Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 588
Filter
Add more filters

Publication year range
1.
Nat Methods ; 20(11): 1729-1738, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813988

ABSTRACT

Cryo-electron microscopy (cryo-EM) captures snapshots of dynamic macromolecules, collectively illustrating the involved structural landscapes. This provides an exciting opportunity to explore the structural variations of macromolecules under study. However, traditional cryo-EM single-particle analysis often yields static structures. Here we describe OPUS-DSD, an algorithm capable of efficiently reconstructing the structural landscape embedded in cryo-EM data. OPUS-DSD uses a three-dimensional convolutional encoder-decoder architecture trained with cryo-EM images, thereby encoding structural variations into a smooth and easily analyzable low-dimension space. This space can be traversed to reconstruct continuous dynamics or clustered to identify distinct conformations. OPUS-DSD can offer meaningful insights into the structural variations of macromolecules, filling in the gaps left by traditional cryo-EM structural determination, and potentially improves the reconstruction resolution by reliably clustering similar particles within the dataset. These functionalities are especially relevant to the study of highly dynamic biological systems. OPUS-DSD is available at https://github.com/alncat/opusDSD .


Subject(s)
Algorithms , Single Molecule Imaging , Cryoelectron Microscopy/methods , Cluster Analysis , Macromolecular Substances/chemistry
2.
Brief Bioinform ; 24(6)2023 09 22.
Article in English | MEDLINE | ID: mdl-37833840

ABSTRACT

For refining and designing protein structures, it is essential to have an efficient protein folding and docking framework that generates a protein 3D structure based on given constraints. In this study, we introduce OPUS-Fold3 as a gradient-based, all-atom protein folding and docking framework, which accurately generates 3D protein structures in compliance with specified constraints, such as a potential function as long as it can be expressed as a function of positions of heavy atoms. Our tests show that, for example, OPUS-Fold3 achieves performance comparable to pyRosetta in backbone folding and significantly better in side-chain modeling. Developed using Python and TensorFlow 2.4, OPUS-Fold3 is user-friendly for any source-code level modifications and can be seamlessly combined with other deep learning models, thus facilitating collaboration between the biology and AI communities. The source code of OPUS-Fold3 can be downloaded from http://github.com/OPUS-MaLab/opus_fold3. It is freely available for academic usage.


Subject(s)
Proteins , Software , Models, Molecular , Proteins/chemistry , Protein Folding
3.
Exp Cell Res ; 438(2): 114053, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38663476

ABSTRACT

Bladder cancer is a common tumor that impacts the urinary system and marked by a significant fatality rate and an unfavorable prognosis. Promising antineoplastic properties are exhibited by brusatol, which is obtained from the dried ripe fruit of Brucea javanica. The present study aimed to evaluate the influence of brusatol on the progression of bladder cancer and uncover the molecular mechanism involved. We used Cell Counting Kit-8, colony formation and EdU assays to detect cell numbers, viability and proliferation. We used transwell migration assay to detect cell migration ability. The mechanism of brusatol inhibition of bladder cancer proliferation was studied by flow cytometry and western blotting. It was revealed that brusatol could reduce the viability and proliferation of T24 and 5637 cells. The transwell migration assay revealed that brusatol was able to attenuate the migration of T24 and 5637 cells. We found that treatment with brusatol increased the levels of reactive oxygen species, malondialdehyde and Fe2+, thereby further promoting ferroptosis in T24 and 5637 cells. In addition, treatment with RSL3 (an agonistor of ferroptosis) ferrostatin-1 (a selective inhibitor of ferroptosis) enhanced or reversed the brusatol-induced inhibition. In vivo, treatment with brusatol significantly suppressed the tumor growth in nude mice. Mechanistically, brusatol induced ferroptosis by upregulating the expression of ChaC glutathione-specific gamma-glutamylcyclotransferase (Chac1) and decreasing the expression of SLC7A11 and Nrf2 in T24 and 5637 cells. To summarize, the findings of this research demonstrated that brusatol hindered the growth of bladder cancer and triggered ferroptosis via the Chac1/Nrf2/SLC7A11 pathway.


Subject(s)
Amino Acid Transport System y+ , Cell Movement , Cell Proliferation , NF-E2-Related Factor 2 , Quassins , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Quassins/pharmacology , Humans , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Animals , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Cell Line, Tumor , Amino Acid Transport System y+/metabolism , Amino Acid Transport System y+/genetics , Mice, Nude , Signal Transduction/drug effects , Ferroptosis/drug effects , Xenograft Model Antitumor Assays , Reactive Oxygen Species/metabolism , Disease Progression , Mice, Inbred BALB C , Gene Expression Regulation, Neoplastic/drug effects
4.
Stroke ; 55(1): 156-165, 2024 01.
Article in English | MEDLINE | ID: mdl-38037225

ABSTRACT

BACKGROUND: Stroke survivors with impaired balance and motor function tend to have relatively poor functional outcomes. The cerebellum and primary motor cortex (M1) have been suggested as targets for neuromodulation of balance and motor recovery after stroke. This study aimed to compare the efficacy and safety of intermittent theta-burst stimulation (iTBS) to the cerebellum or M1 on balance and motor recovery in patients with stroke. METHODS: In this randomized, double-blind, sham-controlled clinical trial, patients with subacute stroke were randomly divided into 3 groups: M1-, cerebellar-, and sham-iTBS (n=12 per group; 15 sessions, 3 weeks). All outcomes were evaluated before intervention (T0), after 1 week of intervention (T1), after 3 weeks of intervention (T2), and at follow-up (T3). The primary outcome was the Berg balance scale score at T2. Secondary outcomes include the Fugl-Meyer assessment scale for lower extremities, the trunk impairment scale, the Barthel index, the modified Rankin Scale, the functional ambulation categories, and cortical excitability. RESULTS: A total of 167 inpatients were screened, 36 patients (age, 57.50±2.41 years; 10 women, 12 ischemic) were enrolled between December 2020 and January 2023. At T2, M1- or cerebellar-iTBS significantly improved Berg balance scale scores by 10.7 points ([95% CI, 2.7-18.6], P=0.009) and 14.2 points ([95% CI, 1.2-27.2], P=0.032) compared with the sham-iTBS group. Moreover, the cerebellar-iTBS group showed a significantly greater improvement in Fugl-Meyer assessment scale for lower extremities scores by 5.6 points than the M1-iTBS ([95% CI, 0.3-10.9], P=0.037) and by 7.8 points than the sham-iTBS ([95% CI, 1.1-14.5], P=0.021) groups at T2. The motor-evoked potential amplitudes of the M1- and cerebellar-iTBS groups were higher than those of the sham-iTBS group (P<0.001). CONCLUSIONS: Both M1- and cerebellar-iTBS could improve balance function. Moreover, cerebellar-iTBS, but not M1-iTBS, induced significant effects on motor recovery. Thus, cerebellar-iTBS may be a valuable new therapeutic option in stroke rehabilitation programs. REGISTRATION: URL: https://www.chictr.org.cn/; Unique identifier: ChiCTR2100047002.


Subject(s)
Motor Cortex , Stroke Rehabilitation , Stroke , Humans , Female , Middle Aged , Transcranial Magnetic Stimulation , Cerebellum
5.
BMC Plant Biol ; 24(1): 169, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443784

ABSTRACT

BACKGROUND: Dwarf rootstocks have important practical significance for high-density planting in pear orchards. The shoots of 'Cuiguan' grafted onto the dwarf rootstock were shorter than those grafted onto the vigorous rootstock. However, the mechanism of shorter shoot formation is not clear. RESULTS: In this study, the current-year shoot transcriptomes and phytohormone contents of 'CG‒QA' ('Cuiguan' was grafted onto 'Quince A', and 'Hardy' was used as interstock) and 'CG‒DL' ('Cuiguan' was grafted onto 'Duli', and 'Hardy' was used as interstock) were compared. The transcriptome results showed that a total of 452 differentially expressed genes (DEGs) were identified, including 248 downregulated genes and 204 upregulated genes; the plant hormone signal transduction and zeatin biosynthesis pathways were significantly enriched in the top 20 KEGG enrichment terms. Abscisic acid (ABA) was the most abundant hormone in 'CG‒QA' and 'CG‒DL'; auxin and cytokinin (CTK) were the most diverse hormones; additionally, the contents of ABA, auxin, and CTK in 'CG‒DL' were higher than those in 'CG‒QA', while the fresh shoot of 'CG‒QA' accumulated more gibberellin (GA) and salicylic acid (SA). Metabolome and transcriptome co-analysis identified three key hormone-related DEGs, of which two (Aldehyde dehydrogenase gene ALDH3F1 and YUCCA2) were upregulated and one (Cytokinin oxidase/dehydrogenase gene CKX3) was downregulated. CONCLUSIONS: Based on the results of transcriptomic and metabolomic analysis, we found that auxin and CTK mainly regulated the shoot differences of 'CG-QA' and 'CG-DL', and other hormones such as ABA, GA, and SA synergistically regulated this process. Three hormone-related genes ALDH3F1, YUCCA2, and CKX3 were the key genes contributing to the difference in shoot growth between 'CG-QA' and 'CG-DL' pear. This research provides new insight into the molecular mechanism underlying shoot shortening after grafted onto dwarf rootstocks.


Subject(s)
Pyrus , Rosaceae , Pyrus/genetics , Transcriptome , Metabolome , Plant Growth Regulators , Abscisic Acid , Cytokinins , Hormones , Indoleacetic Acids , China
6.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34905769

ABSTRACT

Accurate protein side-chain modeling is crucial for protein folding and protein design. In the past decades, many successful methods have been proposed to address this issue. However, most of them depend on the discrete samples from the rotamer library, which may have limitations on their accuracies and usages. In this study, we report an open-source toolkit for protein side-chain modeling, named OPUS-Rota4. It consists of three modules: OPUS-RotaNN2, which predicts protein side-chain dihedral angles; OPUS-RotaCM, which measures the distance and orientation information between the side chain of different residue pairs and OPUS-Fold2, which applies the constraints derived from the first two modules to guide side-chain modeling. OPUS-Rota4 adopts the dihedral angles predicted by OPUS-RotaNN2 as its initial states, and uses OPUS-Fold2 to refine the side-chain conformation with the side-chain contact map constraints derived from OPUS-RotaCM. Therefore, we convert the side-chain modeling problem into a side-chain contact map prediction problem. OPUS-Fold2 is written in Python and TensorFlow2.4, which is user-friendly to include other differentiable energy terms. OPUS-Rota4 also provides a platform in which the side-chain conformation can be dynamically adjusted under the influence of other processes. We apply OPUS-Rota4 on 15 FM predictions submitted by AlphaFold2 on CASP14, the results show that the side chains modeled by OPUS-Rota4 are closer to their native counterparts than those predicted by AlphaFold2 (e.g. the residue-wise RMSD for all residues and core residues are 0.588 and 0.472 for AlphaFold2, and 0.535 and 0.407 for OPUS-Rota4).


Subject(s)
Computational Biology/methods , Deep Learning , Models, Molecular , Proteins/chemistry , Cell Differentiation , Gene Library , Protein Conformation , Protein Folding
7.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35959990

ABSTRACT

Protein side chains are vitally important to many biological processes such as protein-protein interaction. In this study, we evaluate the performance of our previous released side-chain modeling method OPUS-Mut, together with some other methods, on three oligomer datasets, CASP14 (11), CAMEO-Homo (65) and CAMEO-Hetero (21). The results show that OPUS-Mut outperforms other methods measured by all residues or by the interfacial residues. We also demonstrate our method on evaluating protein-protein docking pose on a dataset Oligomer-Dock (75) created using the top 10 predictions from ZDOCK 3.0.2. Our scoring function correctly identifies the native pose as the top-1 in 45 out of 75 targets. Different from traditional scoring functions, our method is based on the overall side-chain packing favorableness in accordance with the local packing environment. It emphasizes the significance of side chains and provides a new and effective scoring term for studying protein-protein interaction.


Subject(s)
Proteins , Software , Algorithms , Protein Binding , Protein Conformation , Proteins/chemistry
8.
New Phytol ; 241(5): 2059-2074, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38197218

ABSTRACT

Thermo-sensitive genic male sterile (TGMS) lines are the core of two-line hybrid rice (Oryza sativa). However, elevated or unstable critical sterility-inducing temperatures (CSITs) of TGMS lines are bottlenecks that restrict the development of two-line hybrid rice. However, the genes and molecular mechanisms controlling CSIT remain unknown. Here, we report the CRITICAL STERILITY-INDUCING TEMPERATURE 2 (CSIT2) that encodes a really interesting new gene (RING) type E3 ligase, controlling the CSIT of thermo-sensitive male sterility 5 (tms5)-based TGMS lines through ribosome-associated protein quality control (RQC). CSIT2 binds to the large and small ribosomal subunits and ubiquitinates 80S ribosomes for dissociation, and may also ubiquitinate misfolded proteins for degradation. Mutation of CSIT2 inhibits the possible damage to ubiquitin system and protein translation, which allows more proteins such as catalases to accumulate for anther development and inhibits abnormal accumulation of reactive oxygen species (ROS) and premature programmed cell death (PCD) in anthers, partly rescuing male sterility and raised the CSIT of tms5-based TGMS lines. These findings reveal a mechanism controlling CSIT and provide a strategy for solving the elevated or unstable CSITs of tms5-based TGMS lines in two-line hybrid rice.


Subject(s)
Infertility, Male , Oryza , Male , Humans , Temperature , Oryza/genetics , Ubiquitin , Ubiquitin-Protein Ligases/genetics , Plant Infertility/genetics
9.
PLoS Biol ; 19(12): e3001464, 2021 12.
Article in English | MEDLINE | ID: mdl-34871295

ABSTRACT

The UniProt knowledgebase is a public database for protein sequence and function, covering the tree of life and over 220 million protein entries. Now, the whole community can use a new crowdsourcing annotation system to help scale up UniProt curation and receive proper attribution for their biocuration work.


Subject(s)
Crowdsourcing/methods , Data Curation/methods , Molecular Sequence Annotation/methods , Amino Acid Sequence/genetics , Computational Biology/methods , Databases, Protein/trends , Humans , Literature , Proteins/metabolism , Stakeholder Participation
10.
Fish Shellfish Immunol ; 148: 109476, 2024 May.
Article in English | MEDLINE | ID: mdl-38447780

ABSTRACT

Trachinotus ovatus is an economically important fish and has been recommended as a high-quality aquaculture fish breed for the high-quality development of sea ranches in the South China Sea. However, T. ovatus shows intolerance to low temperature, greatly limiting the extension of farming scale, reducing production efficiency in winter, and increasing farming risks. In this study, liver transcriptome analysis was investigated in T. ovatus under acute low temperature conditions (20 and 15 °C) using RNA sequencing (RNA-Seq) technology. Inter-groups differential expression analysis and trend analysis screened 1219 DEGs and four significant profiles (profiles 0, 3, 4, and 7), respectively. GO enrichment analysis showed that these DEGs were mainly related to metabolic process and cell growth and death process. KEGG enrichment analysis found that DEGs were mainly associated with lipid metabolism, carbohydrate metabolism, and cell growth and death, such as gluconeogenesis, glycolysis, fatty acid oxidation, cholesterol biosynthesis, p53 signaling pathway, cell cycle arrest, and apoptotic cell death. Moreover, protein-protein interaction networks identified two hub genes (FOS and JUNB) and some important genes related to metabolic process and cell growth and death process, that corresponding to enrichment analysis. Overall, gluconeogenesis, lipid mobilization, and fatty acid oxidation in metabolic process and cell cycle arrest and apoptotic cell death in cell growth and death process were enhanced, while glycolysis, liver glycogen synthesis and cholesterol biosynthesis in metabolic process were inhibited. The enhancement or attenuatment of metabolic process and cell growth and death process is conducive to maintain energy balance, normal fluidity of cell membrane, normal physiological functions of liver cell, enhancing the tolerance of T. ovatus to cold stress. These results suggested that metabolic process and cell growth and death process play important roles in response to acute cold stress in the liver of T. ovatus. Gene expreesion level analysis showed that acute cold stress at 15 °C was identified as a critical temperature point for T. ovatus in term of cellular metabolism alteration and apoptosis inducement, and rewarming intervention should be timely implemented above 15 °C. Our study can provide theoretical support for breeding cold-tolerant cultivars of T. ovatus, which is contributed to high-quality productions fish production.


Subject(s)
Cold-Shock Response , Gene Expression Profiling , Animals , Cold-Shock Response/genetics , Gene Expression Profiling/veterinary , Fishes/genetics , Liver/metabolism , Cold Temperature , Cholesterol/metabolism , Fatty Acids/metabolism , Transcriptome
11.
J Phys Chem A ; 128(20): 4020-4029, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38743255

ABSTRACT

In this study, we systematically explored the impact of varying the number of thiophene groups on the hydrogen bond interaction and excited-state intramolecular proton-transfer (ESIPT) processes in flavonoid derivatives (STF, DTF, and TTF) using the density functional theory and time-dependent density functional theory methods. Initially, a thorough analysis of the optimized geometric structures revealed that the intramolecular hydrogen bond in the S1 state is enhanced and gradually weakened as the number of thiophene groups increases. To gain a deeper understanding of the hydrogen bond interaction, topological analysis, interaction region indicator scatter plots, and isosurface plots were employed. These images provide further insights that align with the structural analysis. Additionally, we observed a red-shift in the electronic spectra (absorption and fluorescence spectra), which is primarily attributed to the narrowing of the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, as elucidated by the frontier molecular orbitals. Furthermore, a combined analysis between the hole-electron distribution and the transition density matrix heat map shows that electron excitation involves the unidirectional charge-transfer mechanism. In the end, by conducting relaxed potential energy curve scans, we found that an increase in the number of thiophene groups elevates the energy barrier for ESIPT, making it more challenging for the reaction. In summary, our study underscores the vital effect of thiophene-substituted numbers in modulating the ESIPT process, which is able to provide valuable insights for the design and synthesis of desired organic fluorescent probes in the future.

12.
Exp Cell Res ; 429(2): 113686, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37307941

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is one of the most deadly and metastatic cancers of the urinary tract. Latest studies have confirmed that long non-coding RNAs (lncRNAs) play a crucial role in a variety of cancers. Some of these lncRNAs code for small nucleolar RNAs (snoRNAs), called small nucleolar RNA host genes (SNHGs), which exert some value in predicting the prognosis of certain cancer patients, but little is known regarding the function of SNHGs within the PCa. AIM OF THE STUDY: To explore the expression distribution and differential analysis of SNHGs in different tumors using RNA-seq and survival data from TCGA and GTEx, and to assess the potential impacts of the lncRNA SNHG25 on human PCa. To validate the expression of SNHG25 using experimental data and to investigate in detail its particular molecular biological function on PCa both in vivo and in vitro. METHODS: LncRNA SNHG25 expression was analyzed by bioinformatic prediction and qPCR. CCK-8, EdU, transwell, wound healing, and western blotting assays were conducted to investigate the main role of lncRNA SNHG25 in PCa. Xenograft tumour growth model in nude mice was surveyed by in vivo imaging and Ki-67 staining. AKT pathway activator (SC79) was used to verify the interaction among SNHG25 and PI3K/AKT signaling pathway. RESULTS: Bioinformatics analysis and experimental research illuminated that the expression of lncRNA SNHG25 was observably up-regulated in PCa tissues and cells. Moreover, SNHG25 knockdown restrained PCa cell proliferation, invasion and migration, while promoting apoptosis. Xenografts model confirmed that the si-SNHG25 group had a significant inhibitory effect on PCa tumour growth in vivo. Additionally, a series of gain-of-function analyses suggested that SNHG25 could activate the PI3K/AKT pathway to accelerate PCa progression. CONCLUSIONS: These in vitro and in vivo findings demonstrate that SNHG25 is highly expressed in PCa and facilitates PCa development through regulation of PI3K/AKT signaling pathway. SNHG25 acts as an oncogene to predict tumour malignancy and survival in PCa patients and may therefore become a promising potential molecular target for early detection and therapy of lethal PCa.


Subject(s)
Prostatic Neoplasms , RNA, Long Noncoding , Male , Animals , Mice , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Small Nucleolar/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Mice, Nude , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/genetics , Cell Movement/genetics
13.
Environ Res ; 247: 118340, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38309559

ABSTRACT

Biochar pyrolyzed by biomass shows excellent application prospects for heavy metal (HM) remediation, but a part of biochar can be inevitably broken into micro- and nano-sized biochar colloids (BCs) under biological and physicochemical actions in soil. BCs derived in the process of remediation have rough surface, rich elemental species and contents, and multiple functional groups, which are similar to biochar. However, BCs have some unique colloidal properties because of their micro and nano scale size. Due to these properties, BCs exhibit strong mobilities in the soil environment, and the mobilities may be influenced by a combination of colloidal properties of BCs and environmental factors including soil colloids and other soil environmental conditions. In addition, BCs may have affinity effects on HMs through electrostatic adsorption, ion exchange, surface complexation, precipitation/co-precipitation, and redox because of the properties such as large specific surface area, and rich oxygen-containing functional groups and minerals on the surface. This review summarizes the physicochemical and migratory properties of BCs, and the internal and external factors affecting the migration of BCs in the soil environment, and the possible effects of BCs on HMs are high-lighted. This review provides a theoretical basis for the optimization of soil contaminated with HMs after remediation using biochar. Notably, the innovative idea that BCs may influence the presence of HMs in soil needs to be further confirmed by more targeted detection and analysis methods in future studies to prevent the possible environmental toxicities of the lateral and vertical diffusion of HM caused by BCs in soil.


Subject(s)
Charcoal , Metals, Heavy , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Metals, Heavy/analysis , Colloids
14.
Lipids Health Dis ; 23(1): 152, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773573

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a chronic neurodegenerative disorder that poses a substantial economic burden. The Random forest algorithm is effective in predicting AD; however, the key factors influencing AD onset remain unclear. This study aimed to analyze the key lipoprotein and metabolite factors influencing AD onset using machine-learning methods. It provides new insights for researchers and medical personnel to understand AD and provides a reference for the early diagnosis, treatment, and early prevention of AD. METHODS: A total of 603 participants, including controls and patients with AD with complete lipoprotein and metabolite data from the Alzheimer's disease Neuroimaging Initiative (ADNI) database between 2005 and 2016, were enrolled. Random forest, Lasso regression, and CatBoost algorithms were employed to rank and filter 213 lipoprotein and metabolite variables. Variables with consistently high importance rankings from any two methods were incorporated into the models. Finally, the variables selected from the three methods, with the participants' age, sex, and marital status, were used to construct a random forest predictive model. RESULTS: Fourteen lipoprotein and metabolite variables were screened using the three methods, and 17 variables were included in the AD prediction model based on age, sex, and marital status of the participants. The optimal random forest modeling was constructed with "mtry" set to 3 and "ntree" set to 300. The model exhibited an accuracy of 71.01%, a sensitivity of 79.59%, a specificity of 65.28%, and an AUC (95%CI) of 0.724 (0.645-0.804). When Mean Decrease Accuracy and Gini were used to rank the proteins, age, phospholipids to total lipids ratio in intermediate-density lipoproteins (IDL_PL_PCT), and creatinine were among the top five variables. CONCLUSIONS: Age, IDL_PL_PCT, and creatinine levels play crucial roles in AD onset. Regular monitoring of lipoproteins and their metabolites in older individuals is significant for early AD diagnosis and prevention.


Subject(s)
Alzheimer Disease , Lipoproteins , Machine Learning , Humans , Alzheimer Disease/diagnosis , Alzheimer Disease/blood , Alzheimer Disease/metabolism , Female , Male , Aged , Lipoproteins/blood , Aged, 80 and over , Algorithms , Biomarkers/blood
15.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33402531

ABSTRACT

In this paper, we present a refinement method for cryo-electron microscopy (cryo-EM) single-particle reconstruction, termed as OPUS-SSRI (Sparseness and Smoothness Regularized Imaging). In OPUS-SSRI, spatially varying sparseness and smoothness priors are incorporated to improve the regularity of electron density map, and a type of real space penalty function is designed. Moreover, we define the back-projection step as a local kernel regression and propose a first-order method to solve the resulting optimization problem. On the seven cryo-EM datasets that we tested, the average improvement in resolution by OPUS-SSRI over that from RELION 3.0, the commonly used image-processing software for single-particle cryo-EM, was 0.64 Å, with the largest improvement being 1.25 Å. We expect OPUS-SSRI to be an invaluable tool to the broad field of cryo-EM single-particle analysis. The implementation of OPUS-SSRI can be found at https://github.com/alncat/cryoem.


Subject(s)
Cryoelectron Microscopy/methods , Image Processing, Computer-Assisted/methods , Single Molecule Imaging/methods , Algorithms , Computational Biology/methods , Signal-To-Noise Ratio , Software
16.
Sensors (Basel) ; 24(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38339722

ABSTRACT

Cracks inside urban underground comprehensive pipe galleries are small and their characteristics are not obvious. Due to low lighting and large shadow areas, the differentiation between the cracks and background in an image is low. Most current semantic segmentation methods focus on overall segmentation and have a large perceptual range. However, for urban underground comprehensive pipe gallery crack segmentation tasks, it is difficult to pay attention to the detailed features of local edges to obtain accurate segmentation results. A Global Attention Segmentation Network (GA-SegNet) is proposed in this paper. The GA-SegNet is designed to perform semantic segmentation by incorporating global attention mechanisms. In order to perform precise pixel classification in the image, a residual separable convolution attention model is employed in an encoder to extract features at multiple scales. A global attention upsample model (GAM) is utilized in a decoder to enhance the connection between shallow-level features and deep abstract features, which could increase the attention of the network towards small cracks. By employing a balanced loss function, the contribution of crack pixels is increased while reducing the focus on background pixels in the overall loss. This approach aims to improve the segmentation accuracy of cracks. The comparative experimental results with other classic models show that the GA SegNet model proposed in this study has better segmentation performance and multiple evaluation indicators, and has advantages in segmentation accuracy and efficiency.

17.
Int J Mol Sci ; 25(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542100

ABSTRACT

The marine bacterium Streptomyces sp. HNS054 shows promise as a platform for producing natural products. Isolated from a marine sponge, HNS054 possesses several desirable traits for bioengineering: rapid growth, salt tolerance, and compatibility with genetic tools. Its genome contains 21 potential biosynthetic gene clusters, offering a rich source of natural products. We successfully engineered HNS054 to increase the production of aborycin and actinorhodin by 4.5-fold and 1.2-fold, respectively, compared to S. coelicolor M1346 counterparts. With its unique features and amenability to genetic manipulation, HNS054 emerges as a promising candidate for developing novel marine-derived drugs and other valuable compounds.


Subject(s)
Actinobacteria , Biological Products , Streptomyces coelicolor , Streptomyces , Actinobacteria/genetics , Synthetic Biology , Streptomyces/genetics , Genomics , Biological Products/pharmacology , Multigene Family , Streptomyces coelicolor/genetics
18.
Int J Mol Sci ; 25(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256129

ABSTRACT

Trachinotus ovatus is an economically important mariculture fish, and hypoxia has become a critical threat to this hypoxia-sensitive species. However, the molecular adaptation mechanism of T. ovatus liver to hypoxia remains unclear. In this study, we investigated the effects of acute hypoxic stress (1.5 ± 0.1 mg·L-1 for 6 h) and re-oxygenation (5.8 ± 0.3 mg·L-1 for 12 h) in T. ovatus liver at both the transcriptomic and metabolic levels to elucidate hypoxia adaptation mechanism. Integrated transcriptomics and metabolomics analyses identified 36 genes and seven metabolites as key molecules that were highly related to signal transduction, cell growth and death, carbohydrate metabolism, amino acid metabolism, and lipid metabolism, and all played key roles in hypoxia adaptation. Of these, the hub genes FOS and JUN were pivotal hypoxia adaptation biomarkers for regulating cell growth and death. During hypoxia, up-regulation of GADD45B and CDKN1A genes induced cell cycle arrest. Enhancing intrinsic and extrinsic pathways in combination with glutathione metabolism triggered apoptosis; meanwhile, anti-apoptosis mechanism was activated after hypoxia. Expression of genes related to glycolysis, gluconeogenesis, amino acid metabolism, fat mobilization, and fatty acid biosynthesis were up-regulated after acute hypoxic stress, promoting energy supply. After re-oxygenation for 12 h, continuous apoptosis favored cellular function and tissue repair. Shifting from anaerobic metabolism (glycolysis) during hypoxia to aerobic metabolism (fatty acid ß-oxidation and TCA cycle) after re-oxygenation was an important energy metabolism adaptation mechanism. Hypoxia 6 h was a critical period for metabolism alteration and cellular homeostasis, and re-oxygenation intervention should be implemented in a timely way. This study thoroughly examined the molecular response mechanism of T. ovatus under acute hypoxic stress, which contributes to the molecular breeding of hypoxia-tolerant cultivars.


Subject(s)
Energy Metabolism , Hypoxia , Animals , Hypoxia/genetics , Gene Expression Profiling , Fishes , Homeostasis , Amino Acids , Fatty Acids
19.
Angew Chem Int Ed Engl ; 63(26): e202318485, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38608197

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive and lethal malignancy with extremely poor patient survival rates. A key reason for the poor prognosis is the lack of effective diagnostic tools to detect the disease at curable, premetastatic stages. Tumor surgical resection is PDAC's first-line treatment, however distinguishing between cancerous and healthy tissue with current imaging tools remains a challenge. In this work, we report a DOTA-based fluorescent probe targeting plectin-1 for imaging PDAC with high specificity. To enable heterogeneous functionalization of the DOTA-core with multiple targeting peptide units and the fluorophore, a novel, fully clickable synthetic route that proceeds in one pot was developed. Extensive validation of the probe set the stage for PDAC detection in mice and human tissue. Altogether, these findings may pave the way for improved clinical understanding and early detection of PDAC progression as well as more accurate resection criteria.


Subject(s)
Contrast Media , Heterocyclic Compounds, 1-Ring , Pancreatic Neoplasms , Plectin , Humans , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/pathology , Plectin/metabolism , Animals , Contrast Media/chemistry , Mice , Heterocyclic Compounds, 1-Ring/chemistry , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/pathology , Optical Imaging
20.
Funct Integr Genomics ; 23(1): 41, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36650401

ABSTRACT

The complete mitochondrial genome (mitogenome) of the sawfly, Nesodiprion zhejiangensis Zhou & Xiao, was sequenced, assembled, and deposited in GenBank (Accession Number: OM501121). The 15,660 bp N. zhejiangensis mitogenome encodes for 2 ribosomal RNAs (rrnL and rrnS), 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and an AT-rich region of 450 bp in length. The nucleotide composition is biased toward adenine and thymine (A + T = 81.8%). Each PCG is initiated by an ATN codon, except for cox2, which starts with a TTG. Of 13 PCGs, 9 have a TAA termination codon, while the remainder terminate with a TAG or a single T. All tRNAs have the classic cloverleaf structure, except for the dihydrouridine (DHU) arm of tRNAval, which forms a simple loop. There are 49 helices belonging to 6 domains in rrnL and 30 helices belonging to 4 domains in rrnS. In comparison to the ancestral architecture, N. zhejiangensis has the most rearranged mitogenome in Symphyta, in which rearrangement events of local inversion and transposition are identified in three gene clusters. Specifically, the main hotspot of gene rearrangement occurred between rrnS and trnY, and rearranged from rrnS-(AT-rich region)-I-Q-M-nd2-W-C-Y to rrnS-Q-W-C-nd2-I-M-(AT-rich region)-Y, involving a local inversion event of a large gene cluster and transposition events of some tRNAs. Transposition of trnA and trnR (rearranged from A-R to R-A) was observed at the nd3-nd5 gene junction while shuffling of trnP and trnT (rearranged from T-P to P-T) occurred at the nd4l-nd6 gene junction. While illegitimate inter-mtDNA recombination might explain the opposite orientations of transcription between rrnS and trnY, transposition events of tRNA in some gene blocks can be accounted for by the tandem duplication/random loss (TDRL) model. Our phylogenetic analysis suggests that N. zhejiangensis is closely related to congeneric species N. biremis and N. japonicus, which together form a sister lineage with the European pine sawfly, Neodiprion sertifer.


Subject(s)
Genome, Mitochondrial , Hymenoptera , Animals , Gene Order , Hymenoptera/genetics , Phylogeny , RNA, Transfer/genetics
SELECTION OF CITATIONS
SEARCH DETAIL