Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 24(15): 4423-4432, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38568019

ABSTRACT

The HIV-1 envelope is a heavily glycosylated class 1 trimeric fusion protein responsible for viral entry into CD4+ immune cells. Developing neutralizing antibodies against the specific envelope glycans is an alternative method for antiviral therapies. This work presents the first-ever development and characterization of artificial neutralizing antibodies using molecular imprinting technology to recognize and bind to the envelope protein of HIV-1. The prepared envelope glycan-imprinted nanoparticles (GINPs) can successfully prevent HIV-1 from infecting target cells by shielding the glycans on the envelope protein. In vitro experiments showed that GINPs have strong affinity toward HIV-1 (Kd = 36.7 ± 2.2 nM) and possess high anti-interference and specificity. GINPs demonstrate broad inhibition activity against both tier 1 and tier 2 HIV-1 strains with a pM-level IC50 and exhibit a significant inhibitory effect on long-term viral replication by more than 95%. The strategy provides a promising method for the inhibition and therapy of HIV-1 infection.


Subject(s)
HIV Infections , HIV-1 , Humans , Antibodies, Neutralizing , HIV Antibodies/metabolism , Glycosylation , HIV Infections/drug therapy , Polysaccharides/metabolism
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000308

ABSTRACT

Viral infection generally induces polyclonal neutralizing antibody responses. However, how many lineages of antibody responses can fully represent the neutralization activities in sera has not been well studied. Using the newly designed stable HIV-1 Env trimer as hook, we isolated two distinct broadly neutralizing antibodies (bnAbs) from Chinese rhesus macaques infected with SHIV1157ipd3N4 for 5 years. One lineage of neutralizing antibodies (JT15 and JT16) targeted the V2-apex in the Env trimers, similar to the J038 lineage bnAbs identified in our previous study. The other lineage neutralizing antibody (JT18) targeted the V3 crown region in the Env, which strongly competed with human 447-52D. Each lineage antibody neutralized a different set of viruses. Interestingly, when the two neutralizing antibodies from different lineages isolated from the same macaque were combined, the mixture had a neutralization breath very similar to that from the cognate sera. Our study demonstrated that a minimum of two different neutralizing antibodies can fully recapitulate the serum neutralization breadth. This observation can have important implications in AIDS vaccine design.


Subject(s)
Antibodies, Neutralizing , HIV Antibodies , HIV-1 , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome , Macaca mulatta/immunology , Animals , HIV-1/immunology , HIV Antibodies/immunology , HIV Antibodies/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Humans , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/virology , HIV Infections/immunology , HIV Infections/virology , HIV Infections/blood , Simian Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Neutralization Tests
3.
Cell Death Dis ; 9(6): 578, 2018 05 21.
Article in English | MEDLINE | ID: mdl-29784961

ABSTRACT

Sarcodon imbricatus, a rare medicinal and edible fungus, has various pharmacological bioactivities. We investigated the effects of S. imbricatus polysaccharides (SIPS) on hematopoietic function and identified the underlying mechanisms using in vitro experiments with CHRF, K562, and bone marrow mononuclear cells (BMMNCs) and in vivo experiments with a mouse model of cyclophosphamide-induced hematopoietic dysfunction. We found that SIPS induced proliferation and differentiation of CHRF and K562 cells and upregulated the expression of hematopoietic-related proteins, including p90 ribosomal S6 kinases (RSK1p90), c-Myc, and ETS transcription factor, in the two cell lines. After 28 days of treatment, SIPS enhanced the bodyweight and thymus indices of the mice, alleviated enlargement of the spleen and liver, and contributed to the recovery of peripheral blood to normal levels. More importantly, the percentages of B lymphocytes and hematopoietic stem cells or hematopoietic progenitor cells were significantly elevated in bone marrow. Based on an antibody chip analysis and enzyme-linked immunosorbent assay, SIPS were found to successfully regulate 12 cytokines to healthy levels in serum and spleen. The cytokines included the following: interleukins 1Ra, 2, 3, 4, 5, and 6, tumor necrosis factor α, interferon-γ, granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF), C-C motif chemokine1, and monocyte chemoattractant protein-1. Moreover, SIPS upregulated the phosphorylation levels of janus kinase 2 (JAK2) and the signal transducer and activator of transcription 3 (STAT3) in the spleen, and similar results were validated in CHRF cells, K562 cells, and BMMNCs. The data indicate that SIPS activated the JAK2/STAT3 pathway, possibly by interactions among multiple cytokines, particularly G-CSF. We found that SIPS was remarkably beneficial to the bone marrow hematopoietic system, and we anticipate that it could improve myelosuppression induced by long-term radiotherapy or chemotherapy.


Subject(s)
Cyclophosphamide/toxicity , Fungi/chemistry , Granulocyte Colony-Stimulating Factor/metabolism , Hematopoietic Stem Cells/metabolism , Janus Kinase 2/metabolism , Polysaccharides/pharmacology , STAT3 Transcription Factor/metabolism , Animals , Body Weight/drug effects , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cytokines/blood , Hematopoiesis/drug effects , Hematopoietic Stem Cells/drug effects , Humans , K562 Cells , Male , Mice, Inbred BALB C , Signal Transduction/drug effects , Spleen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL