Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Proc Natl Acad Sci U S A ; 120(17): e2221459120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068247

ABSTRACT

Growing population and consumption pose unprecedented demands on food production. However, ammonia emissions mainly from food systems increase oceanic nitrogen deposition contributing to eutrophication. Here, we developed a long-term oceanic nitrogen deposition dataset (1970 to 2018) with updated ammonia emissions from food systems, evaluated the impact of ammonia emissions on oceanic nitrogen deposition patterns, and discussed the potential impact of nitrogen fertilizer overuse. Based on the chemical transport modeling approach, oceanic ammonia-related nitrogen deposition increased by 89% globally between 1970 and 2018, and now, it exceeds oxidized nitrogen deposition by over 20% in coastal regions including China Sea, India Coastal, and Northeastern Atlantic Shelves. Approximately 38% of agricultural nitrogen fertilizer was excessive, which corresponds to 15% of global oceanic ammonia-related nitrogen deposition. Policymakers and water quality managers need to pay increasingly more attention to ammonia associated with food production if the goal of reducing coastal nitrogen pollution is to be achieved for Sustainable Development Goals.


Subject(s)
Ammonia , Nitrogen , Nitrogen/analysis , Ammonia/analysis , Fertilizers/analysis , Agriculture , China , Water Quality , Soil
2.
Proc Natl Acad Sci U S A ; 119(14): e2121998119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35344440

ABSTRACT

SignificanceAgricultural systems are already major forces of ammonia pollution and environmental degradation. How agricultural ammonia emissions affect the spatio-temporal patterns of nitrogen deposition and where to target future mitigation efforts, remains poorly understood. We develop a substantially complete and coherent agricultural ammonia emissions dataset in nearly recent four decades, and evaluate the relative role of reduced nitrogen in total nitrogen deposition in a spatially explicit way. Global reduced nitrogen deposition has grown rapidly, and will occupy a greater dominant position in total nitrogen deposition without future ammonia regulations. Recognition of agricultural ammonia emissions on nitrogen deposition is critical to formulate effective policies to address ammonia related environmental challenges and protect ecosystems from excessive nitrogen inputs.


Subject(s)
Air Pollutants , Ammonia , Agriculture , Air Pollutants/analysis , Ammonia/analysis , Ecosystem , Environmental Monitoring , Environmental Pollution , Nitrogen/analysis
3.
Environ Sci Technol ; 56(8): 4871-4881, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35369697

ABSTRACT

Global warming is expected to affect methane (CH4) emissions from rice paddies, one of the largest human-induced sources of this potent greenhouse gas. However, the large variability in warming impacts on CH4 emissions makes it difficult to extrapolate the experimental results over large regions. Here, we show, through meta-analysis and multi-site warming experiments using the free air temperature increase facility, that warming stimulates CH4 emissions most strongly at background air temperatures during the flooded stage of ∼26 °C, with smaller responses of CH4 emissions to warming at lower and higher temperatures. This pattern can be explained by divergent warming responses of plant growth, methanogens, and methanotrophs. The effects of warming on rice biomass decreased with the background air temperature. Warming increased the abundance of methanogens more strongly at the medium air temperature site than the low and high air temperature sites. In contrast, the effects of warming on the abundance of methanotrophs were similar across the three temperature sites. We estimate that 1 °C warming will increase CH4 emissions from paddies in China by 12.6%─substantially higher than the estimates obtained from leading ecosystem models. Our findings challenge model assumptions and suggest that the estimates of future paddy CH4 emissions need to consider both plant and microbial responses to warming.


Subject(s)
Euryarchaeota , Oryza , Agriculture , China , Ecosystem , Methane/analysis , Nitrous Oxide/analysis , Soil , Temperature
4.
Nat Ecol Evol ; 8(2): 239-250, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38172286

ABSTRACT

Mangrove forests are a highly productive ecosystem with important potential to offset anthropogenic greenhouse gas emissions. Mangroves are expected to respond differently to climate change compared to terrestrial forests owing to their location in the tidal environment and unique ecophysiological characteristics, but the magnitude of difference remains uncertain at the global scale. Here we use satellite observations to examine mean trends and interannual variability in the productivity of global mangrove forests and nearby terrestrial evergreen broadleaf forests from 2001 to 2020. Although both types of ecosystem experienced significant recent increases in productivity, mangroves exhibited a stronger increasing trend and greater interannual variability in productivity than evergreen broadleaf forests on three-quarters of their co-occurring coasts. The difference in productivity trends is attributed to the stronger CO2 fertilization effect on mangrove photosynthesis, while the discrepancy in interannual variability is attributed to the higher sensitivities to variations in precipitation and sea level. Our results indicate that mangroves will have a faster increase in productivity than terrestrial forests in a CO2-rich future but may suffer more from deficits in water availability, highlighting a key difference between terrestrial and tidal ecosystems in their responses to climate change.


Subject(s)
Carbon Dioxide , Ecosystem , Forests , Wetlands , Photosynthesis
5.
Nat Food ; 5(9): 754-763, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39143310

ABSTRACT

The rising carbon dioxide concentrations are expected to increase future rice yields. However, variations in the CO2 fertilization effect (CFE) between rice subspecies and the influence of concurrent global warming introduce uncertainty in future global rice yield projections. Here we conducted a meta-analysis of rising carbon dioxide field experiments and employed crop modelling to assess future global rice yields for the top 14 rice producing countries. We found a robust parabolic relationship between rice CFE and temperature, with significant variations between rice subspecies. Our projections indicate that global rice production in the 2050s is expected to increase by 50.32 million tonnes (7.6%) due to CFE compared with historical production. Because low-income countries will experience higher temperatures, the gaps (difference of Δyield) between middle-to-high-income and low-income countries are projected to widen from the 2030s to the 2090s under elevated carbon dioxide. These findings underscore the critical role of CFE and emphasize the necessity to increase investments in research and technology for rice producing systems in low-income countries.


Subject(s)
Carbon Dioxide , Developing Countries , Global Warming , Oryza , Carbon Dioxide/analysis , Developed Countries , Temperature , Atmosphere/chemistry , Agriculture , Humans
6.
Plant Phenomics ; 5: 0047, 2023.
Article in English | MEDLINE | ID: mdl-37228514

ABSTRACT

Enhancing the photosynthetic rate is one of the effective ways to increase rice yield, given that photosynthesis is the basis of crop productivity. At the leaf level, crops' photosynthetic rate is mainly determined by photosynthetic functional traits including the maximum carboxylation rate (Vcmax) and stomatal conductance (gs). Accurate quantification of these functional traits is important to simulate and predict the growth status of rice. In recent studies, the emerging sun-induced chlorophyll fluorescence (SIF) provides us an unprecedented opportunity to estimate crops' photosynthetic traits, owing to its direct and mechanistic links to photosynthesis. Therefore, in this study, we proposed a practical semimechanistic model to estimate the seasonal Vcmax and gs time-series based on SIF. We firstly generated the coupling relationship between the open ratio of photosystem II (qL) and photosynthetically active radiation (PAR), then estimate the electron transport rate (ETR) based on the proposed mechanistic relationship between SIF and ETR. Finally, Vcmax and gs were estimated by linking to ETR based on the principle of evolutionary optimality and the photosynthetic pathway. Validation with field observations showed that our proposed model can estimate Vcmax and gs with high accuracy (R2 > 0.8). Compared to simple linear regression model, the proposed model could increase the accuracy of Vcmax estimates by >40%. Therefore, the proposed method effectively enhanced the estimation accuracy of crops' functional traits, which sheds new light on developing high-throughput monitoring techniques to estimate plant functional traits, and also can improve our understating of crops' physiological response to climate change.

7.
Nat Commun ; 14(1): 6482, 2023 10 14.
Article in English | MEDLINE | ID: mdl-37838711

ABSTRACT

Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms. Our study identifies climate as an important driver of the global distribution of phytopathogenic fungi, and our models suggest that their diversity and invasion potential will increase globally by 2100. Importantly, phytopathogen diversity will increase largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and this becomes more pronounced under fossil-fuelled industry dependent future scenarios. Thus, we recommend improved biomonitoring in forests and croplands, and optimised sustainable development approaches to reduce potential threats from phytopathogenic fungi.


Subject(s)
Ecosystem , Forests , Fungi , Climate , Biodiversity
8.
Sci Total Environ ; 755(Pt 2): 142569, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33038811

ABSTRACT

Terrestrial vegetation absorbs approximately 30% of the anthropogenic carbon dioxide (CO2) emitted into the atmosphere through photosynthesis (represented by gross primary productivity, GPP) and thus effectively mitigates global warming. However, large uncertainties still remain in the global GPP estimations and their long-term trends. Here we used the satellite-based near-infrared reflectance (NIRv) as the proxy of GPP and generated a global long-term (1982-2018) GPP datasets (hereafter GPPNIRv). Analysis at the site-level showed that NIRv could accurately capture both the monthly and annual variations in GPP (R2 = 0.71 and 0.74 respectively) at 104 flux sites. Upscaling the relationships between NIRv and GPP to the global scale, the global annual GPP was estimated to be 128.3 ± 4.0 Pg C yr-1 during the last four decades, which fell between the estimations from the machine-learning upscaling approach, light-use-efficiency (LUE) models and processed-based models. The seasonal variation of GPPNIRv was also consistent with those from flux sites and models. More importantly, the inter-annual trends in GPPNIRv during the last four decades were consistent with those from processed-based models across latitudes, which outperformed the other GPP products. This evidence suggested that the long-term GPP datasets derived from NIRv have better abilities to capture the seasonal and inter-annual variations of terrestrial GPP at the global scale. The long-term GPPNIRv product could be beneficial for the estimation of terrestrial carbon fluxes and for the projection of future climates.

9.
For Ecosyst ; 8(1): 31, 2021.
Article in English | MEDLINE | ID: mdl-34721934

ABSTRACT

BACKGROUND: Vegetation phenology research has largely focused on temperate deciduous forests, thus limiting our understanding of the response of evergreen vegetation to climate change in tropical and subtropical regions. RESULTS: Using satellite solar-induced chlorophyll fluorescence (SIF) and MODIS enhanced vegetation index (EVI) data, we applied two methods to evaluate temporal and spatial patterns of the end of the growing season (EGS) in subtropical vegetation in China, and analyze the dependence of EGS on preseason maximum and minimum temperatures as well as cumulative precipitation. Our results indicated that the averaged EGS derived from the SIF and EVI based on the two methods (dynamic threshold method and derivative method) was later than that derived from gross primary productivity (GPP) based on the eddy covariance technique, and the time-lag for EGSsif and EGSevi was approximately 2 weeks and 4 weeks, respectively. We found that EGS was positively correlated with preseason minimum temperature and cumulative precipitation (accounting for more than 73% and 62% of the study areas, respectively), but negatively correlated with preseason maximum temperature (accounting for more than 59% of the study areas). In addition, EGS was more sensitive to the changes in the preseason minimum temperature than to other climatic factors, and an increase in the preseason minimum temperature significantly delayed the EGS in evergreen forests, shrub and grassland. CONCLUSIONS: Our results indicated that the SIF outperformed traditional vegetation indices in capturing the autumn photosynthetic phenology of evergreen forest in the subtropical region of China. We found that minimum temperature plays a significant role in determining autumn photosynthetic phenology in the study region. These findings contribute to improving our understanding of the response of the EGS to climate change in subtropical vegetation of China, and provide a new perspective for accurately evaluating the role played by evergreen vegetation in the regional carbon budget. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40663-021-00309-9.

10.
Science ; 373(6562): eabg7484, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34554812

ABSTRACT

Our study suggests that the global CO2 fertilization effect (CFE) on vegetation photosynthesis has declined during the past four decades. The Comments suggest that the temporal inconsistency in AVHRR data and the attribution method undermine the results' robustness. Here, we provide additional evidence that these arguments did not affect our finding and that the global decline in CFE is robust.


Subject(s)
Carbon Dioxide , Photosynthesis , Fertilization
11.
Science ; 370(6522): 1295-1300, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33303610

ABSTRACT

The enhanced vegetation productivity driven by increased concentrations of carbon dioxide (CO2) [i.e., the CO2 fertilization effect (CFE)] sustains an important negative feedback on climate warming, but the temporal dynamics of CFE remain unclear. Using multiple long-term satellite- and ground-based datasets, we showed that global CFE has declined across most terrestrial regions of the globe from 1982 to 2015, correlating well with changing nutrient concentrations and availability of soil water. Current carbon cycle models also demonstrate a declining CFE trend, albeit one substantially weaker than that from the global observations. This declining trend in the forcing of terrestrial carbon sinks by increasing amounts of atmospheric CO2 implies a weakening negative feedback on the climatic system and increased societal dependence on future strategies to mitigate climate warming.


Subject(s)
Carbon Cycle , Carbon Dioxide/metabolism , Global Warming , Photosynthesis , Atmosphere/chemistry , Carbon Dioxide/analysis
12.
Nat Ecol Evol ; 3(7): 1076-1085, 2019 07.
Article in English | MEDLINE | ID: mdl-31235928

ABSTRACT

Photosynthetic phenology has large effects on the land-atmosphere carbon exchange. Due to limited experimental assessments, a comprehensive understanding of the variations of photosynthetic phenology under future climate and its associated controlling factors is still missing, despite its high sensitivities to climate. Here, we develop an approach that uses cities as natural laboratories, since plants in urban areas are often exposed to higher temperatures and carbon dioxide (CO2) concentrations, which reflect expected future environmental conditions. Using more than 880 urban-rural gradients across the Northern Hemisphere (≥30° N), combined with concurrent satellite retrievals of Sun-induced chlorophyll fluorescence (SIF) and atmospheric CO2, we investigated the combined impacts of elevated CO2 and temperature on photosynthetic phenology at the large scale. The results showed that, under urban conditions of elevated CO2 and temperature, vegetation photosynthetic activity began earlier (-5.6 ± 0.7 d), peaked earlier (-4.9 ± 0.9 d) and ended later (4.6 ± 0.8 d) than in neighbouring rural areas, with a striking two- to fourfold higher climate sensitivity than greenness phenology. The earlier start and peak of season were sensitive to both the enhancements of CO2 and temperature, whereas the delayed end of season was mainly attributed to CO2 enrichments. We used these sensitivities to project phenology shifts under four Representative Concentration Pathway climate scenarios, predicting that vegetation will have prolonged photosynthetic seasons in the coming two decades. This observation-driven study indicates that realistic urban environments, together with SIF observations, provide a promising method for studying vegetation physiology under future climate change.


Subject(s)
Carbon Dioxide , Photosynthesis , Climate Change , Seasons , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL