Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
Add more filters

Publication year range
1.
Genome Res ; 32(4): 778-790, 2022 04.
Article in English | MEDLINE | ID: mdl-35210353

ABSTRACT

More than 90% of genetic variants are rare in most modern sequencing studies, such as the Alzheimer's Disease Sequencing Project (ADSP) whole-exome sequencing (WES) data. Furthermore, 54% of the rare variants in ADSP WES are singletons. However, both single variant and unit-based tests are limited in their statistical power to detect an association between rare variants and phenotypes. To best use missense rare variants and investigate their biological effect, we examine their association with phenotypes in the context of protein structures. We developed a protein structure-based approach, protein optimized kernel evaluation of missense nucleotides (POKEMON), which evaluates rare missense variants based on their spatial distribution within a protein rather than their allele frequency. The hypothesis behind this test is that the three-dimensional spatial distribution of variants within a protein structure provides functional context to power an association test. POKEMON identified three candidate genes (TREM2, SORL1, and EXOC3L4) and another suggestive gene from the ADSP WES data. For TREM2 and SORL1, two known Alzheimer's disease (AD) genes, the signal from the spatial cluster is stable even if we exclude known AD risk variants, indicating the presence of additional low-frequency risk variants within these genes. EXOC3L4 is a novel AD risk gene that has a cluster of variants primarily shared by case subjects around the Sec6 domain. This cluster is also validated in an independent replication data set and a validation data set with a larger sample size.


Subject(s)
Alzheimer Disease , Alzheimer Disease/genetics , Gene Frequency , Genetic Predisposition to Disease , Humans , LDL-Receptor Related Proteins/genetics , LDL-Receptor Related Proteins/metabolism , Membrane Transport Proteins/genetics , Mutation, Missense , Phenotype , Exome Sequencing
2.
Hum Mol Genet ; 31(R1): R62-R72, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35943817

ABSTRACT

Non-coding genetic variants outside of protein-coding genome regions play an important role in genetic and epigenetic regulation. It has become increasingly important to understand their roles, as non-coding variants often make up the majority of top findings of genome-wide association studies (GWAS). In addition, the growing popularity of disease-specific whole-genome sequencing (WGS) efforts expands the library of and offers unique opportunities for investigating both common and rare non-coding variants, which are typically not detected in more limited GWAS approaches. However, the sheer size and breadth of WGS data introduce additional challenges to predicting functional impacts in terms of data analysis and interpretation. This review focuses on the recent approaches developed for efficient, at-scale annotation and prioritization of non-coding variants uncovered in WGS analyses. In particular, we review the latest scalable annotation tools, databases and functional genomic resources for interpreting the variant findings from WGS based on both experimental data and in silico predictive annotations. We also review machine learning-based predictive models for variant scoring and prioritization. We conclude with a discussion of future research directions which will enhance the data and tools necessary for the effective functional analyses of variants identified by WGS to improve our understanding of disease etiology.


Subject(s)
Epigenesis, Genetic , Genome-Wide Association Study , Whole Genome Sequencing , Genomics
3.
Bioinformatics ; 39(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-37947320

ABSTRACT

SUMMARY: Preparing functional genomic (FG) data with diverse assay types and file formats for integration into analysis workflows that interpret genome-wide association and other studies is a significant and time-consuming challenge. Here we introduce hipFG (Harmonization and Integration Pipeline for Functional Genomics), an automatically customized pipeline for efficient and scalable normalization of heterogenous FG data collections into standardized, indexed, rapidly searchable analysis-ready datasets while accounting for FG datatypes (e.g. chromatin interactions, genomic intervals, quantitative trait loci). AVAILABILITY AND IMPLEMENTATION: hipFG is freely available at https://bitbucket.org/wanglab-upenn/hipFG. A Docker container is available at https://hub.docker.com/r/wanglab/hipfg.


Subject(s)
Genome-Wide Association Study , Software , Genomics , Chromatin , Quantitative Trait Loci
4.
Alzheimers Dement ; 20(2): 1123-1136, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37881831

ABSTRACT

INTRODUCTION: The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site Alzheimer's Genomics Database (GenomicsDB) is a public knowledge base of Alzheimer's disease (AD) genetic datasets and genomic annotations. METHODS: GenomicsDB uses a custom systems architecture to adopt and enforce rigorous standards that facilitate harmonization of AD-relevant genome-wide association study summary statistics datasets with functional annotations, including over 230 million annotated variants from the AD Sequencing Project. RESULTS: GenomicsDB generates interactive reports compiled from the harmonized datasets and annotations. These reports contextualize AD-risk associations in a broader functional genomic setting and summarize them in the context of functionally annotated genes and variants. DISCUSSION: Created to make AD-genetics knowledge more accessible to AD researchers, the GenomicsDB is designed to guide users unfamiliar with genetic data in not only exploring but also interpreting this ever-growing volume of data. Scalable and interoperable with other genomics resources using data technology standards, the GenomicsDB can serve as a central hub for research and data analysis on AD and related dementias. HIGHLIGHTS: The National Institute on Aging Genetics of Alzheimer's Disease Data Storage Site (NIAGADS) offers to the public a unique, disease-centric collection of AD-relevant GWAS summary statistics datasets. Interpreting these data is challenging and requires significant bioinformatics expertise to standardize datasets and harmonize them with functional annotations on genome-wide scales. The NIAGADS Alzheimer's GenomicsDB helps overcome these challenges by providing a user-friendly public knowledge base for AD-relevant genetics that shares harmonized, annotated summary statistics datasets from the NIAGADS repository in an interpretable, easily searchable format.


Subject(s)
Alzheimer Disease , United States , Humans , Alzheimer Disease/genetics , Genome-Wide Association Study , National Institute on Aging (U.S.) , Genomics , Databases, Factual , Genetic Predisposition to Disease/genetics
5.
Alzheimers Dement ; 20(1): 253-265, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37578203

ABSTRACT

INTRODUCTION: Multiple infectious agents, including viruses, bacteria, fungi, and protozoa, have been linked to Alzheimer's disease (AD) risk by independent lines of evidence. We explored this association by comparing the frequencies of viral species identified in a large sample of AD cases and controls. METHODS: DNA sequence reads that did not align to the human genome in sequences were mapped to viral reference sequences, quantified, and then were tested for association with AD in whole exome sequences (WES) and whole genome sequences (WGS) datasets. RESULTS: Several viruses were significant predictors of AD according to the machine learning classifiers. Subsequent regression analyses showed that herpes simplex type 1 (HSV-1) (odds ratio [OR] = 3.71, p = 8.03 × 10-4) and human papillomavirus 71 (HPV-71; OR = 3.56, p = 0.02), were significantly associated with AD after Bonferroni correction. The phylogenetic-related cluster of Herpesviridae was significantly associated with AD in several strata of the data (p < 0.01). DISCUSSION: Our results support the hypothesis that viral infection, especially HSV-1, is associated with AD risk.


Subject(s)
Alzheimer Disease , Herpes Simplex , Herpesvirus 1, Human , Humans , Alzheimer Disease/complications , Phylogeny , Herpesvirus 1, Human/genetics , DNA
6.
Alzheimers Dement ; 20(2): 1250-1267, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37984853

ABSTRACT

BACKGROUND: Women demonstrate a memory advantage when cognitively healthy yet lose this advantage to men in Alzheimer's disease. However, the genetic underpinnings of this sex difference in memory performance remain unclear. METHODS: We conducted the largest sex-aware genetic study on late-life memory to date (Nmales  = 11,942; Nfemales  = 15,641). Leveraging harmonized memory composite scores from four cohorts of cognitive aging and AD, we performed sex-stratified and sex-interaction genome-wide association studies in 24,216 non-Hispanic White and 3367 non-Hispanic Black participants. RESULTS: We identified three sex-specific loci (rs67099044-CBLN2, rs719070-SCHIP1/IQCJ-SCHIP), including an X-chromosome locus (rs5935633-EGL6/TCEANC/OFD1), that associated with memory. Additionally, we identified heparan sulfate signaling as a sex-specific pathway and found sex-specific genetic correlations between memory and cardiovascular, immune, and education traits. DISCUSSION: This study showed memory is highly and comparably heritable across sexes, as well as highlighted novel sex-specific genes, pathways, and genetic correlations that related to late-life memory. HIGHLIGHTS: Demonstrated the heritable component of late-life memory is similar across sexes. Identified two genetic loci with a sex-interaction with baseline memory. Identified an X-chromosome locus associated with memory decline in females. Highlighted sex-specific candidate genes and pathways associated with memory. Revealed sex-specific shared genetic architecture between memory and complex traits.


Subject(s)
Alzheimer Disease , Cognitive Aging , Humans , Male , Female , Genome-Wide Association Study , Alzheimer Disease/genetics , Cognition , Sex Characteristics
7.
Alzheimers Dement ; 20(2): 1268-1283, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37985223

ABSTRACT

INTRODUCTION: Although large-scale genome-wide association studies (GWAS) have been conducted on AD, few have been conducted on continuous measures of memory performance and memory decline. METHODS: We conducted a cross-ancestry GWAS on memory performance (in 27,633 participants) and memory decline (in 22,365 participants; 129,201 observations) by leveraging harmonized cognitive data from four aging cohorts. RESULTS: We found high heritability for two ancestry backgrounds. Further, we found a novel ancestry locus for memory decline on chromosome 4 (rs6848524) and three loci in the non-Hispanic Black ancestry group for memory performance on chromosomes 2 (rs111471504), 7 (rs4142249), and 15 (rs74381744). In our gene-level analysis, we found novel genes for memory decline on chromosomes 1 (SLC25A44), 11 (BSX), and 15 (DPP8). Memory performance and memory decline shared genetic architecture with AD-related traits, neuropsychiatric traits, and autoimmune traits. DISCUSSION: We discovered several novel loci, genes, and genetic correlations associated with late-life memory performance and decline. HIGHLIGHTS: Late-life memory has high heritability that is similar across ancestries. We discovered four novel variants associated with late-life memory. We identified four novel genes associated with late-life memory. Late-life memory shares genetic architecture with psychiatric/autoimmune traits.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Genome-Wide Association Study , Endophenotypes , Genetic Predisposition to Disease/genetics , Cognition , Memory Disorders/genetics , Polymorphism, Single Nucleotide/genetics
8.
Alzheimers Dement ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958117

ABSTRACT

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, P = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at P < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.

9.
Bioinformatics ; 38(19): 4530-4536, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35980155

ABSTRACT

MOTIVATION: Cell-type deconvolution of bulk tissue RNA sequencing (RNA-seq) data is an important step toward understanding the variations in cell-type composition among disease conditions. Owing to recent advances in single-cell RNA sequencing (scRNA-seq) and the availability of large amounts of bulk RNA-seq data in disease-relevant tissues, various deconvolution methods have been developed. However, the performance of existing methods heavily relies on the quality of information provided by external data sources, such as the selection of scRNA-seq data as a reference and prior biological information. RESULTS: We present the Integrated and Robust Deconvolution (InteRD) algorithm to infer cell-type proportions from target bulk RNA-seq data. Owing to the innovative use of penalized regression with a new evaluation criterion for deconvolution, InteRD has three primary advantages. First, it is able to effectively integrate deconvolution results from multiple scRNA-seq datasets. Second, InteRD calibrates estimates from reference-based deconvolution by taking into account extra biological information as priors. Third, the proposed algorithm is robust to inaccurate external information imposed in the deconvolution system. Extensive numerical evaluations and real-data applications demonstrate that InteRD yields more accurate and robust cell-type proportion estimates that agree well with known biology. AVAILABILITY AND IMPLEMENTATION: The proposed InteRD framework is implemented in R and the package is available at https://cran.r-project.org/web/packages/InteRD/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
RNA , Single-Cell Analysis , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Software , Sequence Analysis, RNA/methods
10.
Brain ; 145(7): 2541-2554, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35552371

ABSTRACT

Approximately 30% of elderly adults are cognitively unimpaired at time of death despite the presence of Alzheimer's disease neuropathology at autopsy. Studying individuals who are resilient to the cognitive consequences of Alzheimer's disease neuropathology may uncover novel therapeutic targets to treat Alzheimer's disease. It is well established that there are sex differences in response to Alzheimer's disease pathology, and growing evidence suggests that genetic factors may contribute to these differences. Taken together, we sought to elucidate sex-specific genetic drivers of resilience. We extended our recent large scale genomic analysis of resilience in which we harmonized cognitive data across four cohorts of cognitive ageing, in vivo amyloid PET across two cohorts, and autopsy measures of amyloid neuritic plaque burden across two cohorts. These data were leveraged to build robust, continuous resilience phenotypes. With these phenotypes, we performed sex-stratified [n (males) = 2093, n (females) = 2931] and sex-interaction [n (both sexes) = 5024] genome-wide association studies (GWAS), gene and pathway-based tests, and genetic correlation analyses to clarify the variants, genes and molecular pathways that relate to resilience in a sex-specific manner. Estimated among cognitively normal individuals of both sexes, resilience was 20-25% heritable, and when estimated in either sex among cognitively normal individuals, resilience was 15-44% heritable. In our GWAS, we identified a female-specific locus on chromosome 10 [rs827389, ß (females) = 0.08, P (females) = 5.76 × 10-09, ß (males) = -0.01, P(males) = 0.70, ß (interaction) = 0.09, P (interaction) = 1.01 × 10-04] in which the minor allele was associated with higher resilience scores among females. This locus is located within chromatin loops that interact with promoters of genes involved in RNA processing, including GATA3. Finally, our genetic correlation analyses revealed shared genetic architecture between resilience phenotypes and other complex traits, including a female-specific association with frontotemporal dementia and male-specific associations with heart rate variability traits. We also observed opposing associations between sexes for multiple sclerosis, such that more resilient females had a lower genetic susceptibility to multiple sclerosis, and more resilient males had a higher genetic susceptibility to multiple sclerosis. Overall, we identified sex differences in the genetic architecture of resilience, identified a female-specific resilience locus and highlighted numerous sex-specific molecular pathways that may underly resilience to Alzheimer's disease pathology. This study illustrates the need to conduct sex-aware genomic analyses to identify novel targets that are unidentified in sex-agnostic models. Our findings support the theory that the most successful treatment for an individual with Alzheimer's disease may be personalized based on their biological sex and genetic context.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Multiple Sclerosis , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cognition , Cognitive Dysfunction/genetics , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Sex Characteristics
11.
Alzheimers Dement ; 19(9): 4187-4195, 2023 09.
Article in English | MEDLINE | ID: mdl-37390458

ABSTRACT

INTRODUCTION: Sequencing efforts to identify genetic variants and pathways underlying Alzheimer's disease (AD) have largely focused on late-onset AD although early-onset AD (EOAD), accounting for ∼10% of cases, is largely unexplained by known mutations, resulting in a lack of understanding of its molecular etiology. METHODS: Whole-genome sequencing and harmonization of clinical, neuropathological, and biomarker data of over 5000 EOAD cases of diverse ancestries. RESULTS: A publicly available genomics resource for EOAD with extensive harmonized phenotypes. Primary analysis will (1) identify novel EOAD risk loci and druggable targets; (2) assess local-ancestry effects; (3) create EOAD prediction models; and (4) assess genetic overlap with cardiovascular and other traits. DISCUSSION: This novel resource complements over 50,000 control and late-onset AD samples generated through the Alzheimer's Disease Sequencing Project (ADSP). The harmonized EOAD/ADSP joint call will be available through upcoming ADSP data releases and will allow for additional analyses across the full onset range. HIGHLIGHTS: Sequencing efforts to identify genetic variants and pathways underlying Alzheimer's disease (AD) have largely focused on late-onset AD although early-onset AD (EOAD), accounting for ∼10% of cases, is largely unexplained by known mutations. This results in a significant lack of understanding of the molecular etiology of this devastating form of the disease. The Early-Onset Alzheimer's Disease Whole-genome Sequencing Project is a collaborative initiative to generate a large-scale genomics resource for early-onset Alzheimer's disease with extensive harmonized phenotype data. Primary analyses are designed to (1) identify novel EOAD risk and protective loci and druggable targets; (2) assess local-ancestry effects; (3) create EOAD prediction models; and (4) assess genetic overlap with cardiovascular and other traits. The harmonized genomic and phenotypic data from this initiative will be available through NIAGADS.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Mutation/genetics , Age of Onset
12.
Alzheimers Dement ; 19(12): 5550-5562, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37260021

ABSTRACT

INTRODUCTION: Most Alzheimer's disease (AD) loci have been discovered in individuals with European ancestry (EA). METHODS: We applied principal component analysis using Gaussian mixture models and an Ashkenazi Jewish (AJ) reference genome-wide association study (GWAS) data set to identify Ashkenazi Jews ascertained in GWAS (n = 42,682), whole genome sequencing (WGS, n = 16,815), and whole exome sequencing (WES, n = 20,504) data sets. The association of AD was tested genome wide (GW) in the GWAS and WGS data sets and exome wide (EW) in all three data sets (EW). Gene-based analyses were performed using aggregated rare variants. RESULTS: In addition to apolipoprotein E (APOE), GW analyses (1355 cases and 1661 controls) revealed associations with TREM2 R47H (p = 9.66 × 10-9 ), rs541586606 near RAB3B (p = 5.01 × 10-8 ), and rs760573036 between SPOCK3 and ANXA10 (p = 6.32 × 10-8 ). In EW analyses (1504 cases and 2047 controls), study-wide significant association was observed with rs1003710 near SMAP2 (p = 1.91 × 10-7 ). A significant gene-based association was identified with GIPR (p = 7.34 × 10-7 ). DISCUSSION: Our results highlight the efficacy of founder populations for AD genetic studies.


Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Humans , Jews/genetics , Genetic Predisposition to Disease/genetics , Alzheimer Disease/genetics , Ethnicity , Polymorphism, Single Nucleotide/genetics
13.
Alzheimers Dement ; 18(2): 294-306, 2022 02.
Article in English | MEDLINE | ID: mdl-34152079

ABSTRACT

INTRODUCTION: Findings regarding the association between mitochondrial DNA (mtDNA) variants and Alzheimer's disease (AD) are inconsistent. METHODS: We developed a pipeline for accurate assembly and variant calling in mitochondrial genomes embedded within whole exome sequences (WES) from 10,831 participants from the Alzheimer's Disease Sequencing Project (ADSP). Association of AD risk was evaluated with each mtDNA variant and variants located in 1158 nuclear genes related to mitochondrial function using the SCORE test. Gene-based tests were performed using SKAT-O. RESULTS: Analysis of 4220 mtDNA variants revealed study-wide significant association of AD with a rare MT-ND4L variant (rs28709356 C>T; minor allele frequency = 0.002; P = 7.3 × 10-5 ) as well as with MT-ND4L in a gene-based test (P = 6.71 × 10-5 ). Significant association was also observed with a MT-related nuclear gene, TAMM41, in a gene-based test (P = 2.7 × 10-5 ). The expression of TAMM41 was lower in AD cases than controls (P = .00046) or mild cognitive impairment cases (P = .03). DISCUSSION: Significant findings in MT-ND4L and TAMM41 provide evidence for a role of mitochondria in AD.


Subject(s)
Alzheimer Disease , Mitochondrial Proteins , NADH Dehydrogenase , Alzheimer Disease/genetics , DNA, Mitochondrial/genetics , Gene Frequency , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , NADH Dehydrogenase/genetics , Exome Sequencing
14.
Alzheimers Dement ; 18(11): 2042-2054, 2022 11.
Article in English | MEDLINE | ID: mdl-35142023

ABSTRACT

INTRODUCTION: The apolipoprotein E (APOE) ɛ2 allele reduces risk against Alzheimer's disease (AD) but mechanisms underlying this effect are largely unknown. METHODS: We conducted a genome-wide association study for AD among 2096 ɛ2 carriers. The potential role of the top-ranked gene and complement 4 (C4) proteins, which were previously linked to AD in ɛ2 carriers, was investigated using human isogenic APOE allele-specific induced pluripotent stem cell (iPSC)-derived neurons and astrocytes and in 224 neuropathologically examined human brains. RESULTS: PPP2CB rs117296832 was the second most significantly associated single nucleotide polymorphism among ɛ2 carriers (P = 1.1 × 10-7 ) and the AD risk allele increased PPP2CB expression in blood (P = 6.6 × 10-27 ). PPP2CB expression was correlated with phosphorylated tau231/total tau ratio (P = .01) and expression of C4 protein subunits C4A/B (P = 2.0 × 10-4 ) in the iPSCs. PPP2CB (subunit of protein phosphatase 2A) and C4b protein levels were correlated in brain (P = 3.3 × 10-7 ). DISCUSSION: PP2A may be linked to classical complement activation leading to AD-related tau pathology.


Subject(s)
Alzheimer Disease , Humans , Apolipoprotein E2/genetics , Alzheimer Disease/pathology , Protein Phosphatase 2/genetics , Genome-Wide Association Study , Apolipoproteins E/genetics , Complement C4/genetics , Apolipoprotein E4/genetics , tau Proteins/genetics
15.
Alzheimers Dement ; 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35770850

ABSTRACT

INTRODUCTION: Variants in the tau gene (MAPT) region are associated with breast cancer in women and Alzheimer's disease (AD) among persons lacking apolipoprotein E ε4 (ε4-). METHODS: To identify novel genes associated with tau-related pathology, we conducted two genome-wide association studies (GWAS) for AD, one among 10,340 ε4- women in the Alzheimer's Disease Genetics Consortium (ADGC) and another in 31 members (22 women) of a consanguineous Hutterite kindred. RESULTS: We identified novel associations of AD with MGMT variants in the ADGC (rs12775171, odds ratio [OR] = 1.4, P = 4.9 × 10-8 ) and Hutterite (rs12256016 and rs2803456, OR = 2.0, P = 1.9 × 10-14 ) datasets. Multi-omics analyses showed that the most significant and largest number of associations among the single nucleotide polymorphisms (SNPs), DNA-methylated CpGs, MGMT expression, and AD-related neuropathological traits were observed among women. Furthermore, promoter capture Hi-C analyses revealed long-range interactions of the MGMT promoter with MGMT SNPs and CpG sites. DISCUSSION: These findings suggest that epigenetically regulated MGMT expression is involved in AD pathogenesis, especially in women.

16.
Alzheimers Dement ; 18(12): 2458-2467, 2022 12.
Article in English | MEDLINE | ID: mdl-35258170

ABSTRACT

INTRODUCTION: Progranulin (GRN) mutations occur in frontotemporal lobar degeneration (FTLD) and in Alzheimer's disease (AD), often with TDP-43 pathology. METHODS: We determined the frequency of rs5848 and rare, pathogenic GRN mutations in two autopsy and one family cohort. We compared Braak stage, ß-amyloid load, hyperphosphorylated tau (PHFtau) tangle density and TDP-43 pathology in GRN carriers and non-carriers. RESULTS: Pathogenic GRN mutations were more frequent in all cohorts compared to the Genome Aggregation Database (gnomAD), but there was no evidence for association with AD. Pathogenic GRN carriers had significantly higher PHFtau tangle density adjusting for age, sex and APOE ε4 genotype. AD patients with rs5848 had higher frequencies of hippocampal sclerosis and TDP-43 deposits. Twenty-two rare, pathogenic GRN variants were observed in the family cohort. DISCUSSION: GRN mutations in clinical and neuropathological AD increase the burden of tau-related brain pathology but show no specific association with ß-amyloid load or AD.


Subject(s)
Alzheimer Disease , Frontotemporal Lobar Degeneration , Humans , Progranulins/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Intercellular Signaling Peptides and Proteins/genetics , Mutation/genetics , Frontotemporal Lobar Degeneration/genetics , DNA-Binding Proteins/genetics
17.
Bioinformatics ; 36(12): 3879-3881, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32330239

ABSTRACT

SUMMARY: We report Spark-based INFERence of the molecular mechanisms of NOn-coding genetic variants (SparkINFERNO), a scalable bioinformatics pipeline characterizing non-coding genome-wide association study (GWAS) association findings. SparkINFERNO prioritizes causal variants underlying GWAS association signals and reports relevant regulatory elements, tissue contexts and plausible target genes they affect. To achieve this, the SparkINFERNO algorithm integrates GWAS summary statistics with large-scale collection of functional genomics datasets spanning enhancer activity, transcription factor binding, expression quantitative trait loci and other functional datasets across more than 400 tissues and cell types. Scalability is achieved by an underlying API implemented using Apache Spark and Giggle-based genomic indexing. We evaluated SparkINFERNO on large GWASs and show that SparkINFERNO is more than 60 times efficient and scales with data size and amount of computational resources. AVAILABILITY AND IMPLEMENTATION: SparkINFERNO runs on clusters or a single server with Apache Spark environment, and is available at https://bitbucket.org/wanglab-upenn/SparkINFERNO or https://hub.docker.com/r/wanglab/spark-inferno. CONTACT: lswang@pennmedicine.upenn.edu. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Algorithms , Genomics , Software
18.
Cytometry A ; 99(2): 133-144, 2021 02.
Article in English | MEDLINE | ID: mdl-33476090

ABSTRACT

Automated clustering workflows are increasingly used for the analysis of high parameter flow cytometry data. This trend calls for algorithms which are able to quickly process tens of millions of data points, to compare results across subjects or time points, and to provide easily actionable interpretations of the results. To this end, we created Tailor, a model-based clustering algorithm specialized for flow cytometry data. Our approach leverages a phenotype-aware binning scheme to provide a coarse model of the data, which is then refined using a multivariate Gaussian mixture model. We benchmark Tailor using a simulation study and two flow cytometry data sets, and show that the results are robust to moderate departures from normality and inter-sample variation. Moreover, Tailor provides automated, non-overlapping annotations of its clusters, which facilitates interpretation of results and downstream analysis. Tailor is released as an R package, and the source code is publicly available at www.github.com/matei-ionita/Tailor.


Subject(s)
Algorithms , Software , Cluster Analysis , Flow Cytometry , Humans , Normal Distribution
19.
Brain ; 143(8): 2561-2575, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32844198

ABSTRACT

Approximately 30% of older adults exhibit the neuropathological features of Alzheimer's disease without signs of cognitive impairment. Yet, little is known about the genetic factors that allow these potentially resilient individuals to remain cognitively unimpaired in the face of substantial neuropathology. We performed a large, genome-wide association study (GWAS) of two previously validated metrics of cognitive resilience quantified using a latent variable modelling approach and representing better-than-predicted cognitive performance for a given level of neuropathology. Data were harmonized across 5108 participants from a clinical trial of Alzheimer's disease and three longitudinal cohort studies of cognitive ageing. All analyses were run across all participants and repeated restricting the sample to individuals with unimpaired cognition to identify variants at the earliest stages of disease. As expected, all resilience metrics were genetically correlated with cognitive performance and education attainment traits (P-values < 2.5 × 10-20), and we observed novel correlations with neuropsychiatric conditions (P-values < 7.9 × 10-4). Notably, neither resilience metric was genetically correlated with clinical Alzheimer's disease (P-values > 0.42) nor associated with APOE (P-values > 0.13). In single variant analyses, we observed a genome-wide significant locus among participants with unimpaired cognition on chromosome 18 upstream of ATP8B1 (index single nucleotide polymorphism rs2571244, minor allele frequency = 0.08, P = 2.3 × 10-8). The top variant at this locus (rs2571244) was significantly associated with methylation in prefrontal cortex tissue at multiple CpG sites, including one just upstream of ATPB81 (cg19596477; P = 2 × 10-13). Overall, this comprehensive genetic analysis of resilience implicates a putative role of vascular risk, metabolism, and mental health in protection from the cognitive consequences of neuropathology, while also providing evidence for a novel resilience gene along the bile acid metabolism pathway. Furthermore, the genetic architecture of resilience appears to be distinct from that of clinical Alzheimer's disease, suggesting that a shift in focus to molecular contributors to resilience may identify novel pathways for therapeutic targets.


Subject(s)
Aging/genetics , Alzheimer Disease/pathology , Brain/pathology , Cognitive Dysfunction/genetics , Cognitive Reserve/physiology , Aged, 80 and over , Aging/pathology , Chromosomes, Human, Pair 18/genetics , Female , Genome-Wide Association Study , Genotype , Humans , Male , Polymorphism, Single Nucleotide
20.
Genes Dev ; 27(12): 1406-20, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23756653

ABSTRACT

Cellular senescence is accompanied by dramatic changes in chromatin structure and gene expression. Using Saccharomyces cerevisiae mutants lacking telomerase (tlc1Δ) to model senescence, we found that with critical telomere shortening, the telomere-binding protein Rap1 (repressor activator protein 1) relocalizes to the upstream promoter regions of hundreds of new target genes. The set of new Rap1 targets at senescence (NRTS) is preferentially activated at senescence, and experimental manipulations of Rap1 levels indicate that it contributes directly to NRTS activation. A notable subset of NRTS includes the core histone-encoding genes; we found that Rap1 contributes to their repression and that histone protein levels decline at senescence. Rap1 and histones also display a target site-specific antagonism that leads to diminished nucleosome occupancy at the promoters of up-regulated NRTS. This antagonism apparently impacts the rate of senescence because underexpression of Rap1 or overexpression of the core histones delays senescence. Rap1 relocalization is not a simple consequence of lost telomere-binding sites, but rather depends on the Mec1 checkpoint kinase. Rap1 relocalization is thus a novel mechanism connecting DNA damage responses (DDRs) at telomeres to global changes in chromatin and gene expression while driving the pace of senescence.


Subject(s)
Chromatin/metabolism , Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Telomere-Binding Proteins/metabolism , Transcription Factors/metabolism , Histones/genetics , Microbial Viability , Protein Transport , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/genetics , Shelterin Complex , Telomere/genetics , Telomere/metabolism , Telomere-Binding Proteins/genetics , Transcription Factors/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL