Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 329
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(10): 2595-2604.e13, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33891875

ABSTRACT

The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases associated with this variant have been detected in the United States (US) since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.


Subject(s)
COVID-19 Testing , COVID-19 , Models, Biological , SARS-CoV-2 , COVID-19/genetics , COVID-19/mortality , COVID-19/transmission , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , United States/epidemiology
2.
EMBO Rep ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956225

ABSTRACT

Signals emanating from the T-cell receptor (TCR), co-stimulatory receptors, and cytokine receptors each influence CD8 T-cell fate. Understanding how these signals respond to homeostatic and microenvironmental cues can reveal new ways to therapeutically direct T-cell function. Through forward genetic screening in mice, we discover that loss-of-function mutations in LDL receptor-related protein 10 (Lrp10) cause naive and central memory CD8 T cells to accumulate in peripheral lymphoid organs. Lrp10 encodes a conserved cell surface protein of unknown immunological function. T-cell activation induces Lrp10 expression, which post-translationally suppresses IL7 receptor (IL7R) levels. Accordingly, Lrp10 deletion enhances T-cell homeostatic expansion through IL7R signaling. Lrp10-deficient mice are also intrinsically resistant to syngeneic tumors. This phenotype depends on dense tumor infiltration of CD8 T cells, which display increased memory cell characteristics, reduced terminal exhaustion, and augmented responses to immune checkpoint inhibition. Here, we present Lrp10 as a new negative regulator of CD8 T-cell homeostasis and a host factor that controls tumor resistance with implications for immunotherapy.

3.
Proc Natl Acad Sci U S A ; 120(50): e2314429120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38055739

ABSTRACT

We detected ENU-induced alleles of Mfsd1 (encoding the major facilitator superfamily domain containing 1 protein) that caused lymphopenia, splenomegaly, progressive liver pathology, and extramedullary hematopoiesis (EMH). MFSD1 is a lysosomal membrane-bound solute carrier protein with no previously described function in immunity. By proteomic analysis, we identified association between MFSD1 and both GLMP (glycosylated lysosomal membrane protein) and GIMAP5 (GTPase of immunity-associated protein 5). Germline knockout alleles of Mfsd1, Glmp, and Gimap5 each caused lymphopenia, liver pathology, EMH, and lipid deposition in the bone marrow and liver. We found that the interactions of MFSD1 and GLMP with GIMAP5 are essential to maintain normal GIMAP5 expression, which in turn is critical to support lymphocyte development and liver homeostasis that suppresses EMH. These findings identify the protein complex MFSD1-GLMP-GIMAP5 operating in hematopoietic and extrahematopoietic tissues to regulate immunity and liver homeostasis.


Subject(s)
GTP-Binding Proteins , Lymphopenia , Humans , GTP-Binding Proteins/metabolism , Proteomics , Liver/metabolism , Lymphocytes/metabolism , Lymphopenia/genetics , Homeostasis
4.
Proc Natl Acad Sci U S A ; 119(18): e2200128119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35482923

ABSTRACT

Null mutations of spliceosome components or cofactors are homozygous lethal in eukaryotes, but viable hypomorphic mutations provide an opportunity to understand the physiological impact of individual splicing proteins. We describe a viable missense allele (F181I) of Rnps1 encoding an essential regulator of splicing and nonsense-mediated decay (NMD), identified in a mouse genetic screen for altered immune cell development. Homozygous mice displayed a stem cell­intrinsic defect in hematopoiesis of all lineages due to excessive apoptosis induced by tumor necrosis factor (TNF)­dependent death signaling. Numerous transcript splice variants containing retained introns and skipped exons were detected at elevated frequencies in Rnps1F181I/F181I splenic CD8+ T cells and hematopoietic stem cells (HSCs), but NMD appeared normal. Strikingly, Tnf knockout rescued all hematopoietic cells to normal or near-normal levels in Rnps1F181I/F181I mice and dramatically reduced intron retention in Rnps1F181I/F181I CD8+ T cells and HSCs. Thus, RNPS1 is necessary for accurate splicing, without which disinhibited TNF signaling triggers hematopoietic cell death.


Subject(s)
CD8-Positive T-Lymphocytes , Ribonucleoproteins , Animals , CD8-Positive T-Lymphocytes/metabolism , Hematopoiesis/genetics , Homozygote , Mammals/metabolism , Mice , Receptors, Tumor Necrosis Factor/metabolism , Ribonucleoproteins/metabolism , Sequence Deletion , Tumor Necrosis Factors/metabolism
5.
PLoS Biol ; 19(5): e3001236, 2021 05.
Article in English | MEDLINE | ID: mdl-33961632

ABSTRACT

With the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants that may increase transmissibility and/or cause escape from immune responses, there is an urgent need for the targeted surveillance of circulating lineages. It was found that the B.1.1.7 (also 501Y.V1) variant, first detected in the United Kingdom, could be serendipitously detected by the Thermo Fisher TaqPath COVID-19 PCR assay because a key deletion in these viruses, spike Δ69-70, would cause a "spike gene target failure" (SGTF) result. However, a SGTF result is not definitive for B.1.1.7, and this assay cannot detect other variants of concern (VOC) that lack spike Δ69-70, such as B.1.351 (also 501Y.V2), detected in South Africa, and P.1 (also 501Y.V3), recently detected in Brazil. We identified a deletion in the ORF1a gene (ORF1a Δ3675-3677) in all 3 variants, which has not yet been widely detected in other SARS-CoV-2 lineages. Using ORF1a Δ3675-3677 as the primary target and spike Δ69-70 to differentiate, we designed and validated an open-source PCR assay to detect SARS-CoV-2 VOC. Our assay can be rapidly deployed in laboratories around the world to enhance surveillance for the local emergence and spread of B.1.1.7, B.1.351, and P.1.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , DNA Primers , Humans , Multiplex Polymerase Chain Reaction/methods , Mutation , Polyproteins/genetics , Viral Proteins/genetics
6.
J Org Chem ; 89(2): 1235-1240, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38193431

ABSTRACT

Alkaline-metal-promoted divergent syntheses of 1-aminoisoquinolines and isoquinolines have been reported involving 2-methylaryl aldehydes, nitriles, and LiN(SiMe3)2 as reactants. In addition, the three-component reaction of 2-methylaryl nitriles, aldehydes, and LiN(SiMe3)2 has been developed to furnish 1-aminoisoquinolines. This protocol features readily available starting materials, excellent chemoselectivity, broad substrate scope, and satisfactory yields.

7.
BMC Pediatr ; 24(1): 82, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279097

ABSTRACT

BACKGROUND: Severe neonatal hyperbilirubinemia could lead to kernicterus and neonatal death. This study aimed to analyze the association between single nucleotide polymorphisms in genes involved in bilirubin metabolism and the incidence of severe hyperbilirubinemia. METHODS: A total of 144 neonates with severe hyperbilirubinemia and 50 neonates without or mild hyperbilirubinemia were enrolled in 3 institutions between 2019 and 2020. Twelve polymorphisms of 5 genes (UGT1A1, SLCO1B1, SLCO1B3, BLVRA, and HMOX1) were analyzed by PCR amplification of genomic DNA. Genotyping was performed using an improved multiplex ligation detection reaction technique based on ligase detection reaction. RESULTS: The frequencies of the A allele in UGT1A1-rs4148323 and the C allele in SLCO1B3-rs2417940 in the severe hyperbilirubinemia group (30.2% and 90.6%, respectively) were significantly higher than those in the controls (30.2% vs.13.0%, 90.6% vs. 78.0%, respectively, both p < 0.05). Haplotype analysis showed the ACG haplotype of UGT1A1 were associated with an increased hyperbilirubinemia risk (OR 3.122, p = 0.001), whereas the GCG haplotype was related to a reduced risk (OR 0.523, p = 0.018). CONCLUSION: The frequencies of the A allele in rs4148323 and the C allele in rs2417940 are highly associated with the incidence of severe hyperbilirubinemia in Chinese Han neonates. TRIAL REGISTRATION: Trial registration number:ChiCTR1800020424; Date of registration:2018-12-29.


Subject(s)
Hyperbilirubinemia, Neonatal , Polymorphism, Single Nucleotide , Infant, Newborn , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Alleles , Hyperbilirubinemia, Neonatal/genetics , Glucuronosyltransferase/genetics , China/epidemiology , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Heme Oxygenase-1/genetics , Heme Oxygenase-1/metabolism
8.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Article in English | MEDLINE | ID: mdl-34290146

ABSTRACT

Many endogenous molecules, mostly proteins, purportedly activate the Toll-like receptor 4 (TLR4)-myeloid differentiation factor-2 (MD-2) complex, the innate immune receptor for lipopolysaccharide (LPS) derived from gram-negative bacteria. However, there is no structural evidence supporting direct TLR4-MD-2 activation by endogenous ligands. Sulfatides (3-O-sulfogalactosylceramides) are natural, abundant sulfated glycolipids that have variously been shown to initiate or suppress inflammatory responses. We show here that short fatty acid (FA) chain sulfatides directly activate mouse TLR4-MD-2 independent of CD14, trigger MyD88- and TRIF-dependent signaling, and stimulate tumor necrosis factor α (TNFα) and type I interferon (IFN) production in mouse macrophages. In contrast to the agonist activity toward the mouse receptor, the tested sulfatides antagonize TLR4-MD-2 activation by LPS in human macrophage-like cells. The agonistic and antagonistic activities of sulfatides require the presence of the sulfate group and are inversely related to the FA chain length. The crystal structure of mouse TLR4-MD-2 in complex with C16-sulfatide revealed that three C16-sulfatide molecules bound to the MD-2 hydrophobic pocket and induced an active dimer conformation of the receptor complex similar to that induced by LPS or lipid A. The three C16-sulfatide molecules partially mimicked the detailed interactions of lipid A to achieve receptor activation. Our results suggest that sulfatides may mediate sterile inflammation or suppress LPS-stimulated inflammation, and that additional endogenous negatively charged lipids with up to six lipid chains of limited length might also bind to TLR4-MD-2 and activate or inhibit this complex.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Lymphocyte Antigen 96/metabolism , Myeloid Differentiation Factor 88/metabolism , Sulfoglycosphingolipids/pharmacology , Toll-Like Receptor 4/metabolism , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Line , Female , Humans , Lymphocyte Antigen 96/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Dynamics Simulation , Myeloid Differentiation Factor 88/genetics , Sulfoglycosphingolipids/chemistry , Toll-Like Receptor 4/genetics
9.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Article in English | MEDLINE | ID: mdl-34903581

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), continues to be a pressing health concern. In this study, we investigated the impact of SARS-CoV-2 infection on host microRNA (miRNA) populations in three human lung-derived cell lines, as well as in nasopharyngeal swabs from SARS-CoV-2-infected individuals. We did not detect any major and consistent differences in host miRNA levels after SARS-CoV-2 infection. However, we unexpectedly discovered a viral miRNA-like small RNA, named CoV2-miR-O7a (for SARS-CoV-2 miRNA-like ORF7a-derived small RNA). Its abundance ranges from low to moderate as compared to host miRNAs and it associates with Argonaute proteins-core components of the RNA interference pathway. We identify putative targets for CoV2-miR-O7a, including Basic Leucine Zipper ATF-Like Transcription Factor 2 (BATF2), which participates in interferon signaling. We demonstrate that CoV2-miR-O7a production relies on cellular machinery, yet is independent of Drosha protein, and is enhanced by the presence of a strong and evolutionarily conserved hairpin formed within the ORF7a sequence.


Subject(s)
Gene Expression Regulation, Viral , RNA, Small Untranslated/metabolism , RNA, Viral/metabolism , SARS-CoV-2/metabolism , Viral Proteins/genetics , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Humans , RNA, Small Untranslated/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics
10.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34260399

ABSTRACT

Forward genetic studies use meiotic mapping to adduce evidence that a particular mutation, normally induced by a germline mutagen, is causative of a particular phenotype. Particularly in small pedigrees, cosegregation of multiple mutations, occasional unawareness of mutations, and paucity of homozygotes may lead to erroneous declarations of cause and effect. We sought to improve the identification of mutations causing immune phenotypes in mice by creating Candidate Explorer (CE), a machine-learning software program that integrates 67 features of genetic mapping data into a single numeric score, mathematically convertible to the probability of verification of any putative mutation-phenotype association. At this time, CE has evaluated putative mutation-phenotype associations arising from screening damaging mutations in ∼55% of mouse genes for effects on flow cytometry measurements of immune cells in the blood. CE has therefore identified more than half of genes within which mutations can be causative of flow cytometric phenovariation in Mus musculus The majority of these genes were not previously known to support immune function or homeostasis. Mouse geneticists will find CE data informative in identifying causative mutations within quantitative trait loci, while clinical geneticists may use CE to help connect causative variants with rare heritable diseases of immunity, even in the absence of linkage information. CE displays integrated mutation, phenotype, and linkage data, and is freely available for query online.


Subject(s)
Germ-Line Mutation/genetics , Leukocytes/metabolism , Machine Learning , Meiosis/genetics , Algorithms , Animals , Automation , Female , Flow Cytometry , Male , Mice, Inbred C57BL , Phenotype , Probability , Reproducibility of Results , Software
11.
Pediatr Cardiol ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217691

ABSTRACT

Acute kidney injury (AKI) is a common complication after cardiac surgery and associated with adverse outcomes. The purpose of this study is to construct a nomogram to predict the probability of postoperative AKI in pediatric patients undergoing cardiac surgery. We conducted a single-center retrospective cohort study of 1137 children having cardiac surgery under cardiopulmonary bypass. We randomly divided the included patients into development and validation cohorts at a ratio of 7:3. The least absolute shrinkage and selection operator regression model was used for feature selection. We constructed a multivariable logistic regression model to select predictors and develop a nomogram to predict AKI risk. Discrimination, calibration and clinical benefit of the final prediction model were evaluated in the development and validation cohorts. A simple nomogram was developed to predict risk of postoperative AKI using six predictors including age at operation, cyanosis, CPB duration longer than 120 min, cross-clamp time, baseline albumin and baseline creatinine levels. The area under the receiver operator characteristic curve of the nomogram was 0.739 (95% CI 0.693-0.786) and 0.755 (95% CI 0.694-0.816) for the development and validation cohort, respectively. The calibration curve showed a good correlation between predicted and observed risk of postoperative AKI. Decision curve analysis presented great clinical benefit of the nomogram. This novel nomogram for predicting AKI after pediatric cardiac surgery showed good discrimination, calibration and clinical practicability.

12.
Am J Otolaryngol ; 45(4): 104342, 2024.
Article in English | MEDLINE | ID: mdl-38703609

ABSTRACT

OBJECTIVE: To develop a multi-instance learning (MIL) based artificial intelligence (AI)-assisted diagnosis models by using laryngoscopic images to differentiate benign and malignant vocal fold leukoplakia (VFL). METHODS: The AI system was developed, trained and validated on 5362 images of 551 patients from three hospitals. Automated regions of interest (ROI) segmentation algorithm was utilized to construct image-level features. MIL was used to fusion image level results to patient level features, then the extracted features were modeled by seven machine learning algorithms. Finally, we evaluated the image level and patient level results. Additionally, 50 videos of VFL were prospectively gathered to assess the system's real-time diagnostic capabilities. A human-machine comparison database was also constructed to compare the diagnostic performance of otolaryngologists with and without AI assistance. RESULTS: In internal and external validation sets, the maximum area under the curve (AUC) for image level segmentation models was 0.775 (95 % CI 0.740-0.811) and 0.720 (95 % CI 0.684-0.756), respectively. Utilizing a MIL-based fusion strategy, the AUC at the patient level increased to 0.869 (95 % CI 0.798-0.940) and 0.851 (95 % CI 0.756-0.945). For real-time video diagnosis, the maximum AUC at the patient level reached 0.850 (95 % CI, 0.743-0.957). With AI assistance, the AUC improved from 0.720 (95 % CI 0.682-0.755) to 0.808 (95 % CI 0.775-0.839) for senior otolaryngologists and from 0.647 (95 % CI 0.608-0.686) to 0.807 (95 % CI 0.773-0.837) for junior otolaryngologists. CONCLUSIONS: The MIL based AI-assisted diagnosis system can significantly improve the diagnostic performance of otolaryngologists for VFL and help to make proper clinical decisions.


Subject(s)
Artificial Intelligence , Laryngoscopy , Leukoplakia , Vocal Cords , Humans , Vocal Cords/diagnostic imaging , Vocal Cords/pathology , Laryngoscopy/methods , Male , Leukoplakia/diagnosis , Leukoplakia/pathology , Female , Middle Aged , Aged , Diagnosis, Computer-Assisted/methods , Machine Learning , Diagnosis, Differential , Adult , Algorithms , Laryngeal Neoplasms/diagnosis , Laryngeal Neoplasms/pathology , Laryngeal Neoplasms/diagnostic imaging
13.
J Cardiovasc Nurs ; 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38345533

ABSTRACT

BACKGROUND: Health education is important for self-care in patients with heart failure. However, the evidence for the effect of distance education as an intervention to deliver instruction for patients after discharge through digital devices on self-care is limited. OBJECTIVES: In this study, our aim was to explore the effect of distance education on self-care in patients with heart failure. METHODS: We searched 11 electronic databases and 3 trial registries for randomized controlled trials with low risk of bias and high-quality evidence to compare the effect of usual and distance education on self-care. Quality appraisal was performed using the Cochrane Risk of Bias Tool. Using the Review Manager 5.4 tool, a meta-analysis was conducted. Certainty of the evidence was rated using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). RESULTS: Fifteen articles were eligible for this study. Compared with usual education, distance education improved self-care maintenance (mean difference [MD], 6.62; 95% confidence interval [CI], 3.93-9.31; GRADE, moderate quality), self-care management (MD, 5.10; 95% CI, 3.25-6.95; GRADE, high quality), self-care confidence (MD, 6.66; 95% CI, 4.82-8.49; GRADE, high quality), heart failure knowledge (MD, 0.78; 95% CI, 0.01-1.56; GRADE, moderate quality), and quality of life (MD, -5.35; 95% CI, -8.73 to -1.97; GRADE, moderate quality). Subgroup analysis revealed distance education was more effective than usual education in self-care when the intervention was conducted for 1 to 6 months, more than 3 times per month, and a single intervention lasting more than 30 minutes. CONCLUSIONS: This review shows the benefits of distance education on self-care, heart failure knowledge, and quality of life of patients with heart failure. The intervention duration, frequency, and duration of a single intervention could have affected the intervention effect.

14.
Ren Fail ; 46(1): 2318417, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38374700

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common complication after pediatric cardiac surgery and is associated with worse outcomes. Ibuprofen is widely used in the perioperative period and can affect kidney function in children. However, the association between ibuprofen exposure and AKI after pediatric cardiac surgery has not been determined yet. METHODS: In this retrospective cohort study, children undergoing cardiac surgery with cardiopulmonary bypass were studied. Exposure was defined as given ibuprofen in the first 7 days after surgery. Postoperative AKI was diagnosed using the KDIGO criteria. A multivariable Cox regression model was used to assess the association between ibuprofen exposure and postoperative AKI by taking ibuprofen as a time-varying covariate. RESULTS: Among 1,112 included children, 198 of them (17.8%) experienced AKI. In total, 396 children (35.6%) were exposed to ibuprofen. AKI occurred less frequently among children who were administered ibuprofen than among those who were not (46 of 396 [11.6%] vs. 152 of 716 [21.2%], p < 0.001). Using the Cox regression model accounting for time-varying exposures, ibuprofen treatment was not associated with AKI (adjusted HR, 0.99; 95% CI 0.70-1.39, p = 0.932). This insignificant association was consistent across the sensitivity and subgroup analyses. CONCLUSIONS: Postoperative ibuprofen exposure in pediatric patients undergoing cardiac surgery was not associated with an increased risk of AKI.


Subject(s)
Acute Kidney Injury , Cardiac Surgical Procedures , Humans , Child , Ibuprofen/adverse effects , Retrospective Studies , Postoperative Complications/chemically induced , Postoperative Complications/epidemiology , Cardiac Surgical Procedures/adverse effects , Acute Kidney Injury/chemically induced , Acute Kidney Injury/epidemiology , Risk Factors
15.
Nano Lett ; 23(22): 10251-10258, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37781986

ABSTRACT

Anode-free lithium metal batteries (AFLMBs) exhibit enhanced energy density and cost-effective manufacturing, albeit constrained by short lifespans due to inhomogeneous lithium nucleation and growth on the inherently lithiophobic Cu current collector. Although numerous attempts at Cu surface modifications aim to mitigate this thermodynamic limitation, they often result in substantial irreversible capacity loss and/or lack the stability required for practical applications. Here, we present an in situ seed implantation (ISI) strategy to address the aforementioned challenge. A 36 s ISI treatment created an ultrathin lithium metal layer, composed of uniform lithium nuclei with ∼100 nm in diameter, equating to 0.05 mAh cm-2, on the Cu substrate. This approach facilitates dense lithium deposition during cycles, effectively doubling the lifespan of an Ah-level 437 Wh kg-1 AFLMB. Our ISI strategy offers a straightforward and efficient solution that maintains battery energy density and manufacturing cost effectiveness, and its application extends beyond lithium metal.

16.
Angew Chem Int Ed Engl ; 63(23): e202402458, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38545814

ABSTRACT

Visible-light sensitive and bi-functionally favored CO2 reduction (CRR)/evolution (CER) photocathode catalysts that can get rid of the utilization of ultraviolet light and improve sluggish kinetics is demanded to conquer the current technique-barrier of traditional Li-CO2 battery. Here, a kind of redox molecular junction sp2c metal-covalent organic framework (i.e. Cu3-BTDE-COF) has been prepared through the connection between Cu3 and BTDE and can serve as efficient photocathode catalyst in light-assisted Li-CO2 battery. Cu3-BTDE-COF with redox-ability, visible-light-adsorption region, electron-hole separation ability and endows the photocathode with excellent round-trip efficiency (95.2 %) and an ultralow voltage hysteresis (0.18 V), outperforming the Schiff base COFs (i.e. Cu3-BTDA-COF and Cu3-DT-COF) and majority of the reported photocathode catalysts. Combined theoretical calculations with characterizations, Cu3-BTDE-COF with the integration of Cu3 centers, thiazole and cyano groups possess strong CO2 adsorption/activation and Li+ interaction/diffusion ability to boost the CRR/CER kinetics and related battery property.

17.
FASEB J ; 36(5): e22257, 2022 05.
Article in English | MEDLINE | ID: mdl-35471770

ABSTRACT

Retinopathy of prematurity (ROP) is a leading cause of childhood blindness associated with retinal vaso-obliteration in phase 1 and pathological neovascularization (NV) in phase 2; however, effective and safe treatments for ROP definitive treatment are yet to be determined. Anti-vascular endothelial growth factor (VEGF) therapy mainly focuses on reducing abnormal NV in phase 2 but with high risks of late recurrence and systemic side effects. Previous studies have established that the severity of vaso-obliteration in phase 1 largely influences subsequent stages, suggesting that prevention of vessels loss may be a potential therapeutic target for ROP. Herein, the therapeutic potential and safety of early Elabela intervention treatment in treating phase 1 ROP and the possible underlying mechanisms were investigated using an oxygen-induced retinopathy (OIR) mouse model. It was observed that intraperitoneal injection of Elabela remarkably reduced the avascular retinal area and increased the vascular density in phase 1 of OIR mice. Further investigation revealed that mitochondrion-dependent ferroptosis was involved in oxidative stress-mediated vascular protection loss in phase 1 OIR. Furthermore, we demonstrated that Elabela could rescue mitochondria-dependent ferroptosis via mediating the xCT/GPX4 axis. Collectively, our study revealed that ferroptosis may play a significant role in early ROP, while Elabela may be a safe and promising strategy for the early intervention of ROP.


Subject(s)
Ferroptosis , Retinal Neovascularization , Retinopathy of Prematurity , Animals , Animals, Newborn , Disease Models, Animal , Humans , Infant, Newborn , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Oxygen/metabolism , Retinal Neovascularization/metabolism , Retinal Vessels/metabolism , Retinopathy of Prematurity/drug therapy
18.
J Org Chem ; 88(11): 7425-7430, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37195013

ABSTRACT

A convenient method is proposed for the synthesis of isoquinolone derivatives from 2-methylaryl aldehydes and nitriles through LiN(SiMe3)2/KOtBu-promoted formal [4 + 2] cycloaddition reaction, featuring high atomic economy, good functional group tolerance, and easy operation. It enables the efficient formation of new C-C and C-N bonds toward isoquinolones without using preactivated amides.

19.
Macromol Rapid Commun ; 44(11): e2200894, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36583705

ABSTRACT

Covalent organic frameworks (COFs) have attracted increasing research interest due to their intriguing topological structures and fascinating properties. Diverse COFs with different shapes and sizes are developed by the design of appropriate building blocks. However, the heteroporous COFs to date are still in their infancy due to the relatively limited configuration of precursors. Herein, it is ingeniously designed and synthesized a new K-shaped "two-in-one" building unit (3',6'-bis(4-(5,5-dimethyl-1,3-dixoan-2-yl)phenyl)-[1,1':2',1"-terphenyl]-4,4"-diamine, BPTD), thus realizing the construction of triangular dual microporous COF (BPTD-COF) via self-polycondensation of the K-shaped monomer. The super micropore (0.76 nm) of BPTD-COF endows the higher density of amine activity sites, while the other aperture size (1.35 nm) meets the need for accommodating cationic dyes (rhodamine B, methylene blue), thus BPTD-COF displays a distinctive selective adsorption for cationic dyes with good reusability.


Subject(s)
Amines , Metal-Organic Frameworks , Metal-Organic Frameworks/chemical synthesis , Metal-Organic Frameworks/chemistry , Amines/chemistry , Coloring Agents/chemistry , Environmental Pollutants/chemistry , Environmental Restoration and Remediation , Adsorption
20.
Proc Natl Acad Sci U S A ; 117(9): 4894-4901, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32071239

ABSTRACT

γ-secretase is an intramembrane protease complex that catalyzes the proteolytic cleavage of amyloid precursor protein and Notch. Impaired γ-secretase function is associated with the development of Alzheimer's disease and familial acne inversa in humans. In a forward genetic screen of mice with N-ethyl-N-nitrosourea-induced mutations for defects in adaptive immunity, we identified animals within a single pedigree exhibiting both hypopigmentation of the fur and diminished T cell-independent (TI) antibody responses. The causative mutation was in Ncstn, an essential gene encoding the protein nicastrin (NCSTN), a member of the γ-secretase complex that functions to recruit substrates for proteolysis. The missense mutation severely limits the glycosylation of NCSTN to its mature form and impairs the integrity of the γ-secretase complex as well as its catalytic activity toward its substrate Notch, a critical regulator of B cell and T cell development. Strikingly, however, this missense mutation affects B cell development but not thymocyte or T cell development. The Ncstn allele uncovered in these studies reveals an essential requirement for NCSTN during the type 2 transitional-marginal zone precursor stage and peritoneal B-1 B cell development, the TI antibody response, fur pigmentation, and intestinal homeostasis in mice.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , B-Lymphocyte Subsets/metabolism , Gene Expression Regulation, Developmental , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Adaptive Immunity , Alzheimer Disease/metabolism , Animals , Cell Membrane/metabolism , Ethylnitrosourea/adverse effects , Female , Hidradenitis Suppurativa/metabolism , Humans , Hypopigmentation , Male , Mice , Mice, Inbred C57BL , Mutation , Pedigree , T-Lymphocytes/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL