Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 226
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant Physiol ; 194(3): 1431-1446, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37879114

ABSTRACT

The endoplasmic reticulum (ER) is a network of interconnected tubules and sheets stretching throughout the cytoplasm of plant cells. In Arabidopsis (Arabidopsis thaliana), ROOT HAIR DEFECTIVE3 (RHD3) mediates ER tubule fusion, while reticulon proteins induce ER membrane curvature to produce ER tubules. However, it is unclear if and how RHD3-reticulon interplay during the formation of the interconnected tubular ER network. We discovered that RHD3 physically interacts with Arabidopsis reticulon proteins, including reticulon-like protein subfamily B3 (RTNLB3), on ER tubules and at 3-way junctions of the ER. The RTNLB3 protein is widely expressed in Arabidopsis seedlings and localizes to ER tubules. Although the growth of knockout rtnlb3 mutant plants was relatively normal, root hairs of rtnlb3 were shorter than those of wild type. The ER in mature mutant cells was also more sheeted than that in wild type. rhd3 is known to have short roots and root hairs and less branched ER tubules in cells. Interestingly, rtnlb3 genetically antagonizes rhd3 in plant root development and in ER interconnectivity. We show that reticulons including RTNLB3 inhibit the ER fusion activity of RHD3, partly by interfering with RHD3 dimerization. We conclude that reticulon proteins negatively regulate RHD3 to balance its ER fusion activity for the formation of a stable tubular ER network in plant cell growth.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Endoplasmic Reticulum , Arabidopsis Proteins/genetics , Cell Cycle , Cell Proliferation , GTP-Binding Proteins
2.
Basic Res Cardiol ; 119(1): 57-74, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38151579

ABSTRACT

Cardiac sympathetic overactivation is a critical driver in the progression of acute myocardial infarction (AMI). The left middle cervical ganglion (LMCG) is an important extracardiac sympathetic ganglion. However, the regulatory effects of LMCG on AMI have not yet been fully documented. In the present study, we detected that the LMCG was innervated by abundant sympathetic components and exerted an excitatory effect on the cardiac sympathetic nervous system in response to stimulation. In canine models of AMI, targeted ablation of LMCG reduced the sympathetic indexes of heart rate variability and serum norepinephrine, resulting in suppressed cardiac sympathetic activity. Moreover, LMCG ablation could improve ventricular electrophysiological stability, evidenced by the prolonged ventricular effective refractory period, elevated action potential duration, increased ventricular fibrillation threshold, and enhanced connexin43 expression, consequently showing antiarrhythmic effects. Additionally, compared with the control group, myocardial infarction size, circulating cardiac troponin I, and myocardial apoptosis were significantly reduced, accompanied by preserved cardiac function in canines subjected to LMCG ablation. Finally, we performed the left stellate ganglion (LSG) ablation and compared its effects with LMCG destruction. The results indicated that LMCG ablation prevented ventricular electrophysiological instability, cardiac sympathetic activation, and AMI-induced ventricular arrhythmias with similar efficiency as LSG denervation. In conclusion, this study demonstrated that LMCG ablation suppressed cardiac sympathetic activity, stabilized ventricular electrophysiological properties and mitigated cardiomyocyte death, resultantly preventing ischemia-induced ventricular arrhythmias, myocardial injury, and cardiac dysfunction. Neuromodulation therapy targeting LMCG represented a promising strategy for the treatment of AMI.


Subject(s)
Myocardial Infarction , Animals , Dogs , Arrhythmias, Cardiac , Heart/innervation , Ventricular Fibrillation/etiology , Ventricular Fibrillation/prevention & control , Ganglia, Sympathetic/metabolism
3.
J Neurosci Res ; 101(9): 1447-1456, 2023 09.
Article in English | MEDLINE | ID: mdl-37183389

ABSTRACT

This study aimed to explore the alterations in gray matter volume (GMV) based on high-resolution structural data and the temporal precedence of structural alterations in patients with sleep-related hypermotor epilepsy (SHE). After preprocessing of T1 structural images, the voxel-based morphometry and source-based morphometry (SBM) methods were applied in 60 SHE patients and 56 healthy controls to analyze the gray matter volumetric alterations. Furthermore, a causal network of structural covariance (CaSCN) was constructed using Granger causality analysis based on structural data of illness duration ordering to assess the causal impact of structural changes in abnormal gray matter regions. The GMVs of SHE patients were widely reduced, mainly in the bilateral cerebellums, fusiform gyri, the right angular gyrus, the right postcentral gyrus, and the left parahippocampal gyrus. In addition to those regions, the results of the SBM analysis also found decreased GMV in the bilateral frontal lobes, precuneus, and supramarginal gyri. The analysis of CaSCN showed that along with disease progression, the cerebellum was the prominent node that tended to affect other brain regions in SHE patients, while the frontal lobe was the transition node and the supramarginal gyrus was the prominent node that may be easily affected by other brain regions. Our study found widely affected regions of decreased GMVs in SHE patients; these regions underlie the morphological basis of epileptic networks, and there is a temporal precedence relationship between them.


Subject(s)
Brain , Ethnicity , Humans , China , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Sleep
4.
Fish Shellfish Immunol ; 132: 108500, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36572268

ABSTRACT

Ginkgo biloba leaf extract (GBE) has been extensively used in the treatment of diseases due to its anti-inflammatory, antioxidant, and immunomodulatory effects. In aquaculture, GBE is widely used as a feed additive, which is important to enhance the immunity of aquatic animals. The current study evaluated the effects of adding GBE to the diet of Penaeus vannamei (P. vannamei) under intensive aquaculture. The GBE0 (control group), GBE1, GBE2, and GBE4 groups were fed a commercial feed supplemented with 0.0, 1.0, 2.0, and 4.0 g/kg GBE for 21 days, respectively. The results showed that dietary GBE could alleviate hepatopancreas tissue damage and improve the survival rate of shrimp, and dietary 2 g/kg GBE could significantly increase the total hemocyte count (THC), the hemocyanin content, the antioxidant gene's expression, and the activity of their encoded enzymes in P. vannamei. Furthermore, transcriptome data revealed that immunity-related genes were upregulated in the GBE2 group compared with the GBE0 group after 21 days of culture. Drug metabolism-cytochrome P450, sphingolipid metabolism, linoleic acid metabolism, glycerolipid metabolism, fat digestion and protein digestion and absorption pathways were significantly enriched, according to KEGG results. Surprisingly, all of the above KEGG-enriched pathways were significantly upregulated. These findings demonstrated that supplementing P. vannamei with 2 g/kg GBE improved its environmental adaptability by improving immunity, lipid metabolism, and detoxification. In this study, a comprehensive evaluation of the effects of dietary GBE on the intensive aquaculture of P. vannamei was conducted to provide a reference for the healthy culture of P. vannamei.


Subject(s)
Ginkgo biloba , Penaeidae , Animals , Ginkgo biloba/metabolism , Antioxidants/metabolism , Plant Extracts , Diet/veterinary
5.
Nutr J ; 22(1): 56, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940938

ABSTRACT

BACKGROUND: Protein-energy wasting (PEW) has been reported to be pretty common in maintenance dialysis patients. However, the existing PEW diagnostic standard is limited in clinical use due to the complexity of it. Bioelectrical impedance analysis (BIA), as a non-invasive nutritional assessment method, can objectively and quantitatively analyze the changes of body tissue components under different nutritional states. We aim to explore the association between PEW and BIA and establish a reliable diagnostic model of PEW. METHODS: We collected cross-sectional data of 609 maintenance dialysis patients at the First Affiliated Hospital, College of Medicine, Zhejiang University. PEW was diagnosed according to International Society of Renal Nutrition and Metabolism (ISRNM) criteria. Among them, 448 consecutive patients were included in the training set for the establishment of a diagnostic nomogram. 161 consecutive patients were included for internal validation. 52 patients from Zhejiang Hospital were included for external validation of the diagnostic model. Correlation analysis of BIA indexes with other nutritional indicators was performed. Logistic regression was used to examine the association of BIA indexes with PEW. 12 diagnostic models of PEW in maintenance dialysis patients were developed and the performance of them in terms of discrimination and calibration was evaluated using C statistics and Hosmer-Lemeshow-type χ2 statistics. After comparing to existing diagnostic models, and performing both internal and external validation, we finally established a simple but reliable PEW diagnostic model which may have great value of clinical application. RESULTS: A total of 609 individuals from First Affiliated Hospital, College of Medicine, Zhejiang University and 52 individuals from Zhejiang Hospital were included. After full adjustment, age, peritoneal dialysis (compared to hemodialysis), subjective global assessment (SGA, compared to non-SGA) and water ratio were independent risk factors, while triglyceride, urea nitrogen, calcium, ferritin, BCM, VFA and phase angle were independent protective factors of PEW. The model incorporated water ratio, VFA, BCM, phase angle and cholesterol revealed best performance. A nomogram was developed according to the results of model performance. The model achieved high C-indexes of 0.843 in the training set, 0.841 and 0.829 in the internal and external validation sets, respectively, and had a well-fitted calibration curve. The net reclassification improvement (NRI) showed 8%, 13%, 2%, 38%, 36% improvement of diagnostic accuracy of our model compared with "PEW score model", "modified PEW score model", "3-index model", "SGA model" and "BIA decision tree model", respectively. CONCLUSIONS: BIA can be used as an auxiliary tool to evaluate PEW risk and may have certain clinical application value.


Subject(s)
Protein-Energy Malnutrition , Renal Dialysis , Humans , Renal Dialysis/adverse effects , Cross-Sectional Studies , Electric Impedance , Protein-Energy Malnutrition/diagnosis , Protein-Energy Malnutrition/etiology , Water
6.
Altern Ther Health Med ; 29(2): 22-28, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36239566

ABSTRACT

Context: The totally implantable venous access port (TIVAP) is an intravenous-infusion device, with a lower complication rate than other such devices. If patients fail to maintain the catheter, however, complications can still occur. Patients' needs may vary by the period of the port's use. Objective: The study intended to explore the differences in the needs of breast-cancer (BC) patients with TIVAPs for health education and nursing care at different periods of the port's use and to determine the kinds of targeted health education that can improve patients' quality of life. Design: The research team designed a questionnaire that the participants completed. Setting: The study took place at the Breast Center at the Fourth Hospital of Hebei Medical University in Shijiazhuang, China. Participants: Participants were 442 BC patients at the hospital between March and June 2020, who had TIVAPs at different stages. Groups: The study included three groups: (1) the preoperative group-participants in the preoperative period prior to the TIVAP implantation after they had signed a consent; (2) the chemotherapy group-participants in the chemotherapy period during the TIVAP's use for chemotherapy-agent transfusion, and (3) the maintenance group-participants in the maintenance period during which the TIVAD was in place but wasn't being used. Outcome Measures: The research team analyzed the results from the questionnaires, categorizing them as: (1) methods of knowledge acquisition, (2) methods of distribution of knowledge, (3) needs of participants in the different groups, and (4) distribution of symptoms among the groups. Results: Compared to other methods, the nursing staff was the main source that participants used to access the TIVAP-related information at different periods: preoperative group (79.6%), chemotherapy group (90.7%), and maintenance group (90.2%).The differences between the periods were statistically significant (P = .00). A traditional mode of education-the medical staff's explanations-was the most common in all groups: preoperative group (79.6%), chemotherapy group (83.3%), and (3) maintenance group (80.7%). Patients wanted new modes of receiving information: talks, a poster, and a medical system. TIVAP patients paid different amounts of attention to educational contents at the different stages (χ2 = 29.816, P = .00). Conclusions: BC patients' needs for health education and nursing vary at different stages when using TIVAPs. Nurses are the main source of knowledge about TIVAP in different periods for BC patients, and the nurses should obtain multidisciplinary health knowledge to enhance the benefits of the education for patients. The current education for patient is traditional, and hospitals need to implement new modes of education such as medical systems and network platforms, lectures, and posters for health education.


Subject(s)
Breast Neoplasms , Catheterization, Central Venous , Humans , Female , Breast Neoplasms/drug therapy , Catheterization, Central Venous/methods , Catheters, Indwelling , Quality of Life , Health Education
7.
J Am Chem Soc ; 144(1): 515-526, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34935372

ABSTRACT

Organozinc reagents are among the most commonly used organometallic reagents in modern synthetic chemistry, and multifunctionalized organozinc reagents can be synthesized from structurally simple, readily available ones by means of alkyne carbozincation. However, this method suffers from poor tolerance for terminal alkynes, and transformation of the newly introduced organic groups is difficult, which limits its applications. Herein, we report a method for vinylzincation of terminal alkynes catalyzed by newly developed iron catalysts bearing 1,10-phenanthroline-imine ligands. This method provides efficient access to novel organozinc reagents with a diverse array of structures and functional groups from readily available vinylzinc reagents and terminal alkynes. The method features excellent functional group tolerance (tolerated functional groups include amino, amide, cyano, ester, hydroxyl, sulfonyl, acetal, phosphono, pyridyl), a good substrate scope (suitable terminal alkynes include aryl, alkenyl, and alkyl acetylenes bearing various functional groups), and high chemoselectivity, regioselectivity, and stereoselectivity. The method could significantly improve the synthetic efficiency of various important bioactive molecules, including vitamin A. Mechanistic studies indicate that the new iron-1,10-phenanthroline-imine catalysts developed in this study have an extremely crowded reaction pocket, which promotes efficient transfer of the vinyl group to the alkynes, disfavors substitution reactions between the zinc reagent and the terminal C-H bond of the alkynes, and prevents the further reactions of the products. Our findings show that iron catalysts can be superior to other metal catalysts in terms of activity, chemoselectivity, regioselectivity, and stereoselectivity when suitable ligands are used.

8.
BMC Plant Biol ; 22(1): 118, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35291945

ABSTRACT

BACKGROUND: The Artemisia species are widely distributed around the world, and have found important usage in traditional medicinal practice. This study was designed to investigate the metabolites of Tibetan Artemisia species and understand the metabolic pathways. METHODS: The metabolites from three Artemisia species in Tibet, were analyzed using LC-MS/MS. The differential metabolites were classified and analyzed by principal component analysis (PCA), partial least squares analysis and hierarchical clustering. KEGG Pathway enrichment analysis was used to identify the key metabolic pathways involved in the differential metabolites of three Artemisia species. RESULT: The metabolites of three Artemisia species were analyzed. Under the positive ion mode in LC-MS/MS, 262 distinct metabolites were differentially detected from Artemisia sieversiana and Artemisia annua, 312 differential metabolites were detected from Artemisia wellbyi and Artemisia sieversiana, 306 differential metabolites were screened from Artemisia wellbyi and Artemisia annua. With the negative ion mode, 106 differential metabolites were identified from Artemisia sieversiana and Artemisia annua, 131 differential metabolites were identified from Artemisia wellbyi and Artemisia sieversiana,133 differential metabolites were differentially detected from Artemisia wellbyi and Artemisia annua. The selected differential metabolites were mainly organic acids and their derivatives, ketones, phenols, alcohols and coumarins. Among these natural compounds, artemisinin, has the highest relative content in Artemisia annua. CONCLUSIONS: This is the first reported attempt to comparatively determine the types of the metabolites of the three widely distributed Artemisia species in Tibet. The information should help medicinal research and facilitate comprehensive development and utilization of Artemisia species in Tibet.


Subject(s)
Artemisia annua , Tandem Mass Spectrometry , Artemisia annua/genetics , China , Chromatography, Liquid , Metabolomics , Tibet
9.
Hepatology ; 74(3): 1251-1270, 2021 09.
Article in English | MEDLINE | ID: mdl-33713358

ABSTRACT

BACKGROUND AND AIMS: Characterized by hepatocyte steatosis, inflammation, and fibrosis, NASH is a complicated process that contributes to end-stage liver disease and, eventually, HCC. TNF-α-induced protein 8-like 1 (TIPE1), a new member of the TNF-α-induced protein 8 family, has been explored in immunology and oncology research; but little is known about its role in metabolic diseases. APPROACH AND RESULTS: Here, we show that hepatocyte-specific deletion of TIPE1 exacerbated diet-induced hepatic steatosis, inflammation, and fibrosis as well as systemic metabolic disorders during NASH pathogenesis. Conversely, hepatocyte-specific overexpression of TIPE1 dramatically prevented the progression of these abnormalities. Mechanically, TIPE1 directly interacted with apoptosis signal-regulating kinase 1 (ASK1) to suppress its TNF receptor-associated factor 6 (TRAF6)-catalyzed polyubiquitination activation upon metabolic challenge, thereby inhibiting the downstream c-Jun N-terminal kinase and p38 signaling pathway. Importantly, dramatically reduced TIPE1 expression was observed in the livers of patients with NAFLD, suggesting that TIPE1 might be a promising therapeutic target for NAFLD and related metabolic diseases. CONCLUSIONS: TIPE1 protects against hepatic steatosis, inflammation, and fibrosis through directly binding ASK1 and restraining its TRAF6-catalyzed polyubiquitination during the development of NASH. Therefore, targeting TIPE1 could be a promising therapeutic approach for NAFLD treatment.


Subject(s)
Fatty Liver/genetics , Intracellular Signaling Peptides and Proteins/genetics , MAP Kinase Kinase Kinase 5/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Adult , Aged , Animals , Diet, High-Fat , Down-Regulation , Fatty Liver/metabolism , Fatty Liver/pathology , Female , Humans , Inflammation , Intracellular Signaling Peptides and Proteins/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Male , Mice, Knockout , Mice, Transgenic , Middle Aged , Non-alcoholic Fatty Liver Disease/metabolism , Polyubiquitin/metabolism
10.
EMBO Rep ; 21(9): e49431, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32677323

ABSTRACT

In the main olfactory epithelium (MOE), new olfactory sensory neurons (OSNs) are persistently generated to replace lost neurons throughout an organism's lifespan. This process predominantly depends on the proliferation of globose basal cells (GBCs), the actively dividing stem cells in the MOE. Here, by using CRISPR/Cas9 and RNAi coupled with adeno-associated virus (AAV) nose delivery approaches, we demonstrated that knockdown of miR-200b/a in the MOE resulted in supernumerary Mash1-marked GBCs and decreased numbers of differentiated OSNs, accompanied by abrogation of male behaviors. We further showed that in the MOE, miR-200b/a targets the ten-eleven translocation methylcytosine dioxygenase TET3, which cooperates with RE1-silencing transcription factor (REST) to exert their functions. Deficiencies including proliferation, differentiation, and behaviors illustrated in miR-200b/a knockdown mice were rescued by suppressing either TET3 or REST. Our work describes a mechanism of coordination of GBC proliferation and differentiation in the MOE and olfactory male behaviors through miR-200/TET3/REST signaling.


Subject(s)
Cell Proliferation , Dioxygenases/genetics , MicroRNAs/genetics , Olfactory Receptor Neurons/cytology , Repressor Proteins/genetics , Animals , Gene Knockdown Techniques , Male , Mice , Olfactory Mucosa
11.
Fish Shellfish Immunol ; 126: 187-196, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35588908

ABSTRACT

MYC proto-oncogene (MYC), a first oncogenic nuclear transcription factor isolated from the human genome, belongs to the helix loop helix/leucine zipper protein family (bHLHzip). MYC plays an important part in the process of various physiological and biochemical of vertebrate, such as cell growth, proliferation, cycle, and autophagy. However, its molecular regulation mechanism and function in invertebrates are still unclear. In this study, a novel transcription factor MYC gene was screened, cloned, and characterized from Penaeus vannamei. The open reading frame of PvMYC was 1593bp, encode a polypeptide of 530 amino acids with molecular weight of 58.5 kDa, and a theoretical PI of 5.75. The results of tissue distribution showed that PvMYC was constitutively expressed in all detected tissues, and highest expression in hepatopancreas. The expression level of PvMYC up-regulated significantly and responded to low temperature stress by nuclear ectopic after low temperature stress. Overexpression of PvMYC in shrimp hemocytes negatively regulated the expression of Beclin-1 and reduced the conversion from LC3I to LC3II, yet p62 was decreased significantly. Meanwhile, RAPA eliminated the inhibition of autophagy caused by overexpression of PvMYC. ROS levels and autophagy flux showed the similar trend under low temperature stress after silencing PvMYC. The expression levels of Beclin-1, key ATG gene and LC3II increased significantly, while p62 decreased significantly under the same conditions. In addition, the Total hemocyte count (THC) decreased sharply, and accelerated the injury of hepatopancreas under low temperature stress after silencing PvMYC. Collectively, these results suggest that PvMYC has vital role in the cold adaptation mechanism of P. vannamei by negatively regulating autophagy.


Subject(s)
Penaeidae , Animals , Autophagy/genetics , Beclin-1 , Hepatopancreas , Penaeidae/genetics , Transcription Factors
12.
Fish Shellfish Immunol ; 123: 238-247, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35278640

ABSTRACT

Vibrio alginolyticus is a devastating bacterial pathogen of Pacific white shrimp (Litopenaeus vannamei), which often causes acute hepatopancreatic necrosis syndrome (AHPNS) and early mortality syndrome (EMS). Elucidation of molecular mechanisms of L. vannamei in responding to infection is essential for controlling the epidemic. In the present study, transcriptomic profiles of L. vannamei hepatopancreas were explored by injecting with PBS or V. alginolyticus. Hepatopancreas morphology of L. vannamei was also assessed. The result reveals that compared with the hepatopancreas of PBS group, the storage cells (R-cell), secretory cells (B-cell) and star-shaped polygonal structures of the lumen were disappeared and necrotic after challenged by V. alginolyticus at 24 h. Transcriptome data showed that a total of 314 differential expression genes were induced by V. alginolyticus, with 133 and 181 genes up- and down-regulated, respectively. These genes were mainly associated with lysosome pathway, glycerophospholipid metabolism, drug metabolism-other enzymes, cysteine and methionine metabolism, aminoacyl-tRNA biosynthesis and PPAR signal pathway. Among these pathways, the lysosome pathway, glycerophospholipid metabolism and PPAR signal pathway were both related with lipid metabolism. Therefore, we detected the lipid accumulation in hepatopancreas by Oil Red O staining, TG and CHOL detection and the relative mRNA expression of several lipid metabolism related genes in the hepatopancreas of shrimp after challenge to V. alginolyticus. The present data reveals that lipids from the L. vannamei are nutrient sources for the V. alginolyticus and define the fate of the infection by modulating lipid homeostasis. These findings may have important implication for understanding the L. vannamei and V. alginolyticus interactions, and provide a substantial dataset for further research and may deliver the basis for preventing the bacterial diseases.


Subject(s)
Hepatopancreas , Penaeidae , Animals , Gene Expression Profiling , Glycerophospholipids/metabolism , Hepatopancreas/metabolism , Immunity, Innate/genetics , Lipids , Penaeidae/microbiology , Peroxisome Proliferator-Activated Receptors/genetics , Peroxisome Proliferator-Activated Receptors/metabolism , Vibrio alginolyticus/genetics
13.
Fish Shellfish Immunol ; 127: 1061-1069, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35840051

ABSTRACT

UCP4, as an uncoupling protein in mitochondrial intima, is closely related to the resistance to oxidative stress and the function of mitochondria. However, whether and how its antioxidant capacity also works in crustaceans has not been reported in detail. This study showed that the expression of PvUCP4 was negatively correlated with the expression of pva-miR-144. The content of reactive oxygen species (ROS), ATP, and apoptosis was significantly increased, while the mitochondrial membrane potential (MMP) was seriously depolarized, Edema, vacuolation, and ambiguity of cristae and membrane were observed clearly in mitochondria after the knockdown of PvUCP4 induced by V. alginolyticus. The sharp drop in THC and severe damage in the hepatopancreas were all due to the knockout of PvUCP4 under the stress of V. alginolyticus. The co-transfection of pva-miR-144 and PvUCP4 could partially recover MMP compared with the abnormal expression of pva-miR-144. Similarly, co-transfection of pva-miR-144 and PvUCP4 could partially eliminate apoptosis compared with the abnormal expression of pva-miR-144. In addition, PvUCP4 3'-UTR has a pva-miR-144 predicted binding site in 1417-1428, which also was confirmed by the dual luciferase reporter assay. By the way, the results of ROS, MMP, and apoptosis showed that PvDJ-1 regulated the expression of PvUCP4 through PvNF-κB. Altogether, these results indicated that PvUCP4 has the antioxidant function of resisting oxidation reaction and weakening oxidative damage, to protect the normal operation of mitochondrial function and maintaining the cell homeostasis in shrimp.


Subject(s)
MicroRNAs , Penaeidae , Animals , Antioxidants/metabolism , Homeostasis , MicroRNAs/genetics , MicroRNAs/metabolism , Mitochondria/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Penaeidae/genetics , Penaeidae/metabolism , Reactive Oxygen Species/metabolism
14.
Fish Shellfish Immunol ; 122: 48-56, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35077870

ABSTRACT

TBC domain family 7 (TBC1D7) is one of the subunits of tuberous sclerosis complex (TSC) and an important regulator of autophagosome biogenesis. However, the function of TBC1D7 is not fully understood in crustaceans. In the present study, TBC1D7 was identified from Penaeus vannamei. The complete coding sequence of PvTBC1D7 was of 960 bp encoding a predicted polypeptide of 319 amino acids with one conserved TBC domain, which shared high similarity with TBC1D7 of that other species. The mRNA of PvTBC1D7 was highly expressed in hemocyte and hepatopancreas, and the PvTBC1D7 protein was localized specifically in the cytoplasm of hemocyte of shrimp. Besides, PvTBC1D7 was co-localized with PvTSC1 in the cytoplasm of shrimp, indicating that there might existed a binding relationship between PvTBC1D7 and PvTSC1. During the ammonia nitrogen stress, the mRNA transcripts of PvTBC1D7 were significantly upregulated in hemocyte, hepatopancreas, and gill. Functionally, overexpression of PvTBC1D7 in vitro restored the inhibition to autophagy caused by chloroquine (CLQ) and increased the autophagy level, while the silencing of PvTBC1D7 could inhibit the autophagy. More importantly, after interfering with PvTBC1D7, the autophagy level decreased significantly both in hepatopancreas and hemocyte of P. vannamei, the mRNA expression of PvmTOR was increased remarkably with the significantly decrease of autophagy-related genes (PvATG12 and PvATG14). And the reduction of PvTBC1D7 remarkably exacerbated the damage of hepatopancreas, increased the accumulation of ROS, and reduced the survival proportion of shrimp under ammonia nitrogen stress. Altogether, these results indicated that PvTBC1D7 might positively regulate the autophagy by stabilizing the negative regulation of mTOR by TSC complex, reduce the oxidative stress damage and improve shrimp ammonia nitrogen tolerance.


Subject(s)
Penaeidae , Ammonia/pharmacology , Animals , Autophagy , Nitrogen , Stress, Physiological , Up-Regulation
15.
Org Biomol Chem ; 20(11): 2227-2232, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35237774

ABSTRACT

Herein is reported the first example of ring opening and skeletal reconstruction of 3-vinyl benzofuranone-chromones 1 as versatile synthons, which can react with ammonia or primary aliphatic amines as binucleophiles, for the eco-friendly and atom-economical synthesis of diverse and functionalized 2-pyridones 3 with potential biological activity in good to excellent yields (77-93%). When using optically active 1,2-diphenylethylenediamine 2 as the binucleophile, the in situ generated 2-pyridone intermediates are successfully transformed to novel optically active functionalized imidazoline derivatives 4 with high efficiency (up to 87% yield). In particular, this is the first report on the catalyst-free intramolecular cyclization occurring between an amide and a primary aliphatic amine for the construction of imidazoline molecules.


Subject(s)
Chromones , Imidazolines , Amines , Catalysis , Pyridones
16.
Acta Neurol Scand ; 145(2): 200-207, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34595746

ABSTRACT

AIMS: To explore the possible metabolic alterations of bilateral dorsolateral prefrontal cortices (DLPFC) of generalized tonic-clonic seizures (GTCS) patients before and after antiepileptic drugs treatment as compared with healthy controls (HCs) using proton magnetic resonance spectroscopy (1H-MRS). METHODS: We included 23 newly diagnosed and unmedicated GTCS patients and 23 sex- and age-matched HCs. Metabolites including N-acetyl aspartate (NAA), myo-inositol (Ins), choline (Cho), creatine (Cr), and glutamate + glutamine (Glu + Gln, Glx) concentrations were quantified by using LCModel software and then corrected for the partial volume effect of cerebrospinal fluid. RESULTS: The results demonstrated that metabolite concentrations were not equal between the left and the right DLPFC. Compared with HC, NAA of the left DLPFC and Cr of the right DLPFC were significantly lower in pre-treatment patients. Self-controlled study revealed that the patients' NAA of the left DLPFC increased while their Cr of the right DLPFC decreased after treatment. Correlation analysis showed a negative correlation between the duration of medication and the pre- and post-treatment difference of Cr. CONCLUSION: These findings may shed a light on the metabolic mechanism of GTCS and the neurobiochemical mechanisms of AEDs.


Subject(s)
Aspartic Acid , Dorsolateral Prefrontal Cortex , Creatine , Humans , Magnetic Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy , Seizures/drug therapy
17.
Dig Dis Sci ; 67(2): 546-558, 2022 02.
Article in English | MEDLINE | ID: mdl-33570683

ABSTRACT

BACKGROUND: Long non-coding RNA (lncRNA) has been testified to influence the initiation and evolution of sundry carcinomas. Recently, lncRNA FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) has been found to display vital regulating functions in various cancers. METHODS: qRT-PCR was used to verify the dysregulation of FOXD2-AS1 expression in CCA cells and tissues, and the correlation of FOXD2-AS1 expression with clinicopathological characteristics was investigated. The viability, migration, and invasion of CCA cells were verified through CCK-8 assay, colony formation experiment, wound healing assay, and transwell assay. The regulatory networks of FOXD2-AS1 were analyzed by Bioinformatic prediction and dual-luciferase reporter assay. RESULTS: We discovered that FOXD2-AS1 was significantly upregulated in CCA and its up-regulation was closely correlated with terminal TNM stage, lymph node metastasis and poor survival in the current research. In addition, it was revealed that FOXD2-AS1 was an independent prognostic factor. Functional tests uncovered that the cell viability, migration, and invasion could be restrained through downregulating the expression of FOXD2-AS1, while FOXD2-AS1 overexpression could facilitate the cell viability, migration, and invasion. Mechanistically, FOXD2-AS1 was founded to interact directly with miR-760 and the oncogene E2F3 was the downstream target of miR-760 through bioinformatic prediction and dual-luciferase reporter assays. Finally, we testified that FOXD2-AS1 could competitively sponge miR-760 and further upregulated the E2F3 expression to play a vital part in cholangiocarcinoma. CONCLUSIONS: This research revealed that lncRNA FOXD2-AS1 could enhance CCA malignant progression through regulating the miR-760/E2F3 axis and was expected to be a prognostic biomarker and therapeutic target for cholangiocarcinoma.


Subject(s)
Bile Duct Neoplasms/genetics , Cell Proliferation/genetics , Cholangiocarcinoma/genetics , E2F3 Transcription Factor/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Bile Duct Neoplasms/pathology , Cell Movement/genetics , Cholangiocarcinoma/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Neoplasm Invasiveness
18.
Nucleic Acids Res ; 48(8): 4214-4229, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32182338

ABSTRACT

Endoreplication, known as endocycle, is a variant of the cell cycle that differs from mitosis and occurs in specific tissues of different organisms. Endoreplicating cells generally undergo multiple rounds of genome replication without chromosome segregation. Previous studies demonstrated that Drosophila fizzy-related protein (Fzr) and its mammalian homolog Cdh1 function as key regulators of endoreplication entrance by activating the anaphase-promoting complex/cyclosome to initiate the ubiquitination and subsequent degradation of cell cycle factors such as Cyclin B (CycB). However, the molecular mechanism underlying Fzr-mediated endoreplication is not completely understood. In this study, we demonstrated that the transcription factor Myc acts downstream of Fzr during endoreplication in Drosophila salivary gland. Mechanistically, Fzr interacts with chromatin-associated histone H2B to enhance H2B ubiquitination in the Myc promoter and promotes Myc transcription. In addition to negatively regulating CycB transcription, the Fzr-ubiquitinated H2B (H2Bub)-Myc signaling cascade also positively regulates the transcription of the MCM6 gene that is involved in DNA replication by directly binding to specific motifs within their promoters. We further found that the Fzr-H2Bub-Myc signaling cascade regulating endoreplication progression is conserved between insects and mammalian cells. Altogether, our work uncovers a novel transcriptional cascade that is involved in Fzr-mediated endoreplication.


Subject(s)
Cdh1 Proteins/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Endoreduplication , Gene Expression Regulation , Transcription Factors/metabolism , Animals , Cell Line , Cyclin B/genetics , DNA Replication , DNA-Binding Proteins/genetics , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , HEK293 Cells , Histones/metabolism , Humans , Minichromosome Maintenance Complex Component 6/genetics , Promoter Regions, Genetic , Salivary Glands/metabolism , Signal Transduction , Transcription Factors/genetics , Ubiquitination
19.
Korean J Physiol Pharmacol ; 26(2): 87-94, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35203059

ABSTRACT

Myocardial infarction promotes cardiac remodeling and myocardial fibrosis, thus leading to cardiac dysfunction or heart failure. Peiminine has been regarded as a traditional anti-fibrotic Chinese medicine in pulmonary fibrosis. However, the role of peiminine in myocardial infarction-induced myocardial injury and fibrosis remained elusive. Firstly, rat model of myocardial infarction was established using ligation of the left coronary artery, which were then intraperitoneally injected with 2 or 5 mg/kg peiminine once a day for 4 weeks. Echocardiography and haemodynamic evaluation results showed that peiminine treatment reduced left ventricular end-diastolic pressure, and enhanced maximum rate of increase/decrease of left ventricle pressure (± dP/dt max) and left ventricular systolic pressure, which ameliorate the cardiac function. Secondly, myocardial infarction-induced myocardial injury and infarct size were also attenuated by peiminine. Moreover, peiminine inhibited myocardial infarction-induced increase of interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α production, as well as the myocardial cell apoptosis, in the rats. Thirdly, peiminine also decreased the myocardial fibrosis related protein expression including collagen I and collagen III. Lastly, peiminine reduced the expression of p38 and phosphorylation of extracellular signal-regulated kinase 1/2 in rat model of myocardial infarction. In conclusion, peiminine has a cardioprotective effect against myocardial infarction-induced myocardial injury and fibrosis, which can be attributed to the inactivation of mitogen-activated protein kinase pathway.

20.
Anal Chem ; 93(4): 2480-2489, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33410672

ABSTRACT

Plasmon-enhanced fluorescence (PEF) is considered to be a powerful signal amplification technology to overcome intrinsic shortcomings of photobleaching and brightness of the traditional fluorescent dyes. Nevertheless, exploitation of PEF-based probes for bioimaging application is still at a very early stage. In this work, a simple but powerful gold nanostar (Au NST)@SiO2-based PEF probe with 20 symmetric "hot spots" was developed for highly sensitive "lighting up" in situ imaging of intracellular microRNAs (miRNAs). By regulating the thickness of the silica shell, the distance between Au NSTs and fluorescent dyes was controlled, and the optimum fluorescence enhancement (21-fold) was obtained with the silica shell thickness of approximately 22 nm. Thanks to the 20 more powerful "hot spots" that can produce stronger localized electric fields, the Au NST-based PEF probe exhibits stronger PEF effects than the traditional plasmonic nanostructures such as gold nanorods (Au NRs), gold nanobipyramids (Au NBPs), and triangular gold nanoprisms (Au NPRs), resulting in high sensitivity and improved detection limit (LOD) of 0.21 pM for miRNA-21 analysis. Moreover, not only cancer cells (MCF-7 and Hela) and normal cells (L02) with distinct miRNA-21 expression levels can be discriminated but also tumor cells in co-cultured mixtures can be recognized, indicating its promising potential in clinical diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL