intestinal homeostasis disruption. Mechanistically, the EMC associates with and stabilizes Hippo (Hpo) protein, the key component of the Hpo signaling pathway. In the absence of EMC, Yorkie (Yki) is activated to promote ISC proliferation due to Hpo destruction. The EMC-Hpo-Yki axis also functions in enterocytes to maintain intestinal homeostasis. Importantly, the levels of the EMC are dramatically diminished in tunicamycin-treated animals, leading to Hpo destruction, thereby resulting in intestinal homeostasis disruption due to Yki activation. Thus, our study uncovers the molecular mechanism underlying the action of the EMC in intestinal homeostasis maintenance under physiological and pathological conditions and provides new insight into the pathogenesis of tunicamycin-induced tumorigenesis.


Subject(s)
Drosophila Proteins , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Signal Transduction/physiology , Drosophila Proteins/metabolism , Tunicamycin/metabolism , Trans-Activators/metabolism , Cell Proliferation , Nuclear Proteins/metabolism , Homeostasis , Drosophila melanogaster/metabolism
6.
Nucleic Acids Res ; 52(D1): D963-D971, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953384

ABSTRACT

Polygenic score (PGS) is an important tool for the genetic prediction of complex traits. However, there are currently no resources providing comprehensive PGSs computed from published summary statistics, and it is difficult to implement and run different PGS methods due to the complexity of their pipelines and parameter settings. To address these issues, we introduce a new resource called PGS-Depot containing the most comprehensive set of publicly available disease-related GWAS summary statistics. PGS-Depot includes 5585 high quality summary statistics (1933 quantitative and 3652 binary trait statistics) curated from 1564 traits in European and East Asian populations. A standardized best-practice pipeline is used to implement 11 summary statistics-based PGS methods, each with different model assumptions and estimation procedures. The prediction performance of each method can be compared for both in- and cross-ancestry populations, and users can also submit their own summary statistics to obtain custom PGS with the available methods. Other features include searching for PGSs by trait name, publication, cohort information, population, or the MeSH ontology tree and searching for trait descriptions with the experimental factor ontology (EFO). All scores, SNP effect sizes and summary statistics can be downloaded via FTP. PGS-Depot is freely available at http://www.pgsdepot.net.


Subject(s)
Biostatistics , Multifactorial Inheritance , Genome-Wide Association Study , Multifactorial Inheritance/genetics , Phenotype , Polymorphism, Single Nucleotide , Biostatistics/methods
7.
Traffic ; 24(12): 552-563, 2023 12.
Article in English | MEDLINE | ID: mdl-37642208

ABSTRACT

Epithelial polarity is critical for proper functions of epithelial tissues, tumorigenesis, and metastasis. The evolutionarily conserved transmembrane protein Crumbs (Crb) is a key regulator of epithelial polarity. Both Crb protein and its transcripts are apically localized in epithelial cells. However, it remains not fully understood how they are targeted to the apical domain. Here, using Drosophila ovarian follicular epithelia as a model, we show that epithelial polarity is lost and Crb protein is absent in the apical domain in follicular cells (FCs) in the absence of Diamond (Dind). Interestingly, Dind is found to associate with different components of the dynactin-dynein complex through co-IP-MS analysis. Dind stabilizes dynactin and depletion of dynactin results in almost identical defects as those observed in dind-defective FCs. Finally, both Dind and dynactin are also required for the apical localization of crb transcripts in FCs. Thus our data illustrate that Dind functions through dynactin/dynein-mediated transport of both Crb protein and its transcripts to the apical domain to control epithelial apico-basal (A/B) polarity.


Subject(s)
Drosophila Proteins , Animals , Cell Polarity , Drosophila/metabolism , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Dynactin Complex/metabolism , Dyneins/metabolism , Epithelial Cells/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
8.
Plant J ; 119(1): 460-477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678554

ABSTRACT

Maize plastid terminal oxidase1 (ZmPTOX1) plays a pivotal role in seed development by upholding redox balance within seed plastids. This study focuses on characterizing the white kernel mutant 3735 (wk3735) mutant, which yields pale-yellow seeds characterized by heightened protein but reduced carotenoid levels, along with delayed germination compared to wild-type (WT) seeds. We successfully cloned and identified the target gene ZmPTOX1, responsible for encoding maize PTOX-a versatile plastoquinol oxidase and redox sensor located in plastid membranes. While PTOX's established role involves regulating redox states and participating in carotenoid metabolism in Arabidopsis leaves and tomato fruits, our investigation marks the first exploration of its function in storage organs lacking a photosynthetic system. Through our research, we validated the existence of plastid-localized ZmPTOX1, existing as a homomultimer, and established its interaction with ferredoxin-NADP+ oxidoreductase 1 (ZmFNR1), a crucial component of the electron transport chain (ETC). This interaction contributes to the maintenance of redox equilibrium within plastids. Our findings indicate a propensity for excessive accumulation of reactive oxygen species (ROS) in wk3735 seeds. Beyond its known role in carotenoids' antioxidant properties, ZmPTOX1 also impacts ROS homeostasis owing to its oxidizing function. Altogether, our results underscore the critical involvement of ZmPTOX1 in governing seed development and germination by preserving redox balance within the seed plastids.


Subject(s)
Germination , Homeostasis , Oxidation-Reduction , Plant Proteins , Plastids , Seeds , Zea mays , Seeds/growth & development , Seeds/genetics , Seeds/metabolism , Germination/genetics , Plastids/metabolism , Plastids/genetics , Plastids/enzymology , Zea mays/genetics , Zea mays/growth & development , Zea mays/metabolism , Zea mays/enzymology , Plant Proteins/metabolism , Plant Proteins/genetics , Oxidoreductases/metabolism , Oxidoreductases/genetics , Gene Expression Regulation, Plant , Carotenoids/metabolism
9.
FASEB J ; 38(13): e23762, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38923643

ABSTRACT

Exosomes play significant roles in the communications between tumor cells and tumor microenvironment. However, the specific mechanisms by which exosomes modulate tumor development under hypoxia in pancreatic neuroendocrine tumors (pNETs) are not well understood. This study aims to investigate these mechanisms and made several important discoveries. We found that hypoxic exosomes derived from pNETs cells can activate tumor-associated macrophages (TAM) to the M2 phenotype, in turn, the M2-polarized TAM, facilitate the migration and invasion of pNETs cells. Further investigation revealed that CEACAM5, a protein highly expressed in hypoxic pNETs cells, is enriched in hypoxic pNETs cell-derived exosomes. Hypoxic exosomal CEACAM5 was observed to induce M2 polarization of TAM through activation of the MAPK signaling pathway. Coculturing pNETs cells with TAM or treated with hypoxic exosomes enhanced the metastatic capacity of pNETs cells. In conclusion, these findings suggest that pNETs cells generate CEACAM5-rich exosomes in a hypoxic microenvironment, which in turn polarize TAM promote malignant invasion of pNETs cells. Targeting exosomal CEACAM5 could potentially serve as a diagnostic and therapeutic strategy for pNETs.


Subject(s)
Antigens, CD , Exosomes , GPI-Linked Proteins , Matrix Metalloproteinase 9 , Neuroendocrine Tumors , Pancreatic Neoplasms , Tumor Microenvironment , Tumor-Associated Macrophages , Exosomes/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Humans , Animals , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Matrix Metalloproteinase 9/metabolism , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology , Mice , Cell Line, Tumor , Antigens, CD/metabolism , GPI-Linked Proteins/metabolism , Cell Adhesion Molecules/metabolism , Cell Movement , Neoplasm Metastasis , Mice, Nude , Hypoxia/metabolism , Cell Hypoxia/physiology , Carcinoembryonic Antigen
10.
Nucleic Acids Res ; 51(D1): D1122-D1128, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36330927

ABSTRACT

Deciphering the fine-scale molecular mechanisms that shape the genetic effects at disease-associated loci from genome-wide association studies (GWAS) remains challenging. The key avenue is to identify the essential molecular phenotypes that mediate the causal variant and disease under particular biological conditions. Therefore, integrating GWAS signals with context-specific quantitative trait loci (QTLs) (such as different tissue/cell types, disease states, and perturbations) from extensive molecular phenotypes would present important strategies for full understanding of disease genetics. Via persistent curation and systematic data processing of large-scale human molecular trait QTLs (xQTLs), we updated our previous QTLbase database (now QTLbase2, http://mulinlab.org/qtlbase) to comprehensively analyze and visualize context-specific QTLs across 22 molecular phenotypes and over 95 tissue/cell types. Overall, the resource features the following major updates and novel functions: (i) 960 more genome-wide QTL summary statistics from 146 independent studies; (ii) new data for 10 previously uncompiled QTL types; (iii) variant query scope expanded to fit 195 QTL datasets based on whole-genome sequencing; (iv) supports filtering and comparison of QTLs for different biological conditions, such as stimulation types and disease states; (v) a new linkage disequilibrium viewer to facilitate variant prioritization across tissue/cell types and QTL types.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Humans , Chromosome Mapping , Linkage Disequilibrium , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics , Catalogs as Topic
11.
Nucleic Acids Res ; 51(15): 7832-7850, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37403778

ABSTRACT

Maize (Zea mays) kernel size is an important factor determining grain yield; although numerous genes regulate kernel development, the roles of RNA polymerases in this process are largely unclear. Here, we characterized the defective kernel 701 (dek701) mutant that displays delayed endosperm development but normal vegetative growth and flowering transition, compared to its wild type. We cloned Dek701, which encoded ZmRPABC5b, a common subunit to RNA polymerases I, II and III. Loss-of-function mutation of Dek701 impaired the function of all three RNA polymerases and altered the transcription of genes related to RNA biosynthesis, phytohormone response and starch accumulation. Consistent with this observation, loss-of-function mutation of Dek701 affected cell proliferation and phytohormone homeostasis in maize endosperm. Dek701 was transcriptionally regulated in the endosperm by the transcription factor Opaque2 through binding to the GCN4 motif within the Dek701 promoter, which was subjected to strong artificial selection during maize domestication. Further investigation revealed that DEK701 interacts with the other common RNA polymerase subunit ZmRPABC2. The results of this study provide substantial insight into the Opaque2-ZmRPABC5b transcriptional regulatory network as a central hub for regulating endosperm development in maize.


Subject(s)
DNA-Directed RNA Polymerases , Endosperm , Zea mays , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Endosperm/genetics , Endosperm/growth & development , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Zea mays/genetics , Zea mays/metabolism
12.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: mdl-35115400

ABSTRACT

Stem cells constantly divide and differentiate to maintain adult tissue homeostasis, and uncontrolled stem cell proliferation leads to severe diseases such as cancer. How stem cell proliferation is precisely controlled remains poorly understood. Here, from an RNA interference (RNAi) screen in adult Drosophila intestinal stem cells (ISCs), we identify a factor, Yun, required for proliferation of normal and transformed ISCs. Yun is mainly expressed in progenitors; our genetic and biochemical evidence suggest that it acts as a scaffold to stabilize the Prohibitin (PHB) complex previously implicated in various cellular and developmental processes and diseases. We demonstrate that the Yun/PHB complex is regulated by and acts downstream of EGFR/MAPK signaling. Importantly, the Yun/PHB complex interacts with and positively affects the levels of the transcription factor E2F1 to regulate ISC proliferation. In addition, we find that the role of the PHB complex in cell proliferation is evolutionarily conserved. Thus, our study uncovers a Yun/PHB-E2F1 regulatory axis in stem cell proliferation.


Subject(s)
Adult Stem Cells/metabolism , Cell Proliferation/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , E2F1 Transcription Factor/metabolism , Intestines/metabolism , Prohibitins/metabolism , Animals , Animals, Genetically Modified , Cell Differentiation/physiology , Homeostasis/physiology , RNA Interference/physiology , Signal Transduction/physiology
13.
Am J Physiol Cell Physiol ; 326(6): C1590-C1603, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38586878

ABSTRACT

Muscular fatty infiltration is a common issue after rotator cuff tears (RCTs), which impair shoulder function. Females suffer a higher prevalence and a more severe degree of muscular fatty infiltration after RCT when compared with males, with the underlying mechanisms remaining unclear. Fibro-adipogenic progenitors (FAPs) are the primary source of muscular fatty infiltration following RCT. Our findings disclose that gender-specific disparities in muscular fatty infiltration are linked to mTOR/ULK1-mediated autophagy of FAPs. Decreased autophagic activity contributes to adipogenic differentiation in female FAPs after RCT. Furthermore, metformin could enhance mTOR/ULK1-mediated autophagic processes of FAPs, thereby alleviating fatty infiltration and improving shoulder functionality after RCT. Together, our study reveals that gender differences in muscular fatty infiltration arise from distinct autophagic activities. Metformin could be a promising noninvasive intervention to ameliorate muscular fatty infiltration of RCT.NEW & NOTEWORTHY The current study demonstrated that gender-specific disparities in muscular fatty infiltration are attributed to mTOR/ULK1-mediated autophagy of FAPs. Decreased autophagic activity contributes to adipogenic differentiation in female FAPs after RCT. Moreover, metformin could enhance mTOR/ULK1-mediated autophagic processes of FAPs, thereby alleviating fatty infiltration and improving shoulder functionality after RCT. Therefore, metformin could be a promising noninvasive intervention to ameliorate muscular fatty infiltration of RCT.


Subject(s)
Adipogenesis , Autophagy-Related Protein-1 Homolog , Autophagy , Metformin , Rotator Cuff Injuries , TOR Serine-Threonine Kinases , Animals , Autophagy/drug effects , Adipogenesis/drug effects , TOR Serine-Threonine Kinases/metabolism , Metformin/pharmacology , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Rotator Cuff Injuries/metabolism , Rotator Cuff Injuries/pathology , Rotator Cuff Injuries/drug therapy , Female , Male , Mice , Mice, Inbred C57BL , Stem Cells/drug effects , Stem Cells/metabolism , Cell Differentiation/drug effects , Signal Transduction/drug effects
14.
Anal Chem ; 96(26): 10800-10808, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38904228

ABSTRACT

Tumor-derived extracellular vesicles (TEVs) are rich in cellular information and hold great promise as a biomarker for noninvasive cancer diagnosis. However, accurate measurement of TEVs presents challenges due to their low abundance and potential interference from a high number of EVs derived from normal cells. Herein, an aptamer-proximity-ligation-activated rolling circle amplification (RCA) method for EV membrane recognition, coupled with single particle inductively coupled plasma mass spectrometry (sp-ICP-MS) for the quantification of TEVs, is developed. When DNA-labeled ultrasmall gold nanoparticle (AuNP) probes bind to the long chains formed by RCA, they aggregate to form large particles. Notably, small AuNPs scarcely produce pulse signals in sp-ICP-MS, thereby detecting TEVs in a wash-free manner. By leveraging the strong binding affinity of aptamers, dual aptamers for EpCAM and PD-L1 recognition, and the sp-ICP-MS technique, this method offers remarkable sensitivity and selectivity in tracing TEVs. Under optimized conditions, the present method shows a favorable linear relationship between the pulse signal frequency of sp-ICP-MS and TEV concentration within the range of 105-107 particles/mL, along with a detection limit of 1.1 × 104 particles/mL. The pulse signals from sp-ICP-MS combined with machine learning algorithms are used to discriminate cancer patients from healthy donors with 100% accuracy. Due to its simple and fast operation and excellent sensitivity and accuracy, this approach holds significant potential for diverse applications in life sciences and personalized medicine.


Subject(s)
Aptamers, Nucleotide , Extracellular Vesicles , Gold , Mass Spectrometry , Metal Nanoparticles , Nucleic Acid Amplification Techniques , Humans , Aptamers, Nucleotide/chemistry , Extracellular Vesicles/chemistry , Nucleic Acid Amplification Techniques/methods , Metal Nanoparticles/chemistry , Gold/chemistry , Mass Spectrometry/methods , Neoplasms , Epithelial Cell Adhesion Molecule/metabolism , Limit of Detection
15.
Anal Chem ; 96(1): 427-436, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38102083

ABSTRACT

The worldwide antimicrobial resistance (AMR) dilemma urgently requires rapid and accurate pathogen phenotype discrimination and antibiotic resistance identification. The conventional protocols are either time-consuming or depend on expensive instrumentations. Herein, we demonstrate a metabolic-labeling-assisted chemical nose strategy for phenotyping classification and antibiotic resistance identification of pathogens based on the "antibiotic-responsive spectrum" of different pathogens. d-Amino acids with click handles were metabolically incorporated into the cell wall of pathogens for further clicking with dibenzocyclooctyne-functionalized upconversion nanoparticles (DBCO-UCNPs) in the presence/absence of six types of antibiotics, which generates seven-channel sensing responses. With the assistance of machine learning algorithms, eight types of pathogens, including three types of antibiotic-resistant bacteria, can be well classified and discriminated in terms of microbial taxonomies, Gram phenotypes, and antibiotic resistance. The present metabolic-labeling-assisted strategy exhibits good anti-interference capability and improved discrimination ability rooted in the unique sensing mechanism. Sensitive identification of pathogens with 100% accuracy from artificial urinary tract infection samples at a concentration as low as 105 CFU/mL was achieved. Pathogens outside of the training set can also be discriminated well. This clearly demonstrated the potential of the present strategy in the identification of unknown pathogens in clinical samples.


Subject(s)
Anti-Bacterial Agents , Bacteria , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Algorithms , Microbial Sensitivity Tests
16.
Anal Chem ; 96(24): 10046-10055, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38845359

ABSTRACT

Extracellular vesicle (EV) molecular phenotyping offers enormous opportunities for cancer diagnostics. However, the majority of the associated studies adopted biomarker-based unimodal analysis to achieve cancer diagnosis, which has high false positives and low precision. Herein, we report a multimodal platform for the high-precision diagnosis of bladder cancer (BCa) through a multispectral 3D DNA machine in combination with a multimodal machine learning (ML) algorithm. The DNA machine was constructed using magnetic microparticles (MNPs) functionalized with aptamers that specifically identify the target of interest, i.e., five protein markers on bladder-cancer-derived urinary EVs (uEVs). The aptamers were hybridized with DNA-stabilized silver nanoclusters (DNA/AgNCs) and a G-quadruplex/hemin complex to form a sensing module. Such a DNA machine ensured multispectral detection of protein markers by fluorescence (FL), inductively coupled plasma mass spectrometry (ICP-MS), and UV-vis absorption (Abs). The obtained data sets then underwent uni- or multimodal ML for BCa diagnosis to compare the analytical performance. In this study, urine samples were obtained from our prospective cohort (n = 45). Our analytical results showed that the 3D DNA machine provided a detection limit of 9.2 × 103 particles mL-1 with a linear range of 4 × 104 to 5 × 107 particles mL-1 for uEVs. Moreover, the multimodal data fusion model exhibited an accuracy of 95.0%, a precision of 93.1%, and a recall rate of 93.2% on average, while those of the three types of unimodal models were no more than 91%. The elevated diagnosis precision by using the present fusion platform offers a perspective approach to diminishing the rate of misdiagnosis and overtreatment of BCa.


Subject(s)
Machine Learning , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/diagnosis , Urinary Bladder Neoplasms/urine , Humans , Biomarkers, Tumor/urine , Biomarkers, Tumor/analysis , DNA/chemistry , Silver/chemistry , Aptamers, Nucleotide/chemistry , Extracellular Vesicles/chemistry , Metal Nanoparticles/chemistry
17.
Anal Chem ; 96(18): 7155-7162, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652710

ABSTRACT

Microplastics (MPs) can act as carriers of environmental arsenic species into the stomach with food and release arsenic species during digestion, which threatens human health. Herein, an integrated dynamic stomach model (DSM)-capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICPMS) is developed for online monitoring of the release and transformation behaviors of arsenic species loaded on MPs (As-MPs) in the simulated human stomach. The 3D-printed DSM with a soft stomach chamber enables the behaviors of gastric peristalsis, gastric and salivary fluid addition, pH adjustment, and gastric emptying (GE) to be controlled by a self-written program after oral ingestion of food with As-MPs. The gastric extract during digestion is introduced into the spiral channel to remove the large particulate impurity and online filtered to obtain the clarified arsenic-containing solution for subsequent speciation analysis of arsenic by CE-ICPMS. The digestion conditions and pretreatment processes of DSM are tracked and validated, and the release rates of As-MPs digested by DSM are compared with those digested by the static stomach model and DSM without GE. The release rate of inorganic arsenic on MPs is higher than that of organic arsenic throughout the gastric digestion process, and 8% of As(V) is reduced to As(III). The detection limits for As(III), DMA, MMA, and As(V) are 0.5-0.9 µg L-1 using DSM-CE-ICPMS, along with precisions of ≤8%. This present method provides an integrated and convenient tool for evaluating the release and transformation of As-MPs during human gastric digestion and provides a reference for exploring the interactions between MPs and metals/metalloids in the human body.


Subject(s)
Arsenic , Electrophoresis, Capillary , Mass Spectrometry , Microplastics , Stomach , Arsenic/analysis , Humans , Mass Spectrometry/methods , Electrophoresis, Capillary/methods , Microplastics/analysis , Stomach/chemistry , Digestion , Models, Biological
18.
Anal Chem ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38950152

ABSTRACT

Timely diagnosis, monitoring, and management of chronic wounds play crucial roles in improving patients' quality of life, but clinical evaluation of chronic wounds is still ambiguous and relies heavily on the experience of clinician, resulting in increased social and financial burden and delay of optimal treatment. During the different stages of the healing process, specific and dynamic changes of pH values in the wound exudate can be used as biomarkers to reflect the wound status. Herein, a pH-responsive agent with well-behaved photoacoustic (PA) properties, nitrazine yellow (NY), was incorporated in poly(vinyl alcohol)/sucrose (PVA/Suc) hydrogel to construct a wearable pH-sensing patch (PVA/Suc/NY hydrogel) for monitoring of pH values during chronic wound healing. According to Rosencwaig-Gersho theory and the combination of 3D printing technology, the PA chamber volume and chopping frequency were systematically optimized to improve the sensitivity of the PA analytical system. The prepared PVA/Suc/NY hydrogel patch had excellent mechanical properties and flexibility and could maintain conformal contact with skin. Moreover, combined with the miniaturized PA analytical device, it had the potential to detect pH values (5.0-9.0) free from the color interference of blood and therapeutic drugs, which provides a valuable strategy for wound pH value monitoring by PA quantitation. This strategy of combining the wearable hydrogel patch with portable PA analysis offers broad new prospects for the treatment and management of chronic wounds due to its features of simple operation, time savings, and anti-interference.

19.
Anal Chem ; 96(4): 1742-1749, 2024 01 30.
Article in English | MEDLINE | ID: mdl-38221770

ABSTRACT

Speciation analysis of arsenic in urine is essential for the studies of arsenic metabolism and biological effects, but the unstable arsenic species represented by MMAIII and DMAIII pose a huge challenge to analytical accuracy. Herein, a novel urine self-sampling (USS) kit combined with an automated preparation-sampler (APS) device is rationally designed and used for convenient analysis of arsenic metabolites by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS). The subject can collect urine into a sampling vial at home and use a homemade syringe to pump argon to displace oxygen in the vial, thereby inhibiting the oxidation of MMAIII and DMAIII. After USS and transportation, the sampling vial is loaded directly onto the APS device, where the urine sample can be automatically mixed with diluent, filtered, and loaded into HPLC-ICPMS for arsenic speciation analysis under anaerobic conditions. For a single sample, the sampling time and the analysis time are <8 and <18 min, respectively. The recoveries of MMAIII and DMAIII in urine over 24 h at 4 °C are 86 and 67%, surpassing the conventional sampling method by 28 and 67%, respectively. When the APS is coupled to HPLC-ICPMS, the detection limits of AsC, iAsIII, MMAIII, DMAV, MMAV, DMAIII, and iAsV are 0.03-0.10 µg L-1 with precisions of <10%. The present method provides a convenient and reliable tool for the storage and analysis of unstable arsenic species in urine and lays the foundation for studying the metabolic and biological effects of methylated trivalent arsenicals.


Subject(s)
Arsenic , Arsenicals , Organometallic Compounds , Arsenic/analysis , Arsenicals/analysis , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods
20.
Anal Chem ; 96(9): 3733-3738, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38373274

ABSTRACT

Accurate detection and screening of Pb in biological samples is helpful to assess the risk associated with lead pollution to human health. However, conventional atomic spectroscopic instruments are bulky and cumbersome, requiring additional sample pretreatment equipment, and difficult to perform field analysis with. Herein, a portable point discharge (PD) microplasma-optical emission spectrometric (OES) device with online digestion function is designed for field and sensitive determination of lead in biological samples. With rice as a model, online digestion of a batch of six 50 mg samples can be achieved in the HNO3 and H2O2 system within 25 min by a temperature control and timing module. Compared to the conventional microwave digestion, the digestion efficiency of this device reaches 97%. Pb in digestion solution is converted into volatile species by hydride generation (HG) and directly introduced into PD-OES for excitation and detection by a self-designed rotatable and telescopic cutoff gas sampling column. Six samples can be successively detected in 2 min, and argon consumption of the whole process is only <800 mL. Under the optimized conditions, the detection limit of Pb is 0.018 mg kg-1 (0.9 µg L-1) and precision is 3.6%. The accuracy and practicability of the present device are verified by measuring several certified reference materials and real biological samples. By virtue of small size (23.5 × 17 × 8.5 cm3), lightweight (2.5 kg), and low energy consumption (24.3 W), the present device provides a convenient tool for field analysis of toxic elements in biological samples.


Subject(s)
Lead , Optical Devices , Humans , Hydrogen Peroxide , Spectrum Analysis/methods , Digestion
SELECTION OF CITATIONS
SEARCH DETAIL