Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurosci ; 43(7): 1178-1190, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36623874

ABSTRACT

The accessory olfactory system (AOS) is critical for the development and expression of social behavior. The first dedicated circuit in the AOS, the accessory olfactory bulb (AOB), exhibits cellular and network plasticity in male and female mice after social experience. In the AOB, interneurons called internal granule cells (IGCs) express the plasticity-associated immediate-early gene Arc following intermale aggression or mating. Here, we sought to better understand how Arc-expressing IGCs shape AOB information processing and social behavior in the context of territorial aggression. We used "ArcTRAP" (Arc-CreERT2) transgenic mice to selectively and permanently label Arc-expressing IGCs following male-male resident-intruder interactions. Using whole-cell patch-clamp electrophysiology, we found that Arc-expressing IGCs display increased intrinsic excitability for several days after a single resident-intruder interaction. Further, we found that Arc-expressing IGCs maintain this increased excitability across repeated resident-intruder interactions, during which resident mice increase or "ramp" their aggression. We tested the hypothesis that Arc-expressing IGCs participate in ramping aggression. Using a combination of ArcTRAP mice and chemogenetics (Cre-dependent hM4D(Gi)-mCherry AAV injections), we found that disruption of Arc-expressing IGC activity during repeated resident-intruder interactions abolishes the ramping aggression exhibited by resident male mice. This work shows that Arc-expressing AOB IGC ensembles are activated by specific chemosensory environments, and play an integral role in the establishment and expression of sex-typical social behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.SIGNIFICANCE STATEMENT The accessory olfactory system plays a vital role in rodent chemosensory social behavior. We studied experience-dependent plasticity in the accessory olfactory bulb and found that internal granule cells expressing the immediate-early gene Arc after the resident-intruder paradigm increase their excitability for several days. We investigated the roles of these Arc-expressing internal granule cells on chemosensory social behavior by chemogenetically manipulating their excitability during repeated social interactions. We found that inhibiting these cells eliminated intermale aggressive ramping behavior. These studies identify a population of plastic interneurons in an early chemosensory circuit that display physiological features consistent with simple memory formation, increasing our understanding of central chemosensory processing and mammalian social behavior.


Subject(s)
Interneurons , Olfactory Bulb , Mice , Male , Female , Animals , Olfactory Bulb/physiology , Interneurons/physiology , Neurons , Social Behavior , Aggression , Mice, Transgenic , Mammals
2.
Opt Express ; 32(9): 15433-15443, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38859193

ABSTRACT

Phase vortices exhibit significant applications and hold promising prospects across various scientific fields. However, while extensive attention has been devoted to the two-dimensional transverse plane of these vortices, their longitudinal properties have received comparatively limited exploration. Our study focuses on the longitudinal evolution of phase vortices, encompassing an investigation of variational topological charges and phase distributions. The investigation employs the rotationally interleaved multi-spiral, characterized by multiple identical spirals arranged in an azimuthally symmetric rotation, to modulate phase distributions by the variable spiral radius versus the azimuthal angle. Initially, we analyze the modulation effect theoretically, delving into propagation properties and vortex formations. Subsequently, through numerical simulations of vortices generated by both single and multi-spiral setups, we examine the longitudinal evolution of topological charges and phase distributions. The analyses reveal a step-wise reductant topological charges and a tortuous increasing spatial variations of phase singularities in transmission direction, with the dependency on both propagation distance and number of multi-spiral. The outcomes hold significant potential applications in optical communications and optical tweezers.

3.
J Org Chem ; 89(9): 6180-6192, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38632865

ABSTRACT

The photochemistry of noncovalent interactions to promote organic transformations is an emerging approach to providing fresh opportunities in synthetic chemistry. Generally, the external substance is necessary to add as an interaction partner, thereby sacrificing the atom economy of the reaction. Herein, we describe a catalyst-free and noncovalent interaction-mediated strategy to access the olefination of N-tosylhydrazones using acetone as a solvent and an interaction partner. This protocol also features broad substrate scope, excellent functional group compatibility, and mild reaction conditions without transition metals. Moreover, the gram-scale synthesis of olefins and the generation of pharmaceutical intermediates highlighted its practical applicability. Lastly, mechanistic studies indicate that the reaction was initiated via noncovalent interactions between acetone and N-tosylhydrazone anion, which is also supported by density functional theory calculations.

4.
Bioorg Chem ; 144: 107092, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38271825

ABSTRACT

KRAS is the most frequently mutated oncogene and drives the development and progression of malignancies, most notably non-small cell lung cancer (NSCLS), pancreatic ductal adenocarcinoma (PDAC) and colorectal cancer (CRC). However, KRAS proteins have maintained the reputation of being "undruggable" due to the lack of suitable deep pockets on its surface. One major milestone for KRAS inhibition was the discovery of the covalent inhibitors bond to the allosteric switch-II pocket of the KRASG12C protein. To date, the FDA has approved two KRASG12C inhibitors, sotorasib and adagrasib, for the treatment of patients with KRASG12C-driven cancers. Researchers have paid close attention to the development of inhibitors for other KRAS mutations and upstream regulatory factors. The KRAS targeted drug discovery has entered a state of rapid development. This article has aimed to present the current state of the art of drug development in the KRAS field. We systematically summarize recent advances in the discovery and optimization processes of direct KRAS inhibitors (including KRASG12C, KRASG12D, KRASG12A and KRASG12R inhibitors), indirect KRAS inhibitors (SOS1 and SHP2 inhibitors), pan-KRAS inhibitors, as well as proteolysis-targetingchimeras degrades and molecular chaperone modulators from the perspective of medicinal chemistry. We also discuss the current challenges and opportunities of KRAS inhibition and hope to shed light on future KRAS drug discovery.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Chemistry, Pharmaceutical , Proto-Oncogene Proteins p21(ras)/genetics , Drug Development , Mutation
5.
Nucleic Acids Res ; 50(D1): D1091-D1099, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34643708

ABSTRACT

Ruminant Genome Database (RGD; http://animal.nwsuaf.edu.cn/RGD) provides visualization and analysis tools for ruminant comparative genomics and functional annotations. As more high-quality ruminant genome assemblies have become available, we have redesigned the user interface, integrated and expanded multi-omics data, and developed novel features to improve the database. The new version, RGD v2.0, houses 78 ruminant genomes; 110-species synteny alignments for major livestock (including cattle, sheep, goat) and wild ungulates; 21 012 orthologous gene clusters with Gene Ontology and pathway annotation; ∼8 600 000 conserved elements; and ∼1 000 000 cis-regulatory elements by utilizing 1053 epigenomic data sets. The transcriptome data in RGD v2.0 has nearly doubled, currently with 1936 RNA-seq data sets, and 155 174 phenotypic data sets have been newly added. New and updated features include: (i) The UCSC Genome Browser, BLAT, BLAST and Table Browser tools were updated for six available ruminant livestock species. (ii) The LiftOver tool was newly introduced into our browser to allow coordinate conversion between different ruminant assemblies. And (iii) tissue specificity index, tau, was calculated to facilitate batch screening of specifically expressed genes. The enhanced genome annotations and improved functionality in RGD v2.0 will be useful for study of genome evolution, environmental adaption, livestock breeding and biomedicine.


Subject(s)
Databases, Genetic , Regulatory Sequences, Nucleic Acid/genetics , Ruminants/genetics , Software , Animals , Cattle , Genomics , Goats/classification , Goats/genetics , Internet , Molecular Sequence Annotation , Sheep/classification , Sheep/genetics
6.
Antimicrob Agents Chemother ; 67(6): e0000323, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37195189

ABSTRACT

Fungal infections, which commonly occur in immunocompromised patients, can cause high morbidity and mortality. Antifungal agents act by disrupting the cell membrane, inhibiting nucleic acid synthesis and function, or inhibiting ß-1,3-glucan synthase. Because the incidences of life-threatening fungal infections and antifungal drug resistance are continuously increasing, there is an urgent need for the development of new antifungal agents with novel mechanisms of action. Recent studies have focused on mitochondrial components as potential therapeutic drug targets, owing to their important roles in fungal viability and pathogenesis. In this review, we discuss novel antifungal drugs targeting mitochondrial components and highlight the unique fungal proteins involved in the electron transport chain, which is useful for investigating selective antifungal targets. Finally, we comprehensively summarize the efficacy and safety of lead compounds in clinical and preclinical development. Although fungus-specific proteins in the mitochondrion are involved in various processes, the majority of the antifungal agents target dysfunction of mitochondria, including mitochondrial respiration disturbance, increased intracellular ATP, reactive oxygen species generation, and others. Moreover, only a few drugs are under clinical trials, necessitating further exploration of possible targets and development of effective antifungal agents. The unique chemical structures and targets of these compounds will provide valuable hints for further exploiting new antifungals.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Antifungal Agents/chemistry , Mycoses/drug therapy , Mitochondria , Drug Delivery Systems , Fungal Proteins
7.
Chemistry ; 29(7): e202202670, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36342820

ABSTRACT

The Stöber method is one of the most important and fundamental processes for the synthesis of inorganic (nano)materials but has the drawback of using a large amount of organic solvent. Herein, ethanol was used as an example to explore if the organic solvent in a typical Stöber method can be omitted. It was found that ethanol increases the particle size of the obtained silica spheres and aids the formation of uniform silica particles rather than forming a gel. Nevertheless, the results indicated that an organic solvent in the initial synthesis mixture is not indispensable. An initially immiscible synthesis method was discovered, which can replace the organic solvent-based Stöber method to successfully synthesize silica particles with the same size ranges as the original Stöber process without addition of organic solvents. Moreover, this process can be of further value for the extension to synthesis processes of other materials based on the Stöber process.

8.
Chemistry ; 29(43): e202301392, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37218305

ABSTRACT

ß-Amino sulfones are commonly found structural motifs in biologically active compounds. Herein, we report a direct photocatalyzed amino-sulfonylation reaction of alkenes for the efficicient production of important compounds by simple hydrolysis without the need for additional oxidants and reductants. In this transformation, the sulfonamides worked as bifunctional reagents, simultaneously generating sulfonyl radicals and N-centered radicals which were added to alkene in a highly atom-economical fashion with high regioselectivity and diastereoselectivity. This approach showed high functional group tolerance and compatibility, facilitating the late-stage modification of some bioactive alkenes and sulfonamide molecules, thereby expanding the biologically relevant chemical space. Scaling up this reaction led to an efficient green synthesis of apremilast, one of the best-selling pharmceuticals, demonstrating the synthetic utility of the applied method. Moreover, mechanistic investigations suggest that an energy transfer (EnT) process was in operation.

9.
Pharmacol Res ; 189: 106703, 2023 03.
Article in English | MEDLINE | ID: mdl-36804016

ABSTRACT

Gastric cancer remains one of the most common deadly diseases and lacks effective targeted therapies. In the present study, we confirmed that the signal transducer and activator of transcription 3 (STAT3) is highly expressed and associated with a poor prognosis in gastric cancer. We further identified a novel natural product inhibitor of STAT3, termed XYA-2, which interacts specifically with the SH2 domain of STAT3 (Kd= 3.29 µM) and inhibits IL-6-induced STAT3 phosphorylation at Tyr705 and nuclear translocation. XYA-2 inhibited the viability of seven human gastric cancer cell lines with 72-h IC50 values ranging from 0.5 to 0.7 µΜ. XYA-2 at 1 µΜ inhibited the colony formation and migration ability of MGC803 (72.6% and 67.6%, respectively) and MKN28 (78.5% and 96.6%, respectively) cells. In the in vivo studies, intraperitoneal administration of XYA-2 (10 mg/kg/day, 7 days/week) significantly suppressed 59.8% and 88.8% tumor growth in the MKN28-derived xenograft mouse model and MGC803-derived orthotopic mouse model, respectively. Similar results were obtained in a patient-derived xenograft (PDX) mouse model. Moreover, XYA-2 treatment extended the survival of mice bearing PDX tumors. The molecular mechanism studies based on transcriptomics and proteomics analyses indicated that XYA-2 might exert its anticancer activity by synergistically inhibiting the expression of MYC and SLC39A10, two downstream genes of STAT3 in vitro and in vivo. Together, these findings suggested that XYA-2 may be a potent STAT3 inhibitor for treating gastric cancer, and dual inhibition of MYC and SLC39A10 may be an effective therapeutic strategy for STAT3-activated cancer.


Subject(s)
Stomach Neoplasms , Humans , Animals , Mice , Stomach Neoplasms/pathology , Cell Line, Tumor , STAT3 Transcription Factor/metabolism , Xenograft Model Antitumor Assays , Phosphorylation , Cell Proliferation , Apoptosis
10.
Cell Mol Life Sci ; 79(4): 205, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35334005

ABSTRACT

Multiple herbicide resistance in diverse weed species endowed by enhanced herbicide detoxification or degradation is rapidly growing into a great threat to herbicide sustainability and global food safety. Although metabolic resistance is frequently documented in the economically damaging arable weed species shortawn foxtail (Alopecurus aequalis Sobol.), relevant molecular knowledge has been lacking. Previously, we identified a field population of A. aequalis (R) that had evolved metabolic resistance to the commonly used acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron-methyl. RNA sequencing was used to discover potential herbicide metabolism-related genes, and four cytochrome P450s (CYP709C56, CYP71R18, CYP94C117, and CYP94E14) were identified with higher expressions in the R vs. susceptible (S) plants. Here the full-length P450 complementary DNA transcripts were each cloned with identical sequences between the S and R plants. Transgenic Arabidopsis overexpressing CYP709C56 became resistant to the sulfonylurea herbicide mesosulfuron-methyl and the triazolo-pyrimidine herbicide pyroxsulam. This resistance profile generally but does not completely in accordance with what is evident in the R A. aequalis. Transgenic lines exhibited enhanced capacity for detoxifying mesosulfuron-methyl into O-demethylated metabolite, which is in line with the detection of O-demethylated herbicide metabolite in vitro in transformed yeast. Structural modeling predicted that mesosulfuron-methyl binds to CYP709C56 involving amino acid residues Thr-328, Thr-500, Asn-129, Gln-392, Phe-238, and Phe-242 for achieving O-demethylation. Constitutive expression of CYP709C56 was highly correlated with the metabolic mesosulfuron-methyl resistance in A. aequalis. These results indicate that CYP709C56 degrades mesosulfuron-methyl and its up-regulated expression in A. aequalis confers resistance to mesosulfuron-methyl.


Subject(s)
Herbicide Resistance , Sulfonylurea Compounds , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Herbicide Resistance/genetics , Poaceae/genetics , Poaceae/metabolism , Sulfonylurea Compounds/pharmacology
11.
Appl Opt ; 62(6): A1-A11, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36821294

ABSTRACT

Velocity measurement has a high application value in hydrological monitoring and flood disaster warning. The long-distance laser Doppler water flow velocimetry technology has the advantage of strong anti-interference ability and high spatial resolution, and it can realize the high-precision measurement of water flow velocity. Because water flow has low reflectance characteristics, how to extract Doppler frequency from weak non-stationary coherent signals is a crucial problem to be solved to realize long-distance water flow velocity measurement. However, the classical method requires the time domain signal to have high stationarity and is not suitable for processing the coherent signal in the water flow velocity measurement. Aiming at this problem, we proposed a water flow velocimetry method based on adaptive Gaussian weighted integral (AGWI). First, the spectral characteristics of the coherent signal are analyzed in detail, and a statistical model of weak non-stationary signals is established. A second-order Kaiser self-multiplication window (KSMW) is designed to suppress spectral leakage for the asynchronously sampled data. Then, an adaptive homogenization power spectral subtraction (AHPSS) is designed to reduce system noise. Finally, the Doppler spectrum reconstruction and Doppler frequency estimation are performed using the AGWI method to obtain the Doppler frequency, which is further processed to get the water flow velocity. The experimental results show that the method proposed in this paper can achieve accurate and stable measurement of river surface velocity under long-distance conditions.

12.
Biomed Chromatogr ; 37(6): e5621, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36895149

ABSTRACT

Cistanche tubulosa (CT), a well-known traditional Chinese medicine, has always been processed with rice wine for the treatment of kidney-yang deficiency syndrome (KYDS) since time immemorial. To explore the effect of processing on the efficacy and metabolites of CT in vivo, a comprehensive method using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was established for the analysis of the altered endogenous metabolites in response to the intervention of the raw and processed CT in KYDS model and the metabolites of the absorbed compounds in rats after gastric perfusion. It was shown that CT could improve KYDS, and the effect of the processed product was more significant. A total of 47 differential metabolites were identified in urine. Pathway analysis proved that purine metabolism; alanine, aspartate, and glutamate metabolism; and citrate cycle were the main pathways. Furthermore, 53 prototypes and 48 metabolites have been detected in rats. This was the first systematic research focus on the metabolites of raw and processed CT in vivo, which could provide a scientific basis for explaining the increasing efficiency of the processed CT. Moreover, it provides a valuable strategy for analyzing the chemical components and metabolites of other TCM prescriptions.


Subject(s)
Cistanche , Drugs, Chinese Herbal , Rats , Animals , Rats, Sprague-Dawley , Cistanche/metabolism , Drugs, Chinese Herbal/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry , Chromatography, Liquid
13.
Ecotoxicol Environ Saf ; 260: 115090, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37267777

ABSTRACT

Cypyrafluone, a novel hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide, can successfully control a wide species of grass and broadleaf weed in wheat fields. However, the dissipation behaviors and terminal residues of cypyrafluone in wheat fields remain unclear. Here, a simple, accurate, and dependable approach for the analysis of cypyrafluone in soil, wheat plant, and grain was constructed utilizing an adapted QuEChERS extraction combined with UPLC-MS/MS. For accurate quantification, matrix-matched calibrations with high linearity (R2 >0.99) were employed to eliminate matrix interference. The method possessed high accuracy with recoveries in the range of 85.5%- 100.6% and precision with relative standard deviations < 14.3%, as well as high sensitivity with limits of quantifications of 0.001 mg kg-1 in the three matrixes. The dissipation kinetics and terminal residues of cypyrafluone were determined at two separate locations with different climates, soil types and cropping systems in 2018. The half-lives of cypyrafluone in soil and wheat plant were 1.47-1.55 d and 1.00-1.03 d, respectively. At harvest, the terminal residue values of cypyrafluone detected in wheat plants were 0-0.0025 mg kg-1 and 0.0044-0.0057 mg kg-1 at the recommended dose and 1.5 times of the recommended dose, respectively, and 0.0049 mg kg-1 of this herbicide was detected in grain at 1.5 times of the recommended dose, which was below the maximum residue limit (MRL). Finally, the risk quotient for cypyrafluone ranged from 0.33% to 0.81% (<1) for different age groups in China, indicating that the impact of residues from the cypyrafluone application on wheat was acceptable. These findings above will offer scientific guidelines for cypyrafluone application in the wheat field ecosystem.


Subject(s)
Dioxygenases , Herbicides , Pesticide Residues , Herbicides/analysis , Kinetics , Triticum/chemistry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods , Ecosystem , Pesticide Residues/analysis , Tandem Mass Spectrometry/methods , Half-Life , Soil/chemistry
14.
Sensors (Basel) ; 23(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37836926

ABSTRACT

Incipient fault detection in a hydraulic system is a challenge in the condition monitoring community. Existing research mainly monitors abnormal working conditions in hydraulic systems by separately detecting the key working parameter, which often causes a high miss warning rate for incipient faults due to the oversight of parameter dependence. A principal component analysis provides an effective method for incipient fault detection by taking the correlation of multiple parameters into consideration, but this technique assumes the systems are Gaussian-distributed, making it invalid for a dynamic non-Gaussian system. In this paper, we combine a canonical variable analysis (CVA) and adaptive kernel density estimation (AKDE) for the early fault detection of nonlinear dynamic hydraulic systems. The collected hydraulic system data set was used to construct the typical variable space, and the state space and residual space are divided to represent the characteristics of different correlations between the two variables, which are quantitatively described using Hotelling's T2 and Q. In order to investigate the proper upper control limits, AKDE was utilised to estimate the underlying probability density functions of T2 and Q by taking the nonlinearity of the hydraulic system variables into consideration. The advantages of the proposed approach for incipient fault detection are illustrated via a marine power plant lubrication system.

15.
Sensors (Basel) ; 23(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37430740

ABSTRACT

The electrical performance of the feed array is degraded because of the position deviation of the array elements caused by manufacturing and processing, which cannot meet the high performance feeding requirements of large feed arrays. In this paper, a radiation field model of the helical antenna array considering the position deviation of array elements is proposed to investigate the influence law of position deviation on the electrical performance of the feed array. With the established model, the rectangular planar array and the circular array of the helical antenna with a radiating cup are discussed and the relationship between electrical performance index and position deviation is established by numerical analysis and curve fitting method. The research results show that the position deviation of the antenna array elements will lead to the rise of the sidelobe level, the deviation of the beam pointing, and the increase of the return loss. The valuable simulation results provided by this work can be used in antenna engineering, guiding antenna designers to set optimal parameters when fabricating antennae.

16.
Molecules ; 28(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36838841

ABSTRACT

Palladium-catalyzed C-H activation reactions have attracted the attention of organic researchers due to their unique high selectivity, broad functional group tolerance, and high efficiency, and they are widely used in natural products and asymmetric synthesis. Here, we report an example of enantioselective C-H alkenylation between ß-alkyl phenylethylamine compounds and styrenes with Boc-L-lle-OH as the ligand and nosylamide as the directing group. This reaction is applicable to styrene containing various electron-deficient and electron-donating substitutions and may be utilized for the synthesis of benzoazepine compounds.


Subject(s)
Alkenes , Palladium , Catalysis , Kinetics , Ligands
17.
Pharm Biol ; 61(1): 1401-1412, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37667488

ABSTRACT

CONTEXT: Panax japonicus is the dried rhizome of Panax japonicus C.A. Mey. (Araliaceae). Saponins from Panax japonicus (SPJ) exhibit anti-oxidative and anti-aging effects. OBJECTIVE: We evaluated the neuroprotective effects of SPJ on aging rats. MATERIALS AND METHODS: Sprague-Dawley rats (18-months-old) were randomly divided into aging and SPJ groups (n = 8). Five-month-old rats were taken as the adult control (n = 8). The rats were fed a normal chow diet or the SPJ-containing diet (10 or 30 mg/kg) for 4 months. An in vitro model was established by d-galactose (d-Gal) in the SH-SY5Y cell line and pretreated with SPJ (25 and 50 µg/mL). The neuroprotection of SPJ was evaluated via Nissl staining, flow cytometry, transmission electron microscopy and Western blotting in vivo and in vitro. RESULTS: SPJ improved the neuronal degeneration and mitochondrial morphology that are associated with aging. Meanwhile, SPJ up-regulated the protein levels of mitofusin 2 (Mfn2) and optic atrophy 1 (Opa1) and down-regulated the protein level of dynamin-like protein 1 (Drp1) in the hippocampus of aging rats (p < 0.05 or p < 0.01 vs. 22 M). The in vitro studies also demonstrated that SPJ attenuated d-Gal-induced cell senescence concomitant with the improvement in mitochondrial function; SPJ, also up-regulated the Mfn2 and Opa1 protein levels, whereas the Drp1 protein level (p < 0.05 or p < 0.01 vs. d-Gal group) was down-regulated. DISCUSSION AND CONCLUSIONS: Further research on the elderly population will contribute to the development and utilization of SPJ for the treatment of neurodegenerative disorders.


Subject(s)
Neuroblastoma , Panax , Aged , Humans , Rats , Animals , Rats, Sprague-Dawley , Aging , Galactose , Mitochondria
18.
Entropy (Basel) ; 25(1)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36673310

ABSTRACT

Multimodal image fusion aims to retain valid information from different modalities, remove redundant information to highlight critical targets, and maintain rich texture details in the fused image. However, current image fusion networks only use simple convolutional layers to extract features, ignoring global dependencies and channel contexts. This paper proposes GRPAFusion, a multimodal image fusion framework based on gradient residual and pyramid attention. The framework uses multiscale gradient residual blocks to extract multiscale structural features and multigranularity detail features from the source image. The depth features from different modalities were adaptively corrected for inter-channel responses using a pyramid split attention module to generate high-quality fused images. Experimental results on public datasets indicated that GRPAFusion outperforms the current fusion methods in subjective and objective evaluations.

19.
Angew Chem Int Ed Engl ; 62(50): e202311778, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37933712

ABSTRACT

In contrast to edge-on and face-on orientations, end-on uniaxial conjugated polymers have the theoretical possibility of providing a macroscopic crystalline film. However, their fabrication is insurmountable due to sluggishly thermodynamic equilibrium states. Herein, we report the programmatic pathway to fabricate nanoarchitectonics on end-on uniaxial conjugated metallopolymers by surface-initiated simultaneous electrosynthesis and assembly. Self-assembled monolayer (SAM) with bottom-up oriented electroactive molecules as a temple allows orientation, stacking, and reactive addition of monomers triggered by switching alternative redox reactions as well as crystallization of small molecules. Repeating the same reaction can repair the unreactive site on the SAM and dynamically and statistically ensure maximum iterative coverage with ideal linear coefficients between optical or electrical responses and iterative times. The resulting nanoarchitectonics on uniaxially assembled end-on polymers over centimeter-sized areas have a subnanometer-uniform morphology and exhibit ultrahigh modulus as well as an inorganic indium tin oxides and the highest conductance among conjugated molecular monolayers. Their memristive devices provide quantitative electrical and optical responses as a function of molecular length, bias, and iterative junctions. Precise processing of nanoarchitectonics as an electrically assisted assembly or printing technique can present sophisticated optoelectric functions and dimensional batch-to-batch consistency for micro-sized organic materials and electronics.

20.
Angew Chem Int Ed Engl ; 62(4): e202216838, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36440880

ABSTRACT

The synthesis of crystalline polymer with a well-defined orientated state and a two-dimensional crystalline size beyond a micrometer will be essential to achieve the highest physical feature of polymer material but remain challenging. Herein, we show the synthesis of the crystalline unipolymer monolayer with an unusual ultrahigh modulus that is higher than the ITO substrate and high conductance by simultaneous electrosynthesis and manipulation. We find that the polymer monolayer has fully extended in the vertical and unidirectional orientation, which is proposed to approach their theoretically highest density, modulus, and conductivity among all aggregation formations of the current polymer. The modulus and current density can reach 40 and 1000 times higher than their amorphous counterpart. It is also found that these monolayers exhibit the bias- and length-dependent multiple charge states and asymmetrically negative differential resistance (NDR) effect, indicating that this unique molecular tailoring and ordering design is promising for multilevel resistive memory devices. Our work demonstrates the creation of a crystalline polymer monolayer for approaching the physical limit of polymer electronic materials and also provides an opportunity to challenge the synthetically iterative limit of an isolated ultra-long polymer.

SELECTION OF CITATIONS
SEARCH DETAIL