Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Nature ; 629(8010): 74-79, 2024 May.
Article in English | MEDLINE | ID: mdl-38693415

ABSTRACT

Within the family of two-dimensional dielectrics, rhombohedral boron nitride (rBN) is considerably promising owing to having not only the superior properties of hexagonal boron nitride1-4-including low permittivity and dissipation, strong electrical insulation, good chemical stability, high thermal conductivity and atomic flatness without dangling bonds-but also useful optical nonlinearity and interfacial ferroelectricity originating from the broken in-plane and out-of-plane centrosymmetry5-23. However, the preparation of large-sized single-crystal rBN layers remains a challenge24-26, owing to the requisite unprecedented growth controls to coordinate the lattice orientation of each layer and the sliding vector of every interface. Here we report a facile methodology using bevel-edge epitaxy to prepare centimetre-sized single-crystal rBN layers with exact interlayer ABC stacking on a vicinal nickel surface. We realized successful accurate fabrication over a single-crystal nickel substrate with bunched step edges of the terrace facet (100) at the bevel facet (110), which simultaneously guided the consistent boron-nitrogen bond orientation in each BN layer and the rhombohedral stacking of BN layers via nucleation near each bevel facet. The pure rhombohedral phase of the as-grown BN layers was verified, and consequently showed robust, homogeneous and switchable ferroelectricity with a high Curie temperature. Our work provides an effective route for accurate stacking-controlled growth of single-crystal two-dimensional layers and presents a foundation for applicable multifunctional devices based on stacked two-dimensional materials.

2.
Ecotoxicol Environ Saf ; 271: 115968, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218107

ABSTRACT

The physicochemical properties, chemical fractions of six metals (Cu, Zn, Pb, Cd, Cr, and Mn), and microbial communities of soil around a typical sanitary landfill were analyzed. The results indicate that soils around the landfill were from neutral to weak alkalinity. The contents of organic matter (OM), total nitrogen (TN), total phosphorous (TP), and activities of catalase, cellulase, and urease were significantly higher in landfill soils than those in background soils. Negative correlations were found between pH and metals. Cr was the dominant metal. Cu, Pb, Cr, and Mn were accumulated in the nearby farmland soils. Cd had the highest percentage of exchangeable fraction (33.7%-51.8%) in landfill and farmland soils, suggesting a high bioavailability to the soil environment affected by the landfill. Pb, Cr, and Mn existed mostly in oxidable fraction, and Cu and Zn were dominant in residual fraction. There was a low risk of soil metals around the landfill based on the RI values, while according to RAC classification, Cd had high to very high environmental risk. The MisSeq sequencing results showed that Actinobacteria, Proteobacteria, Chloroflexi, and Acidobacteria were the dominant phyla of bacteria, and the most abundant phylum of fungi was Ascomycota. The NMDS analysis revealed that the landfill could influence soil fungal communities more intensely than bacterial communities. TN, cellulase, and bioavailable metals (Pb-Bio and Cr-Bio) were identified to have main influences on microbial communities. Pb-Bio was the most dominant driving factor for bacterial community structures. For fungi, Pb-Bio was significantly negatively related to Olpidiomycota and Cr-Bio had a significantly negative correlation with Ascomycota. It manifests that bioavailable metals play important roles in assessing environmental risks and microbial community structures of soil around landfill.


Subject(s)
Cellulases , Metals, Heavy , Microbiota , Soil Pollutants , Soil/chemistry , Metals, Heavy/toxicity , Metals, Heavy/analysis , Cadmium/analysis , Lead/analysis , Soil Pollutants/toxicity , Soil Pollutants/analysis , Bacteria/genetics , Fungi , Waste Disposal Facilities , Risk Assessment , China , Environmental Monitoring
3.
Environ Geochem Health ; 46(3): 106, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446315

ABSTRACT

In order to understand the pollution status of metals in the riparian soils along the Wujiang River, 26 sampling sites in the mainstream and tributary streams were selected for investigation. The geo-accumulation index (Igeo), Nemerow integrated pollution index, and potential ecological risk index were applied to evaluate the contamination status and ecological risks of metals. Results revealed that the average concentrations of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn were 12.20, 0.51, 84.01, 57.42, 922.57, 38.37, 38.06, and 127.82 mg/kg, respectively. The metal contamination degree and ecological risks in the upper reaches were significantly higher than those in the middle and lower reaches of the Wujiang River. Cd was the dominant contamination metal. Significant non-carcinogenic and carcinogenic risks of metals were found in children based on the hazard index and carcinogenic risk. As was the main non-carcinogenic and carcinogenic pollutant metal in both adults and children. According to principal component analysis, hierarchical clustering analysis, and absolute principal component scores-multiple linear regression, anthropogenic sources (mining and agricultural activities) contributed most to Zn, Pb, Cr, Cd, Cu, and Ni, with contribution rates of 89.14, 82.32, 74.46, 72.12, 68.52, and 61.02%, respectively. Natural sources contributed most to Mn, with a contribution rate of 83.07%. Unidentified sources contributed most to As, with a contribution rate of 47.27%.


Subject(s)
Cadmium , Soil , Adult , Child , Humans , Lead , Rivers , China , Risk Assessment
4.
Nat Mater ; 21(11): 1263-1268, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36109673

ABSTRACT

The production of large-area twisted bilayer graphene (TBG) with controllable angles is a prerequisite for proceeding with its massive applications. However, most of the prevailing strategies to fabricate twisted bilayers face great challenges, where the transfer methods are easily stuck by interfacial contamination, and direct growth methods lack the flexibility in twist-angle design. Here we develop an effective strategy to grow centimetre-scale TBG with arbitrary twist angles (accuracy, <1.0°). The success in accurate angle control is realized by an angle replication from two prerotated single-crystal Cu(111) foils to form a Cu/TBG/Cu sandwich structure, from which the TBG can be isolated by a custom-developed equipotential surface etching process. The accuracy and consistency of the twist angles are unambiguously illustrated by comprehensive characterization techniques, namely, optical spectroscopy, electron microscopy, photoemission spectroscopy and photocurrent spectroscopy. Our work opens an accessible avenue for the designed growth of large-scale two-dimensional twisted bilayers and thus lays the material foundation for the future applications of twistronics at the integration level.

5.
Molecules ; 28(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36770595

ABSTRACT

The review aims to summarize recent reports of stimuli-responsive nanomaterials based on molecularly imprinted polymers (MIPs) and discuss their applications in biomedicine. In the past few decades, MIPs have been proven to show widespread applications as new molecular recognition materials. The development of stimuli-responsive nanomaterials has successfully endowed MIPs with not only affinity properties comparable to those of natural antibodies but also the ability to respond to external stimuli (stimuli-responsive MIPs). In this review, we will discuss the synthesis of MIPs, the classification of stimuli-responsive MIP nanomaterials (MIP-NMs), their dynamic mechanisms, and their applications in biomedicine, including bioanalysis and diagnosis, biological imaging, drug delivery, disease intervention, and others. This review mainly focuses on studies of smart MIP-NMs with biomedical perspectives after 2015. We believe that this review will be helpful for the further exploration of stimuli-responsive MIP-NMs and contribute to expanding their practical applications especially in biomedicine in the near future.


Subject(s)
Molecular Imprinting , Nanostructures , Molecular Imprinting/methods , Polymers , Drug Delivery Systems , Molecularly Imprinted Polymers
6.
Environ Monit Assess ; 193(9): 566, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34383130

ABSTRACT

While increased tourist demand has brought economic benefits to tourist destinations, it has also put tremendous pressure on tourism-related ecological environments. Therefore, the relationship between regional urban tourism's economic benefits and tourism ecologies must be considered by increasing the ecological security levels of regional urban tourism and promoting sustainable tourism development. This paper defines the ecological security of regional urban tourism, constructs an indicator system of said ecological security based on a pressure-state-response social-economic-environment (PSR-SEE) model, uses the entropy method to objectively assign weights to the indicator system, constructs a dynamic multi-scenario simulation model to assess ecological security under continuous, economic priority and various ecological protection scenarios, employs ArcGIS software to analyze the spatial distribution patterns of the ecological security of regional urban tourism, and uses a standard deviation ellipse method to analyze the space-time evolutionary track of the ecological security of regional urban tourism. The index system is applied to 16 cities in Hubei Province to measure the ecological security levels and test the viability of the system. The present research focuses on the space-time evolution of the ecological security of regional urban tourism, addresses the contradictions between socioeconomic development and the ecological security of regional urban tourism, provides an important reference for tourism destination planning, and can assist in improving the levels of the ecological security of regional urban tourism to promote sustainable tourism development.


Subject(s)
Ecosystem , Tourism , China , Cities , Conservation of Natural Resources , Environmental Monitoring , Sustainable Development
7.
Neurochem Res ; 40(11): 2252-61, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26386845

ABSTRACT

Previously, we reported that nicotine withdrawal (NT) significantly increased pain sensitivity in rats. Recent reports suggest that fractalkine is involved in the spinal cord neuron-to-microglia activation via CX3CR1 signaling. However, its contribution to NT-induced hyperalgesia and the underlying mechanisms have yet to be elucidated. In the present study, a rat model of NT was used to test the changes in CX3CR1 expression in the spinal cord. We also evaluated the effect of the CX3CR1 neutralizing antibody on spinal microglial activity, the expression of phosphorylated p38-mitogen-activated protein kinase (p-p38-MAPK) and heat-induced pain responses. We established a NT model via subcutaneous injection of pure nicotine (3 mg/kg), three times daily for 7 days. The expression of CX3CR1 was studied by Western blot and immunofluorescence staining. Following NT, the rats received daily intrathecal injections of CX3CR1 neutralizing antibody for 3 days. The change in paw withdrawal latency (PWL) was observed. The activation of microglia and the expression of p-p38-MAPK were investigated by Western blot and immunofluorescence staining. The expression of CX3CR1 was significantly increased after NT and co-localized with IBA-1. NT rats treated with CX3CR1 neutralizing antibody showed significantly increased PWL on day 4 after NT. Furthermore, the activation of microglia and the expression of p-p38-MAPK in the spinal cord were suppressed. These results indicate that microglial CX3CR1/p38MAPK pathway is critical for the development of pain hypersensitivity after NT.


Subject(s)
Hyperalgesia/physiopathology , Nicotine/adverse effects , Nicotinic Agonists/adverse effects , Receptors, Chemokine/metabolism , Substance Withdrawal Syndrome/physiopathology , p38 Mitogen-Activated Protein Kinases/genetics , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Neutralizing/therapeutic use , CX3C Chemokine Receptor 1 , Calcium-Binding Proteins/biosynthesis , Calcium-Binding Proteins/genetics , Hot Temperature , Hyperalgesia/drug therapy , Hyperalgesia/psychology , Injections, Spinal , Macrophage Activation/drug effects , Male , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Microglia/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/genetics , Signal Transduction/genetics , Substance Withdrawal Syndrome/drug therapy , Substance Withdrawal Syndrome/psychology , p38 Mitogen-Activated Protein Kinases/biosynthesis
8.
J Cosmet Sci ; 65(5): 265-76, 2014.
Article in English | MEDLINE | ID: mdl-25682618

ABSTRACT

Methods have been developed for the determination of zinc pyrithione (ZPT) in shampoos using high-performance liquid chromatography (HPLC) and high-performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS). Samples were washed by water first to remove surfactant and water-soluble impurities, then ultrasonic-extracted by acetonitrile-methanol for 30 min, and finally analyzed by MG C18 column (250 mm x 4.6 mm, 5 µm) or RP-18e (100 mm x 3 mm, 2 µm) plus APCI-MS/MS. Limits of detection were determined as 0.015% (HPLC) and 0.003% (HPLC-MS/MS), with a limit of quantization of 0.05% and 0.01%, respectively. The recoveries were 85.8-104% (HPLC) and 87.6-107% (HPLC-MS/MS). A good linear relationship was obtained from 3.20 µg·ml(-1) to 200 µg·ml(-1) (HPLC) and 1.00 µg·ml(-1) to 200 µg·ml(-1) (HPLC-MS/MS). The proposed methods have been successfully applied to the analysis of ZPT in many shampoos. The established two methods were rapid and reproducible with low interference.


Subject(s)
Chromatography, High Pressure Liquid/methods , Hair Preparations/chemistry , Organometallic Compounds/analysis , Pyridines/analysis , Tandem Mass Spectrometry/methods , Limit of Detection
9.
Heliyon ; 10(6): e27630, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38515694

ABSTRACT

Background: Immunogenic cell death (ICD) is related to cancer prognosis, which has a synergic effect in combination with chemotherapy or immunotherapy. Yet, the relationship between ICD and osteosarcoma remained unclear. Materials and methods: Three osteosarcoma datasets including therapeutically applicable research to generate effective treatments (TARGET), GSE126209 and GSE21257 datasets were included. A protein-protein interaction network was constructed based on ICD-related genes. We performed unsupervised consensus clustering to classify molecular subtypes (clusters). Survival analysis, Estimation of stromal and immune cells in malignant tumour tissues using expression data (ESTIMATE), Cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT), and differential analysis were employed to characterize the molecular differences between different clusters. Univariate Cox regression analysis was conducted to confirm prognostic genes. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to demonstrate the aberrant expression of ICD-correlated signature genes in osteosarcoma. A series of cellular experiments, including cell counting kit-8 (CCK-8), transwell, and flow cytometry, were used to demonstrate the regulatory role of key genes in the ICD model on the malignant phenotype of osteosarcoma. Results: Three clusters (cluster1, 2, 3) were constructed and they showed distinct overall survival and immune infiltration. ICD-related genes were highly expressed in cluster1. Moreover, Cluster1 had the best prognosis, high immune score and high expression of human leukocyte antigen (HLA)-related genes. TLR4, LY96, IFNGR1, CD4, and CASP1 were identified as prognostic genes for establishing an ICD-related risk signature. According to the risk signature, two risk groups (high and low risks) showing differential prognosis and response to immunotherapy. The low risks group had a better prognosis but was not sensitive to immunotherapy. Molecular assays verified that prognostic genes were abnormally under-expressed in osteosarcoma. Cellular assays demonstrated that LY96, the most significantly down-regulated gene in osteosarcoma, inhibited the migration, invasion, and proliferation phenotypes of osteosarcoma cells and prolonged the cell cycle. Analysis of oxidative stress related pathway enrichment in tumor microenvironment was conducted by single-sample gene set enrichment analysis (ssGSEA). Conclusions: This study demonstrated the prognostic significance of ICD-correlated genes in osteosarcoma patients. The five-gene risk signature facilitate prognostic evaluation and prediction of osteosarcoma patients' response to immunotherapy. The risk signature also offered a possibility for the exploit of novel ICD-related treatment.

10.
Nanomicro Lett ; 16(1): 114, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353764

ABSTRACT

Quasi-solid electrolytes (QSEs) based on nanoporous materials are promising candidates to construct high-performance Li-metal batteries (LMBs). However, simultaneously boosting the ionic conductivity (σ) and lithium-ion transference number (t+) of liquid electrolyte confined in porous matrix remains challenging. Herein, we report a novel Janus MOFLi/MSLi QSEs with asymmetric porous structure to inherit the benefits of both mesoporous and microporous hosts. This Janus QSE composed of mesoporous silica and microporous MOF exhibits a neat Li+ conductivity of 1.5 × 10-4 S cm-1 with t+ of 0.71. A partially de-solvated structure and preference distribution of Li+ near the Lewis base O atoms were depicted by MD simulations. Meanwhile, the nanoporous structure enabled efficient ion flux regulation, promoting the homogenous deposition of Li+. When incorporated in Li||Cu cells, the MOFLi/MSLi QSEs demonstrated a high Coulombic efficiency of 98.1%, surpassing that of liquid electrolytes (96.3%). Additionally, NCM 622||Li batteries equipped with MOFLi/MSLi QSEs exhibited promising rate performance and could operate stably for over 200 cycles at 1 C. These results highlight the potential of Janus MOFLi/MSLi QSEs as promising candidates for next-generation LMBs.

11.
Science ; 385(6704): 99-104, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38963849

ABSTRACT

Rhombohedral-stacked transition-metal dichalcogenides (3R-TMDs), which are distinct from their hexagonal counterparts, exhibit higher carrier mobility, sliding ferroelectricity, and coherently enhanced nonlinear optical responses. However, surface epitaxial growth of large multilayer 3R-TMD single crystals is difficult. We report an interfacial epitaxy methodology for their growth of several compositions, including molybdenum disulfide (MoS2), molybdenum diselenide, tungsten disulfide, tungsten diselenide, niobium disulfide, niobium diselenide, and molybdenum sulfoselenide. Feeding of metals and chalcogens continuously to the interface between a single-crystal Ni substrate and grown layers ensured consistent 3R stacking sequence and controlled thickness from a few to 15,000 layers. Comprehensive characterizations confirmed the large-scale uniformity, high crystallinity, and phase purity of these films. The as-grown 3R-MoS2 exhibited room-temperature mobilities up to 155 and 190 square centimeters per volt second for bi- and trilayers, respectively. Optical difference frequency generation with thick 3R-MoS2 showed markedly enhanced nonlinear response under a quasi-phase matching condition (five orders of magnitude greater than monolayers).

12.
Nat Commun ; 15(1): 1825, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418816

ABSTRACT

Monolayer molybdenum disulfide (MoS2), an emergent two-dimensional (2D) semiconductor, holds great promise for transcending the fundamental limits of silicon electronics and continue the downscaling of field-effect transistors. To realize its full potential and high-end applications, controlled synthesis of wafer-scale monolayer MoS2 single crystals on general commercial substrates is highly desired yet challenging. Here, we demonstrate the successful epitaxial growth of 2-inch single-crystal MoS2 monolayers on industry-compatible substrates of c-plane sapphire by engineering the formation of a specific interfacial reconstructed layer through the S/MoO3 precursor ratio control. The unidirectional alignment and seamless stitching of MoS2 domains across the entire wafer are demonstrated through cross-dimensional characterizations ranging from atomic- to centimeter-scale. The epitaxial monolayer MoS2 single crystal shows good wafer-scale uniformity and state-of-the-art quality, as evidenced from the ~100% phonon circular dichroism, exciton valley polarization of ~70%, room-temperature mobility of ~140 cm2v-1s-1, and on/off ratio of ~109. Our work provides a simple strategy to produce wafer-scale single-crystal 2D semiconductors on commercial insulator substrates, paving the way towards the further extension of Moore's law and industrial applications of 2D electronic circuits.

13.
Yao Xue Xue Bao ; 48(10): 1579-84, 2013 Oct.
Article in Zh | MEDLINE | ID: mdl-24417085

ABSTRACT

A series of phthalazine ketone compounds were synthesized and the structures were confirmed by H NMR and HR-MS spectrum. All target compounds were obtained through 7 steps, including selective reduction, nitration, bromination, ring enlargement, reduction, Knoevenagel and acylated reaction. The compounds were evaluated for their immunosuppressive effects of T-cell proliferation and inhibitory activity of IMPDH type II in vitro, as well as their structure-activity relationship were assessed. Several compounds exhibited strong immunosuppressive properties, especially compounds 7f and 7h, with IC50 values of 0.093 micromol x L(-1) and 0.14 micromol x L(-1) respectively, which were superior to mycophenolic acid. The information obtained from the studies may be useful for further research on the immunosuppressive agents.


Subject(s)
Cell Proliferation/drug effects , Immunosuppressive Agents/chemical synthesis , Phthalazines/chemical synthesis , Animals , Female , IMP Dehydrogenase/metabolism , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/pharmacology , Inhibitory Concentration 50 , Mice , Mice, Inbred BALB C , Phthalazines/chemistry , Phthalazines/pharmacology , Spleen/cytology , Structure-Activity Relationship , T-Lymphocytes/drug effects
14.
Biol Trace Elem Res ; 201(11): 5401-5414, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36753037

ABSTRACT

In order to assess the bioaccumulation and health risk of metals in a river reservoir, concentrations of copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), arsenic (As), and mercury (Hg) in the water, sediments, two small-sized fish, and a freshwater mussel from the Zhoubai reservoir were examined. The results indicated that all of these metals conform with class one of environmental quality standards for surface water (State Environmental Protection Administration of China, GB 3838-2002). There were no significant differences for total metal concentrations in sediment between the three sampling sites (p > 0.05), but the bioavailable concentrations in S3 were the lowest. The Cd was dominated with exchangeable fraction and showed considerable risk. All metal concentrations except for Pb in Rhodeus sinensis were significantly higher than those in Ctenogobius giurinus (p < 0.05). The metal concentrations in Cristaria plicata showed a similar pattern of bioavailable metals in sediment, indicating that the metal concentrations in aquatic organisms were determined by the bioavailable forms of metals. Negative correlations were observed between the size of fish and concentrations of Cu, Zn, Pb, Cd, and As. However, significant positive correlations were found between the size of mussel and concentrations of Cd (p < 0.01), As (p < 0.05), and Hg (p < 0.01). Zn had the highest BCF values in fish and mussel. The aquatic organisms showed lower ability of metal bioaccumulation from the sediment. Low values of target hazard quotient (THQ), hazard index (HI), and carcinogenic risk (CR) indicated that these metals do not pose a health risk to public through fish and mussel consumption in this study area.


Subject(s)
Arsenic , Bivalvia , Mercury , Metals, Heavy , Perciformes , Water Pollutants, Chemical , Animals , Metals, Heavy/analysis , Cadmium/analysis , Rivers , Bioaccumulation , Lead , Geologic Sediments , Environmental Monitoring/methods , Mercury/analysis , Zinc , Arsenic/analysis , Fishes , Water , Risk Assessment , Water Pollutants, Chemical/analysis
15.
Mater Today Bio ; 20: 100640, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37179534

ABSTRACT

Hydrogels resemble natural extracellular matrices and have been widely studied for biomedical applications. Nano-crosslinked dynamic hydrogels combine the injectability and self-healing property of dynamic hydrogels with the versatility of nanomaterials and exhibit unique advantages. The incorporation of nanomaterials as crosslinkers can improve the mechanical properties (strength, injectability, and shear-thinning properties) of hydrogels by reinforcing the skeleton and endowing them with multifunctionality. Nano-crosslinked functional hydrogels that can respond to external stimuli (such as pH, heat, light, and electromagnetic stimuli) and have photothermal properties, antimicrobial properties, stone regeneration abilities, or tissue repair abilities have been constructed through reversible covalent crosslinking strategies and physical crosslinking strategies. The possible cytotoxicity of the incorporated nanomaterials can be reduced. Nanomaterial hydrogels show excellent biocompatibility and can facilitate cell proliferation and differentiation for biomedical applications. This review introduces different nano-crosslinked dynamic hydrogels in the medical field, from fabrication to application. In this review, nanomaterials for dynamic hydrogel fabrication, such as metals and metallic oxides, nanoclays, carbon-based nanomaterials, black phosphorus (BP), polymers, and liposomes, are discussed. We also introduce the dynamic crosslinking method commonly used for nanodynamic hydrogels. Finally, the medical applications of nano-crosslinked hydrogels are presented. We hope that this summary will help researchers in the related research fields quickly understand nano-crosslinked dynamic hydrogels to develop more preparation strategies and promote their development and application.

16.
Article in English | MEDLINE | ID: mdl-37021850

ABSTRACT

Cross-domain face translation aims to transfer face images from one domain to another. It can be widely used in practical applications, such as photos/sketches in law enforcement, photos/drawings in digital entertainment, and near-infrared (NIR)/visible (VIS) images in security access control. Restricted by limited cross-domain face image pairs, the existing methods usually yield structural deformation or identity ambiguity, which leads to poor perceptual appearance. To address this challenge, we propose a multi-view knowledge (structural knowledge and identity knowledge) ensemble framework with frequency consistency (MvKE-FC) for cross-domain face translation. Due to the structural consistency of facial components, the multi-view knowledge learned from large-scale data can be appropriately transferred to limited cross-domain image pairs and significantly improve the generative performance. To better fuse multi-view knowledge, we further design an attention-based knowledge aggregation module that integrates useful information, and we also develop a frequency-consistent (FC) loss that constrains the generated images in the frequency domain. The designed FC loss consists of a multidirection Prewitt (mPrewitt) loss for high-frequency consistency and a Gaussian blur loss for low-frequency consistency. Furthermore, our FC loss can be flexibly applied to other generative models to enhance their overall performance. Extensive experiments on multiple cross-domain face datasets demonstrate the superiority of our method over state-of-the-art methods both qualitatively and quantitatively.

17.
Environ Sci Pollut Res Int ; 30(15): 44845-44860, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36701068

ABSTRACT

In order to assess the metal pollution in the Wujiang River, concentrations of Cu, Zn, Fe, Mn, Pb, Cd, As, and Hg in the water, sediments, and two fish species Cyprinus carpio and Pelteobagrus fulvidraco from the middle reaches (Tuomugang, TMG) and lower reaches (Wulong, WL) of the Wujiang River were examined. The results indicated that all metal concentrations were lower than the values for grade one water quality according to the Environment Quality Standard for Surface Water of China (GB 3838-2002). The bioavailable fraction concentrations of Zn, Fe, Mn, Pb, and Hg in WL were significantly higher than those in TMG (p < 0.05), indicating that these metals in sediments of WL have higher bioavailability and mobility. The Cu, Zn, Fe, Pb, As, and Hg were mainly related to the residual fraction, while the Mn and Cd were mainly associated with the non-residual fraction. The risk assessment code (RAC) and the secondary phase to the primary phase (RSP) values indicated that Mn and Cd have a high risk of secondary release. The mean metal concentrations in the liver of the two fish species were higher than those in muscle. The higher metal concentrations of fish in WL suggested that bioaccumulation of metals in fish could be influenced by metal bioavailability. No identical relationships between metal concentrations and fish length were manifested in the present study. The values of target hazard quotient (THQ) and hazard index (HI), and carcinogenic risk (CR) of metals for the consumption of C. carpio and P. fulvidraco indicated that the anglers would likely not experience significant non-carcinogenic risk, but the carcinogenic risk of As cannot be ignored. Thanks to prohibited commercial fishing in the Wujiang River, the metal pollution will probably not pose a health risk to the general public for wild fish consumption.


Subject(s)
Carps , Mercury , Metals, Heavy , Water Pollutants, Chemical , Animals , Metals, Heavy/analysis , Rivers , Cadmium , Lead , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Mercury/analysis , Water Quality , China , Risk Assessment , Geologic Sediments
18.
Animals (Basel) ; 13(8)2023 Apr 09.
Article in English | MEDLINE | ID: mdl-37106853

ABSTRACT

The abundance and prevalence of parasitic infection often vary in different host sexes, and this phenomenon has been named sex-biased parasitism. Brandt's voles are the dominant rodent species in typical steppe habitat and are widely distributed in Inner Mongolia, China, but the prevalence of parasites in Brandt's voles are poorly reported. In this study, we investigated the prevalence of six intestinal parasites in Brandt's voles in May, June, July, and August 2022 around the Xilingol Grassland in Inner Mongolia, China. The results showed that Syphacia obvelata, Aspiculuris tetraptera, and Trichostrongylidae family were the dominant intestinal parasites in Brandt's voles that we captured in this study, and the infection rates of the three parasites were significantly higher in males than females, which showed obvious male-biased parasitism. Season and human activities such as grazing had no significant effect on the infection rates for different parasites, while the parasite reproduction level was higher when the ambient temperature was around 18 °C. Sexual size dimorphism was ubiquitous in Brandt's voles, and it was mainly manifested by the differences in body weight and length between males and females. Simple linear regression analysis showed a significant positive correlation between bodyweight and parasite infection rates, so the sex-biased parasitism in Brandt's voles could be explained by the body size hypothesis, as a larger body could provide more ecological niches for parasitic infection.

19.
Heliyon ; 9(5): e16079, 2023 May.
Article in English | MEDLINE | ID: mdl-37215862

ABSTRACT

Object: This study sought to elucidate the role of microRNA-210 (miR-210) in the occurrence and development of lung adenocarcinoma (LUAD). Methods: The levels of lncRNA miR-210HG and miR-210 in LUAD tissues and corresponding normal tissues were analyzed by real-time quantitative PCR. The expression of the anti-hypoxia factor hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) were measured by qRT-PCR and Western blot. The target of miR-210 on HIF-1α was confirmed using TCGA, Western blot and luciferase reporter assay. The regulatory role of miR-210 on HIF-1α and VEGF in LUAD was investigated. The correlation of genes with clinical prognosis was analyzed using bioinformatics methods. The effect of miR-210 on LUAD cells was verified through apoptosis assays. Results: The expression of miR-210 and miR-210HG was significantly higher in LUAD tissues than in normal tissues. The expression of hypoxia-related indicators HIF-1α and VEGF was also significantly higher in LUAD tissues. MiR-210 suppressed HIF-1α expression by targeting site 113 of HIF-1α, thereby affecting VEGF expression. Overexpression of miR-210 inhibited HIF-1 expression by targeting the 113 site of HIF-1, thereby affecting VEGF expression. Conversely, inhibition of miR-210 resulted in a significant increase in HIF-1α and VEGF expression in LUAD cells. In TCGA-LUAD cohorts, the expression of VEGF-c and VEGF-d genes in LUAD tissues was significantly lower than in normal tissues, while overall survival was worse in LUAD patients with high expression of HIF-1α, VEGF-c and VEGF-d. Apoptosis was significantly lower in H1650 cells after miR-210 inhibition. Conclusion: This study reveals that miR-210 exerts an inhibitory effect on VEGF expression by down-regulating HIF-1α expression in LUAD. Conversely, inhibition of miR-210 significantly reduced H1650 apoptosis and led to worse patient survival by upregulating HIF-1α and VEGF. These results suggest that miR-210 could serve as a potential therapeutic target for the treatment of LUAD.

20.
Sci Bull (Beijing) ; 68(2): 173-179, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36653218

ABSTRACT

Polarization-sensitive photodetectors, with the ability of identifying the texture-, stress-, and roughness-induced light polarization state variation, displace unique advantages in the fields of national security, medical diagnosis, and aerospace. The utilization of in-plane anisotropic two-dimensional (2D) materials has led the polarization photodetector into a polarizer-free regime, and facilitated the miniaturization of optoelectronic device integration. However, the insufficient polarization ratio (usually less than 10) restricts the detection resolution of polarized signals. Here, we designed a sub-wavelength array (SWA) structure of 2D germanium selenium (GeSe) to further improve its anisotropic sensitivity, which boosts the polarized photocurrent ratio from 1.6 to 18. This enhancement comes from the combination of nano-scale arrays with atomic-scale lattice arrangement at the low-symmetric direction, while the polarization-sensitive photoresponse along the high-symmetric direction is strongly suppressed due to the SWA-caused depolarization effect. Our mechanism study revealed that the SWA can improve the asymmetry of charge distribution, attenuate the matrix element in zigzag direction, and the localized surface plasma, which elevates the photo absorption and photoelectric transition probability along the armchair direction, therefore accounts for the enhanced polarization sensitivity. In addition, the photodetector based on GeSe SWA exhibited a broad power range of 40 dB at a near-infrared wavelength of 808 nm and the ability of weak-light detection under 0.1 LUX of white light (two orders of magnitude smaller than pristine 2D GeSe). This work provides a feasible guideline to improve the polarization sensitivity of 2D materials, and will greatly benefit the development of polarized imaging sensors.

SELECTION OF CITATIONS
SEARCH DETAIL