Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 586
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 56(1): 58-77.e11, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36521495

ABSTRACT

Obesity-induced chronic liver inflammation is a hallmark of nonalcoholic steatohepatitis (NASH)-an aggressive form of nonalcoholic fatty liver disease. However, it remains unclear how such a low-grade, yet persistent, inflammation is sustained in the liver. Here, we show that the macrophage phagocytic receptor TREM2, induced by hepatocyte-derived sphingosine-1-phosphate, was required for efferocytosis of lipid-laden apoptotic hepatocytes and thereby maintained liver immune homeostasis. However, prolonged hypernutrition led to the production of proinflammatory cytokines TNF and IL-1ß in the liver to induce TREM2 shedding through ADAM17-dependent proteolytic cleavage. Loss of TREM2 resulted in aberrant accumulation of dying hepatocytes, thereby further augmenting proinflammatory cytokine production. This ultimately precipitated a vicious cycle that licensed chronic inflammation to drive simple steatosis transition to NASH. Therefore, impaired macrophage efferocytosis is a previously unrecognized key pathogenic event that enables chronic liver inflammation in obesity. Blocking TREM2 cleavage to restore efferocytosis may represent an effective strategy to treat NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Overnutrition , Humans , Non-alcoholic Fatty Liver Disease/pathology , Overnutrition/pathology , Liver/pathology , Inflammation/pathology , Obesity/pathology , Membrane Glycoproteins , Receptors, Immunologic
2.
Nature ; 628(8008): 630-638, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538795

ABSTRACT

Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Lysosomes , Animals , Humans , Caenorhabditis elegans/cytology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/ultrastructure , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/ultrastructure , Homeostasis , Longevity , Lysosomes/metabolism , Lysosomes/ultrastructure , Amino Acid Motifs , Microscopy, Electron
3.
Proc Natl Acad Sci U S A ; 121(22): e2322479121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38771871

ABSTRACT

The significance of biochemical cues in the tumor immune microenvironment in affecting cancer metastasis is well established, but the role of physical factors in the microenvironment remains largely unexplored. In this article, we investigated how the mechanical interaction between cancer cells and immune cells, mediated by extracellular matrix (ECM), influences immune escape of cancer cells. We focus on the mechanical regulation of macrophages' targeting ability on two distinct types of colorectal carcinoma (CRC) cells with different metastatic potentials. Our results show that macrophages can effectively target CRC cells with low metastatic potential, due to the strong contraction exhibited by the cancer cells on the ECM, and that cancer cells with high metastatic potential demonstrated weakened contractions on the ECM and can thus evade macrophage attack to achieve immune escape. Our findings regarding the intricate mechanical interactions between immune cells and cancer cells can serve as a crucial reference for further exploration of cancer immunotherapy strategies.


Subject(s)
Colorectal Neoplasms , Extracellular Matrix , Macrophages , Tumor Escape , Tumor Microenvironment , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Macrophages/immunology , Humans , Tumor Microenvironment/immunology , Extracellular Matrix/metabolism , Extracellular Matrix/immunology , Cell Line, Tumor , Neoplasm Metastasis , Animals , Mice , Cell Communication/immunology
4.
Proc Natl Acad Sci U S A ; 120(37): e2305995120, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37669392

ABSTRACT

To minimize the incorrect use of antibiotics, there is a great need for rapid and inexpensive tests to identify the pathogens that cause an infection. The gold standard of pathogen identification is based on the recognition of DNA sequences that are unique for a given pathogen. Here, we propose and test a strategy to develop simple, fast, and highly sensitive biosensors that make use of multivalency. Our approach uses DNA-functionalized polystyrene colloids that distinguish pathogens on the basis of the frequency of selected short DNA sequences in their genome. Importantly, our method uses entire genomes and does not require nucleic acid amplification. Polystyrene colloids grafted with specially designed surface DNA probes can bind cooperatively to frequently repeated sequences along the entire genome of the target bacteria, resulting in the formation of large and easily detectable colloidal aggregates. Our detection strategy allows "mix and read" detection of the target analyte; it is robust and highly sensitive over a wide concentration range covering, in the case of our test target genome Escherichia coli bl21-de3, 10 orders of magnitude from [Formula: see text] to [Formula: see text] copies/mL. The sensitivity compares well with state-of-the-art sensing techniques and has excellent specificity against nontarget bacteria. When applied to real samples, the proposed technique shows an excellent recovery rate. Our detection strategy opens the way to developing a robust platform for pathogen detection in the fields of food safety, disease control, and environmental monitoring.


Subject(s)
DNA , Polystyrenes , Anti-Bacterial Agents , Colloids , Environmental Monitoring , Escherichia coli
5.
Cell ; 141(6): 1042-55, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20550938

ABSTRACT

The molecular understanding of autophagy has originated almost exclusively from yeast genetic studies. Little is known about essential autophagy components specific to higher eukaryotes. Here we perform genetic screens in C. elegans and identify four metazoan-specific autophagy genes, named epg-2, -3, -4, and -5. Genetic analysis reveals that epg-2, -3, -4, and -5 define discrete genetic steps of the autophagy pathway. epg-2 encodes a coiled-coil protein that functions in specific autophagic cargo recognition. Mammalian homologs of EPG-3/VMP1, EPG-4/EI24, and EPG-5/mEPG5 are essential for starvation-induced autophagy. VMP1 regulates autophagosome formation by controlling the duration of omegasomes. EI24 and mEPG5 are required for formation of degradative autolysosomes. This study establishes C. elegans as a multicellular genetic model to delineate the autophagy pathway and provides mechanistic insights into the metazoan-specific autophagic process.


Subject(s)
Autophagy , Caenorhabditis elegans/genetics , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/embryology , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/genetics , Cytoplasmic Granules/metabolism , Lysosomes/metabolism , Mutation , Phagosomes/metabolism
6.
J Am Chem Soc ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39163278

ABSTRACT

Chiral borane-catalyzed reactions have recently emerged as a powerful tool for the enantioselective production of chiral scaffolds. In this study, we demonstrated for the first time that a chiral bisborane catalyst can be used for the α-functionalization of 2-alkylazaarenes; specifically, we accomplished unprecedented highly enantioselective α-alkylation of unactivated 2-alkylbenzoxazoles with electron-deficient olefins. The strong Lewis acidity and the steric bulk of the bisborane catalyst were essential to the observed reactivity and selectivity.

7.
J Am Chem Soc ; 146(31): 21357-21366, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39051140

ABSTRACT

With more flexible active sites and intermetal interaction, dual-atom catalysts (DACs) have emerged as a new frontier in various electrocatalytic reactions. Constructing a typical p-d orbital hybridization between p-block and d-block metal atoms may bring new avenues for manipulating the electronic properties and thus boosting the electrocatalytic activities. Herein, we report a distinctive heteronuclear dual-metal atom catalyst with asymmetrical FeSn dual atom sites embedded on a two-dimensional C2N nanosheet (FeSn-C2N), which displays excellent oxygen reduction reaction (ORR) performance with a half-wave potential of 0.914 V in an alkaline electrolyte. Theoretical calculations further unveil the powerful p-d orbital hybridization between p-block stannum and d-block ferrum in FeSn dual atom sites, which triggers electron delocalization and lowers the energy barrier of *OH protonation, consequently enhancing the ORR activity. In addition, the FeSn-C2N-based Zn-air battery provides a high maximum power density (265.5 mW cm-2) and a high specific capacity (754.6 mA h g-1). Consequently, this work validates the immense potential of p-d orbital hybridization along dual-metal atom catalysts and provides new perception into the logical design of heteronuclear DACs.

8.
Apoptosis ; 29(7-8): 1109-1125, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796567

ABSTRACT

Podocyte apoptosis or loss is the pivotal pathological characteristic of diabetic kidney disease (DKD). Insulin-like growth factor-binding protein 2 (IGFBP2) have a proinflammatory and proapoptotic effect on diseases. Previous studies have shown that serum IGFBP2 level significantly increased in DKD patients, but the precise mechanisms remain unclear. Here, we found that IGFBP2 levels obviously increased under a diabetic state and high glucose stimuli. Deficiency of IGFBP2 attenuated the urine protein, renal pathological injury and glomeruli hypertrophy of DKD mice induced by STZ, and knockdown or deletion of IGFBP2 alleviated podocytes apoptosis induced by high concentration of glucose or in DKD mouse. Furthermore, IGFBP2 facilitated apoptosis, which was characterized by increase in inflammation and oxidative stress, by binding with integrin α5 (ITGA5) of podocytes, and then activating the phosphorylation of focal adhesion kinase (FAK)-mediated mitochondrial injury, including membrane potential decreasing, ROS production increasing. Moreover, ITGA5 knockdown or FAK inhibition attenuated the podocyte apoptosis caused by high glucose or IGFBP2 overexpression. Taken together, these findings unveiled the insight mechanism that IGFBP2 increased podocyte apoptosis by mitochondrial injury via ITGA5/FAK phosphorylation pathway in DKD progression, and provided the potential therapeutic strategies for diabetic kidney disease.


Subject(s)
Apoptosis , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Insulin-Like Growth Factor Binding Protein 2 , Mitochondria , Podocytes , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Podocytes/metabolism , Podocytes/pathology , Animals , Mice , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 2/genetics , Humans , Mitochondria/metabolism , Mitochondria/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/genetics , Male , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Oxidative Stress , Integrin alpha5/metabolism , Integrin alpha5/genetics , Mice, Inbred C57BL , Signal Transduction , Phosphorylation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics , Mice, Knockout , Integrins
9.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35224615

ABSTRACT

The lack of a reliable and easy-to-operate screening pipeline for disease-related noncoding RNA regulatory axis is a problem that needs to be solved urgently. To address this, we designed a hybrid pipeline, disease-related lncRNA-miRNA-mRNA regulatory axis prediction from multiomics (DLRAPom), to identify risk biomarkers and disease-related lncRNA-miRNA-mRNA regulatory axes by adding a novel machine learning model on the basis of conventional analysis and combining experimental validation. The pipeline consists of four parts, including selecting hub biomarkers by conventional bioinformatics analysis, discovering the most essential protein-coding biomarkers by a novel machine learning model, extracting the key lncRNA-miRNA-mRNA axis and validating experimentally. Our study is the first one to propose a new pipeline predicting the interactions between lncRNA and miRNA and mRNA by combining WGCNA and XGBoost. Compared with the methods reported previously, we developed an Optimized XGBoost model to reduce the degree of overfitting in multiomics data, thereby improving the generalization ability of the overall model for the integrated analysis of multiomics data. With applications to gestational diabetes mellitus (GDM), we predicted nine risk protein-coding biomarkers and some potential lncRNA-miRNA-mRNA regulatory axes, which all correlated with GDM. In those regulatory axes, the MALAT1/hsa-miR-144-3p/IRS1 axis was predicted to be the key axis and was identified as being associated with GDM for the first time. In short, as a flexible pipeline, DLRAPom can contribute to molecular pathogenesis research of diseases, effectively predicting potential disease-related noncoding RNA regulatory networks and providing promising candidates for functional research on disease pathogenesis.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Computational Biology , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics
10.
J Transl Med ; 22(1): 155, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360728

ABSTRACT

BACKGROUND: Hypertension influences the inflammatory pathological changes in the retina. The function of the inflammasomes is significant. To see if Sirtuin 1 (SIRT1) regulates angiotensin II (Ang II)-induced hypertensive retinopathy and inflammation by modulating NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome activation and the potential protective effects of fucoidan (FO) in mouse retinal vascular endothelial cells (mRECs) and mice retina. METHODS: The diagnosis of hypertensive retinopathy was made after three weeks of Ang II infusion (3000 ng/kg/min). One day prior to the commencement of Ang II infusion, the mice were treatment with NLRP3 inhibitor MCC950 (10 mg/kg/day, intraperitoneal injections) or FO (300 mg/kg/day, oral gavage). A blood pressure was recorded. Hematoxylin and eosin (H&E) staining was used to conduct pathological alterations, dihydroethidium bromide (DHE) was utilized to assess oxidative stress damage in the retina, and fluorescence angiography was used to identify vascular disorders in the eye. Using immunohistochemical labeling, NLRP3 expression was found. Reactive protein and mRNA expression levels in mouse retina and cells were assessed using Western blot and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS: NLRP3 inflammasome activation and SIRT1 decrease were brought about by Ang II infusion. Retinopathy and dysfunction were lessened by MCC950 target-induced NLRP3 inflammasome activation, while overexpression of SIRT1 had the opposite impact on NLRP3 inflammasome activation, indicating that SIRT1 functions as an upstream regulator of NLRP3 activity. FO may improve SIRT1 expression and decrease NLRP3 activation in retinopathy and dysfunction brought on by Ang II, and the effects were consistent across both in vivo and in vitro models. CONCLUSIONS: SIRT1 adversely regulates the NLRP3 inflammasome pathway, which in turn increases Ang II-induced inflammation and hypertensive retinopathy. FO may mitigate Ang II-induced retinopathy and dysfunction via modulating the expression of SIRT1/NLRP3. This implies practical approaches to the management of hypertensive retinopathy.


Subject(s)
Hypertensive Retinopathy , NLR Family, Pyrin Domain-Containing 3 Protein , Polysaccharides , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Sirtuin 1/metabolism , Endothelial Cells/metabolism , Inflammation , Angiotensin II
11.
Plant Cell Environ ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39047015

ABSTRACT

Prevalent interactions among marine phytoplankton triggered by long-range climatic stressors are well-known environmental disturbers of community structure. Dynamic response of phytoplankton physiology is likely to come from interspecies interactions rather than direct climatic effect on single species. However, studies on enigmatic interactions among interspecies, which are induced by bioactive extracellular compounds (BECs), especially between related harmful algae sharing similar shellfish toxins, are scarce. Here, we investigated how BECs provoke the interactions between two notorious algae, Alexandrium minutum and Gymnodinium catenatum, which have similar paralytic shellfish toxin (PST) profiles. Using techniques including electron microscopy and transcriptome analysis, marked disruptions in G. catenatum intracellular microenvironment were observed under BECs pressure, encompassing thylakoid membrane deformations, pyrenoid matrix shrinkage and starch sheaths disappearance. In addition, the upregulation of gene clusters responsible for photosystem-I Lhca1/4 and Rubisco were determined, leading to weaken photon captures and CO2 assimilation. The redistribution of lipids and proteins occurred at the subcellular level based on in situ focal plane array FTIR imaging approved the damages. Our findings illuminated an intense but underestimated interspecies interaction triggered by BECs, which is responsible for dysregulating photosynthesis and organelle function in inferior algae and may potentially account for fitness alteration in phytoplankton community.

12.
Glob Chang Biol ; 30(1): e17114, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273577

ABSTRACT

Human activity and climate change affect biodiversity and cause species range shifts, contractions, and expansions. Globally, human activities and climate change have emerged as persistent threats to biodiversity, leading to approximately 68% of the ~522 primate species being threatened with extinction. Here, we used habitat suitability models and integrated data on human population density, gross domestic product (GDP), road construction, the normalized difference vegetation index (NDVI), the location of protected areas (PAs), and climate change to predict potential changes in the distributional range and richness of 26 China's primate species. Our results indicate that both PAs and NDVI have a positive impact on primate distributions. With increasing anthropogenic pressure, species' ranges were restricted to areas of high vegetation cover and in PAs surrounded by buffer zones of 2.7-4.5 km and a core area of PAs at least 0.1-0.5 km from the closest edge of the PA. Areas with a GDP below the Chinese national average of 100,000 yuan were found to be ecologically vulnerable, and this had a negative impact on primate distributions. Changes in temperature and precipitation were also significant contributors to a reduction in the range of primate species. Under the expected influence of climate change over the next 30-50 years, we found that highly suitable habitat for primates will continue to decrease and species will be restricted to smaller and more peripheral parts of their current range. Areas of high primate diversity are expected to lose from 3 to 7 species. We recommend that immediate action be taken, including expanding China's National Park Program, the Ecological Conservation Redline Program, and the Natural Forest Protection Program, along with a stronger national policy promoting alternative/sustainable livelihoods for people in the local communities adjacent to primate ranges, to offset the detrimental effects of anthropogenic activities and climate change on primate survivorship.


Subject(s)
Climate Change , Conservation of Natural Resources , Animals , Humans , Primates , Biodiversity , Ecosystem , Human Activities , China
13.
Rev Cardiovasc Med ; 25(3): 83, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39076955

ABSTRACT

Background: The aim of this study was to investigate the impact of body mass index (BMI) and body weight on the concentrations of ticagrelor and the ticagrelor metabolite, AR-C124910XX, as well as the platelet aggregation rate (PAR) in a Chinese Han population with unstable angina (UA). Specifically, it focused on these parameters following the administration of dual antiplatelet therapy (DAPT) comprising aspirin and ticagrelor. Methods: A total of 105 patients with UA were included in the study. Measurement of the platelet aggregation rate induced by adenosine diphosphate (PAR-ADP) was performed before, as well as 3 and 30 days after DAPT treatment. The plasma concentrations of ticagrelor and AR-C124910XX were detected at 3 and 30 days after DAPT treatment. We conducted correlation analyses to assess the effects of BMI and body weight on the concentrations of ticagrelor and AR-C124910XX, on PAR-ADP, and on the inhibition of platelet aggregation induced by adenosine diphosphate (IPA-ADP) at both 3 and 30 days after DAPT treatment. Results: The BMI and body weight were positively correlated with baseline PAR-ADP (r = 0.205, p = 0.007; r = 0.122, p = 0.022). The PAR-ADP at 3 and 30 days after DAPT treatment were significantly lower than at baseline (61.56% ± 10.62%, 8.02% ± 7.52%, 12.90% ± 7.42%, p < 0.001). There was a negative correlation between body weight and the concentrations of ticagrelor and AR-C124910XX at 3 days following DAPT treatment (r = -0.276, p < 0.001; r = -0.337, p < 0.001). Additionally, BMI showed a similar negative correlation with the concentrations of ticagrelor and AR-C124910XX (r = -0.173, p = 0.009; r = -0.207, p = 0.002). At 30 days after treatment, both body weight and BMI were negatively correlated with ticagrelor (r = -0.256, p < 0.001; r = -0.162, p = 0.015) and its metabolite (r = -0.352, p < 0.001; r = -0.202, p = 0.002). Body weight was positively correlated with PAR-ADP (r = 0.171, p = 0.010) and negatively correlated with IPA-ADP (r = -0.163, p = 0.015) at 30 days after treatment. Similarly, BMI was positively correlated with PAR-ADP (r = 0.217, p = 0.001) and negatively correlated with IPA-ADP (r = -0.211, p = 0.001) at the same time point. Conclusions: BMI and body weight are key factors influencing the pharmacokinetics and pharmacodynamics of ticagrelor in Chinese Han patients with UA following DAPT treatment that includes ticagrelor. Both BMI and body weight were positively correlated with PAR-ADP at baseline and 30 days after DAPT treatment. Clinical Trial Registration: ChiCTR2100044938, https://www.chictr.org.cn/.

14.
Cell Commun Signal ; 22(1): 291, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802835

ABSTRACT

A promising new therapy option for acute kidney injury (AKI) is mesenchymal stem cells (MSCs). However, there are several limitations to the use of MSCs, such as low rates of survival, limited homing capacity, and unclear differentiation. In search of better therapeutic strategies, we explored all-trans retinoic acid (ATRA) pretreatment of MSCs to observe whether it could improve the therapeutic efficacy of AKI. We established a renal ischemia/reperfusion injury model and treated mice with ATRA-pretreated MSCs via tail vein injection. We found that AKI mice treated with ATRA-MSCs significantly improved renal function compared with DMSO-MSCs treatment. RNA sequencing screened that hyaluronic acid (HA) production from MSCs promoted by ATRA. Further validation by chromatin immunoprecipitation experiments verified that retinoic acid receptor RARα/RXRγ was a potential transcription factor for hyaluronic acid synthase 2. Additionally, an in vitro hypoxia/reoxygenation model was established using human proximal tubular epithelial cells (HK-2). After co-culturing HK-2 cells with ATRA-pretreated MSCs, we observed that HA binds to cluster determinant 44 (CD44) and activates the PI3K/AKT pathway, which enhances the anti-inflammatory, anti-apoptotic, and proliferative repair effects of MSCs in AKI. Inhibition of the HA/CD44 axis effectively reverses the renal repair effect of ATRA-pretreated MSCs. Taken together, our study suggests that ATRA pretreatment promotes HA production by MSCs and activates the PI3K/AKT pathway in renal tubular epithelial cells, thereby enhancing the efficacy of MSCs against AKI.


Subject(s)
Acute Kidney Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Tretinoin , Acute Kidney Injury/therapy , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/drug therapy , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Tretinoin/pharmacology , Tretinoin/therapeutic use , Humans , Mice , Male , Mice, Inbred C57BL , Hyaluronic Acid/pharmacology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Reperfusion Injury/therapy , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Disease Models, Animal , Apoptosis/drug effects
15.
J Neurooncol ; 166(3): 451-460, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308802

ABSTRACT

PURPOSE: To assess the utility of combining contrast-enhanced magnetic resonance imaging (CE-MRI) radiomics features with clinical variables in predicting the response to induction chemotherapy (IC) for primary central nervous system lymphoma (PCNSL). METHODS: A total of 131 patients with PCNSL (101 in the training set and 30 in the testing set) who had undergone contrast-enhanced MRI scans were retrospectively analyzed. Pyradiomics was utilized to extract radiomics features, and the clinical variables of the patients were gathered. Radiomics prediction models were developed using different combinations of feature selection methods and machine learning models, and the best combination was ultimately chosen. We screened clinical variables associated with treatment outcomes and developed clinical prediction models. The predictive performance of radiomics model, clinical model, and combined model, which integrates the best radiomics model and clinical characteristics, was independently assessed and compared using Receiver Operating Characteristic (ROC) curves. RESULTS: In total, we extracted 1598 features. The best radiomics model we selected as the best utilized T-test and Recursive Feature Elimination (RFE) for feature selection and logistic regression for model building. Serum Interleukin 2 Receptor (IL-2R) and Eastern Cooperative Oncology Group (ECOG) Score were utilized to develop a clinical predictive model for assessing the response to induction chemotherapy. The results of the testing set revealed that the combined prediction model (radiomics and IL-2R) achieved the highest area under the ROC curve at 0.868 (0.683, 0.967), followed by the radiomics model at 0.857 (0.681, 0.957), and the clinical prediction model (IL-2R and ECOG) at 0.618 (0.413, 0.797). The combined model was significantly more accurate than the clinical model, with an AUC of 0.868 compared to 0.618 (P < 0.05). While the radiomics model had slightly better predictive power than the clinical model, this difference was not statistically significant (AUC, 0.857 vs. 0.618, P > 0.05). CONCLUSIONS: Our prediction model, which combines radiomics signatures from CE-MRI with serum IL-2R, can effectively stratify patients with PCNSL before high-dose methotrexate (HD-MTX) -based chemotherapy.


Subject(s)
Induction Chemotherapy , Lymphoma , Humans , Models, Statistical , Prognosis , Radiomics , Retrospective Studies , Magnetic Resonance Imaging , Central Nervous System , Lymphoma/diagnostic imaging , Lymphoma/drug therapy
16.
Environ Sci Technol ; 58(19): 8251-8263, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695612

ABSTRACT

The novel brominated flame retardant, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), has increasingly been detected in environmental and biota samples. However, limited information is available regarding its toxicity, especially at environmentally relevant concentrations. In the present study, adult male zebrafish were exposed to varying concentrations of BTBPE (0, 0.01, 0.1, 1, and 10 µg/L) for 28 days. The results demonstrated underperformance in mating behavior and reproductive success of male zebrafish when paired with unexposed females. Additionally, a decline in sperm quality was confirmed in BTBPE-exposed male zebrafish, characterized by decreased total motility, decreased progressive motility, and increased morphological malformations. To elucidate the underlying mechanism, an integrated proteomic and phosphoproteomic analysis was performed, revealing a predominant impact on mitochondrial functions at the protein level and a universal response across different cellular compartments at the phosphorylation level. Ultrastructural damage, increased expression of apoptosis-inducing factor, and disordered respiratory chain confirmed the involvement of mitochondrial impairment in zebrafish testes. These findings not only provide valuable insights for future evaluations of the potential risks posed by BTBPE and similar chemicals but also underscore the need for further research into the impact of mitochondrial dysfunction on reproductive health.


Subject(s)
Reproduction , Zebrafish , Animals , Male , Reproduction/drug effects , Spermatozoa/drug effects , Testis/drug effects , Testis/metabolism , Flame Retardants/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Female
17.
Environ Res ; 251(Pt 1): 118667, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38462081

ABSTRACT

Environmental exposure is widely recognized as the primary sources of Cadmium (Cd) in the human body, and exposure to Cd is associated with kidney damage in adults. Nevertheless, the role of DNA methylation in Cd-induced kidney damage remains unclear. This study aimed to investigate the epigenome-wide association of environmental Cd-related DNA methylation changes with kidney damage. We included 300 non-smoking adults from the China in 2019. DNA methylation profiles were measured with Illumina Infinium MethylationEPIC BeadChip array. Linear mixed-effect model was employed to estimate the effects of urinary Cd with DNA methylation. Differentially methylated positions (DMPs) associated with urinary Cd were then tested for the association with kidney damage indicators. The mediation analysis was further applied to explore the potential DNA methylation based mediators. The prediction model was developed using a logistic regression model, and used 1000 bootstrap resampling for the internal validation. We identified 27 Cd-related DMPs mapped to 20 genes after the adjustment of false-discovery-rate for multiple testing among non-smoking adults. 17 DMPs were found to be associated with both urinary Cd and kidney damage, and 14 of these DMPs were newly identified within the Chinese. Mediation analysis revealed that DNA methylation of cg26907612 and cg16848624 mediated the Cd-related reduced kidney damage. In addition, ten variables were selected using the LASSO regression analysis and were utilized to develop the prediction model. It found that the nomogram model predicted the risk of kidney damage caused by environmental Cd with a corrected C-index of 0.779. Our findings revealed novel DMPs associated with both environmental Cd exposure and kidney damage among non-smoking adults, and developed an easy-to-use nomogram-illustrated model using these novel DMPs. These findings could provide a theoretical basis for formulating prevention and control strategies for kidney damage from the perspective of environmental pollution and epigenetic regulation.


Subject(s)
Cadmium , DNA Methylation , Environmental Exposure , Humans , DNA Methylation/drug effects , Cadmium/urine , Cadmium/toxicity , Cadmium/adverse effects , Male , Female , China , Environmental Exposure/adverse effects , Adult , Middle Aged , Environmental Pollutants/urine , Environmental Pollutants/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/genetics , Kidney Diseases/urine , East Asian People
18.
Herz ; 49(1): 69-74, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37491531

ABSTRACT

BACKGROUND: The P wave peak time (PWPT) is a predictor of paroxysmal atrial fibrillation (PAF). High-power short-duration ablation has been associated with improved durability of circumferential pulmonary vein electrical isolation (PVI). We investigated the effect of high-power short-duration PVI on PWPT in patients with PAF. METHODS: Out of 111 patients with PAF, 91 received radiofrequency ablation (ablation group) and 20 received medication treatment (control group). A VIZIGO sheath and an STSF catheter (Biosense Webster, CA, USA) were used together for high-power short-duration circumferential PVI at ablation index values of 500 and 400 for the anterior and posterior walls, respectively. The patients were followed up for 12 months. RESULTS: The preoperative PWPT in the ablation group was similar to that in the control group: PWPT II = 54.38 ± 6.18 ms vs. 54.35 ± 6.12 ms (p > 0.05), PWPT V1 = 54.19 ± 6.21 ms vs. 54.31 ± 6.08 ms (p > 0.05), respectively. Circumferential PVI was achieved for all patients in the ablation group during the operation. At the 12-month follow-up, there were seven cases of AF recurrence. The PWPT in the ablation group 12 months postoperatively was shorter than the preoperative value: PWPT II = 49.39 ± 7.11 ms vs. 54.38 ± 6.18 ms (p < 0.001), PWPT V1 = 47.69 ± 7.01 ms vs. 54.19 ± 6.21 ms (p < 0.001). The PWPT in the patients with AF recurrence was significantly longer than that in the non-recurrence patients: PWPT II = 50.48 ± 7.12 ms vs. 47.33 ± 6.21 ms (p < 0.001), PWPT V1 = 50.84 ± 7.05 ms vs. 47.19 ± 6.27 ms, (p < 0.001). The PWPT of the control group at the 12-month follow-up was similar to the baseline level: PWPT II = 54.32 ± 6.20 ms vs. 54.35 ± 6.12 ms (p > 0.05), PWPT V1 = 53.89 ± 6.01 ms vs. 54.31 ± 6.08 ms (p > 0.05). CONCLUSION: The results showed that high-power short-duration PVI had a positive effect on PWPT, which is a predictor of PAF.


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Pulmonary Veins/surgery , Treatment Outcome , Time Factors , Recurrence
19.
Sensors (Basel) ; 24(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257707

ABSTRACT

Focusing on the problem of strip shape quality control in the finishing process of hot rolling, a shape model based on metal flow and stress release with the application of varying contact rolling parameters is introduced. Combined with digital twin technology, the digital twin framework of the shape model is proposed, which realizes the deep integration between physical time-space and virtual time-space. With the utilization of the historical data, the parameters are optimized iteratively to complete the digital twin of the shape model. According to the schedule, the raw material information is taken as the input to obtain the simulation of the strip shape, which shows a variety of export shape conditions. The prediction absolute error of the crown and flatness are less than 5 µm and 5 I-unit, respectively. The results prove that the proposed shape simulation model with strong prediction performance can be effectively applied to hot rolling production. In addition, the proposed model provides operators with a reference for the parameter settings for actual production and promotes the intelligent application of a shape control strategy.

20.
J Environ Sci (China) ; 142: 236-247, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38527889

ABSTRACT

The response patterns of microbial functional genes involved in biogeochemical cycles to cadaver decay is a central topic of recent environmental sciences. However, the response mechanisms and pathways of the functional genes associated with the carbon (C) and nitrogen (N) cycling to cadaveric substances such as cadaverine and putrescine remain unclear. This study explored the variation of functional genes associated with C fixation, C degradation and N cycling and their influencing factors under cadaverine, putrescine and mixed treatments. Our results showed only putrescine significantly increased the alpha diversity of C fixation genes, while reducing the alpha diversity of N cycling genes in sediment. For the C cycling, the mixed treatment significantly decreased the total abundance of reductive acetyl-CoA pathway genes (i.e., acsB and acsE) and lig gene linked to lignin degradation in water, while only significantly increasing the hydroxypropionate-hydroxybutylate cycle (i.e., accA) gene abundance in sediment. For the N cycling, mixed treatment significantly decreased the abundance of the nitrification (i.e., amoB), denitrification (i.e., nirS3) genes in water and the assimilation pathway gene (i.e., gdhA) in sediment. Environmental factors (i.e., total carbon and total nitrogen) were all negatively associated with the genes of C and N cycling. Therefore, cadaverine and putrescine exposure may inhibit the pathway in C fixation and N cycling, while promoting C degradation. These findings can offer some new insight for the management of amine pollution caused by animal cadavers.


Subject(s)
Carbon , Putrescine , Humans , Animals , Cadaverine , Water , Rivers/chemistry , Geologic Sediments/chemistry , Nitrogen Cycle , Nitrogen
SELECTION OF CITATIONS
SEARCH DETAIL