Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 687
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(3): 473-486, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38354736

ABSTRACT

Disease-associated variants identified from genome-wide association studies (GWASs) frequently map to non-coding areas of the genome such as introns and intergenic regions. An exclusive reliance on gene-agnostic methods of genomic investigation could limit the identification of relevant genes associated with polygenic diseases such as Alzheimer disease (AD). To overcome such potential restriction, we developed a gene-constrained analytical method that considers only moderate- and high-risk variants that affect gene coding sequences. We report here the application of this approach to publicly available datasets containing 181,388 individuals without and with AD and the resulting identification of 660 genes potentially linked to the higher AD prevalence among Africans/African Americans. By integration with transcriptome analysis of 23 brain regions from 2,728 AD case-control samples, we concentrated on nine genes that potentially enhance the risk of AD: AACS, GNB5, GNS, HIPK3, MED13, SHC2, SLC22A5, VPS35, and ZNF398. GNB5, the fifth member of the heterotrimeric G protein beta family encoding Gß5, is primarily expressed in neurons and is essential for normal neuronal development in mouse brain. Homozygous or compound heterozygous loss of function of GNB5 in humans has previously been associated with a syndrome of developmental delay, cognitive impairment, and cardiac arrhythmia. In validation experiments, we confirmed that Gnb5 heterozygosity enhanced the formation of both amyloid plaques and neurofibrillary tangles in the brains of AD model mice. These results suggest that gene-constrained analysis can complement the power of GWASs in the identification of AD-associated genes and may be more broadly applicable to other polygenic diseases.


Subject(s)
Alzheimer Disease , GTP-Binding Protein beta Subunits , Mice , Humans , Animals , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Genome-Wide Association Study , Neurofibrillary Tangles/metabolism , Phenotype , Genomics , Amyloid beta-Peptides/genetics , Brain/metabolism , Solute Carrier Family 22 Member 5/genetics , Solute Carrier Family 22 Member 5/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein beta Subunits/metabolism
2.
Proc Natl Acad Sci U S A ; 121(23): e2318843121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38805277

ABSTRACT

The development and performance of two mass spectrometry (MS) workflows for the intraoperative diagnosis of isocitrate dehydrogenase (IDH) mutations in glioma is implemented by independent teams at Mayo Clinic, Jacksonville, and Huashan Hospital, Shanghai. The infiltrative nature of gliomas makes rapid diagnosis necessary to guide the extent of surgical resection of central nervous system (CNS) tumors. The combination of tissue biopsy and MS analysis used here satisfies this requirement. The key feature of both described methods is the use of tandem MS to measure the oncometabolite 2-hydroxyglutarate (2HG) relative to endogenous glutamate (Glu) to characterize the presence of mutant tumor. The experiments i) provide IDH mutation status for individual patients and ii) demonstrate a strong correlation of 2HG signals with tumor infiltration. The measured ratio of 2HG to Glu correlates with IDH-mutant (IDH-mut) glioma (P < 0.0001) in the tumor core data of both teams. Despite using different ionization methods and different mass spectrometers, comparable performance in determining IDH mutations from core tumor biopsies was achieved with sensitivities, specificities, and accuracies all at 100%. None of the 31 patients at Mayo Clinic or the 74 patients at Huashan Hospital were misclassified when analyzing tumor core biopsies. Robustness of the methodology was evaluated by postoperative re-examination of samples. Both teams noted the presence of high concentrations of 2HG at surgical margins, supporting future use of intraoperative MS to monitor for clean surgical margins. The power of MS diagnostics is shown in resolving contradictory clinical features, e.g., in distinguishing gliosis from IDH-mut glioma.


Subject(s)
Brain Neoplasms , Glioma , Isocitrate Dehydrogenase , Mutation , Glioma/genetics , Glioma/surgery , Glioma/pathology , Isocitrate Dehydrogenase/genetics , Humans , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Tandem Mass Spectrometry/methods , Glutarates/metabolism , Mass Spectrometry/methods , Glutamic Acid/metabolism , Glutamic Acid/genetics
3.
Proc Natl Acad Sci U S A ; 120(28): e2217301120, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37399423

ABSTRACT

A common event upon receptor-ligand engagement is the formation of receptor clusters on the cell surface, in which signaling molecules are specifically recruited or excluded to form signaling hubs to regulate cellular events. These clusters are often transient and can be disassembled to terminate signaling. Despite the general relevance of dynamic receptor clustering in cell signaling, the regulatory mechanism underlying the dynamics is still poorly understood. As a major antigen receptor in the immune system, T cell receptors (TCR) form spatiotemporally dynamic clusters to mediate robust yet temporal signaling to induce adaptive immune responses. Here we identify a phase separation mechanism controlling dynamic TCR clustering and signaling. The TCR signaling component CD3ε chain can condensate with Lck kinase through phase separation to form TCR signalosomes for active antigen signaling. Lck-mediated CD3ε phosphorylation, however, switched its binding preference to Csk, a functional suppressor of Lck, to cause the dissolvement of TCR signalosomes. Modulating TCR/Lck condensation by targeting CD3ε interactions with Lck or Csk directly affects T cell activation and function, highlighting the importance of the phase separation mechanism. The self-programmed condensation and dissolvement is thus a built-in mechanism of TCR signaling and might be relevant to other receptors.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Receptors, Antigen, T-Cell , Signal Transduction/physiology , Phosphorylation , Antigens/metabolism
4.
Plant J ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887937

ABSTRACT

Grain weight, grain number per panicle, and the number of panicles are the three factors that determine rice (Oryza sativa L.) yield. Of these, grain weight, which not only directly determines rice yield but also influences appearance and quality, is often considered the most important for rice production. Here, we describe OsNF-YC1, a member of the NF-Y transcription factor family that regulates rice grain size. OsNF-YC1 knockout plants (osnf-yc1), obtained using CRISPR-Cas9 technology, showed reduced grain weight due to reduced width and thickness, with no change in grain length, leading to a slenderer grain shape. Downregulation of OsNF-YC1 using RNA interference resulted in similar grain phenotypes as osnf-yc1. OsNF-YC1 affects grain formation by regulating both cell proliferation and cell expansion. OsNF-YC1 localizes in both the nucleus and cytoplasm, has transcriptional activation activity at both the N-terminus and C-terminus, and is highly expressed in young panicles. OsNF-YC1 interacts with OsMADS1 both in vivo and in vitro. Further analysis showed that the histone-like structural CBFD-NFYB-HMF domain of OsNF-YC1 conserved in the OsNF-YC transcription factor family can directly interact with the MADS-box domain of OsMADS1 to enhance its transcriptional activation activity. This interaction positively regulates the expression of OsMADS55, the direct downstream target of OsMADS1. Therefore, this paper reveals a potential grain size regulation pathway controlled by an OsNF-YC1-OsMADS1-OsMADS55 module in rice.

5.
Circulation ; 147(8): 624-634, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36342789

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter-2 inhibitors have emerged as a key pharmacotherapy in heart failure (HF) with both reduced and preserved ejection fraction. The benefit of other HF therapies may be modified by sex, but whether sex modifies the treatment effect and safety profile of sodium-glucose cotransporter-2 inhibitors remains unclear. Our analyses aim to assess the effect of sex on the efficacy and safety of dapagliflozin. METHODS: In a prespecified patient-level pooled analysis of DAPA-HF (Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure) and DELIVER (Dapagliflozin Evaluation to Improve the Lives of Patients With Preserved Ejection Fraction Heart Failure), clinical outcomes were compared by sex (including the composite of cardiovascular death or worsening HF events, cardiovascular death, all-cause death, total events [first and recurrent HF hospitalization and cardiovascular death], and Kansas City Cardiomyopathy Questionnaire scores) across the spectrum of left ventricular ejection fraction. RESULTS: Of a total of 11 007 randomized patients, 3856 (35%) were women. Women with HF were older and had higher body mass index but were less likely to have a history of diabetes and myocardial infarction or stroke and more likely to have hypertension and atrial fibrillation compared with men. At baseline, women had higher ejection fraction but worse Kansas City Cardiomyopathy Questionnaire scores than men did. After adjustment for baseline differences, women were less likely than men to experience cardiovascular death (adjusted hazard ratio, 0.69 [95% CI, 0.60-0.79]), all-cause death (adjusted hazard ratio, 0.69 [95% CI, 0.62-0.78]), HF hospitalizations (adjusted hazard ratio, 0.82 [95% CI, 0.72-0.94]), and total events (adjusted rate ratio, 0.77 [95% CI, 0.71-0.84]). Dapagliflozin reduced the primary end point in both men and women similarly (Pinteraction=0.77) with no sex-related differences in secondary outcomes (all Pinteraction>0.35) or safety events. The benefit of dapagliflozin was observed across the entire ejection fraction spectrum and was not modified by sex (Pinteraction>0.40). There were no sex-related differences in serious adverse events, adverse events, or drug discontinuation attributable to adverse events. CONCLUSIONS: In DAPA-HF and DELIVER, the response to dapagliflozin was similar between men and women. Sex did not modify the treatment effect of dapagliflozin across the range of ejection fraction.


Subject(s)
Cardiomyopathies , Diabetes Mellitus, Type 2 , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Humans , Male , Female , Stroke Volume , Ventricular Function, Left , Diabetes Mellitus, Type 2/drug therapy , Sex Characteristics , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Benzhydryl Compounds/adverse effects , Cardiomyopathies/complications , Glucose , Sodium
6.
J Am Chem Soc ; 146(9): 5998-6005, 2024 03 06.
Article in English | MEDLINE | ID: mdl-38379163

ABSTRACT

Due to their programmable stimuli-responsiveness, excellent biocompatibility, and water-rich and soft structures similar to biological tissues, smart DNA hydrogels hold great promise for biosensing and biomedical applications. However, most DNA hydrogels developed to date are composed of randomly oriented and isotropic polymer networks, and the resulting slow response to biotargets and lack of anisotropic properties similar to those of biological tissues have limited their extensive applications. Herein, anisotropic DNA hydrogels consisting of unidirectional void channels internally oriented up to macroscopic length scales were constructed by a directional cryopolymerization method, as exemplified by a DNA-incorporated covalently cross-linked DNA cryogel and a DNA duplex structure noncovalently cross-linked DNA cryogel. Results showed that the formation of unidirectional channels significantly improved the responsiveness of the gel matrix to biomacromolecular substances and further endowed the DNA cryogels with anisotropic properties, including anisotropic mechanical properties, anisotropic swelling/shrinking behaviors, and anisotropic responsiveness to specific biotargets. Moreover, the abundant oriented and long macroporous channels in the gel matrix facilitated the migration of cells, and through the introduction of aptamer structures and thermosensitive polymers, an anisotropic DNA cryogel-based platform was further constructed to achieve the highly efficient capture and release of specific cells. These anisotropic DNA hydrogels may provide new opportunities for the development of anisotropic separation and biosensing systems.


Subject(s)
Cryogels , Hydrogels , Cryogels/chemistry , Hydrogels/chemistry , Polymers/chemistry , DNA
7.
J Clin Immunol ; 44(5): 121, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758287

ABSTRACT

Autosomal recessive CARD9 deficiency can underly deep and superficial fungal diseases. We identified two Japanese patients, suffering from superficial and invasive Candida albicans diseases, carrying biallelic variants of CARD9. Both patients, in addition to another Japanese and two Korean patients who were previously reported, carried the c.820dup CARD9 variant, either in the homozygous (two patients) or heterozygous (three patients) state. The other CARD9 alleles were c.104G > A, c.1534C > T and c.1558del. The c.820dup CARD9 variant has thus been reported, in the homozygous or heterozygous state, in patients originating from China, Japan, or South Korea. The Japanese, Korean, and Chinese patients share a 10 Kb haplotype encompassing the c.820dup CARD9 variant. This variant thus originates from a common ancestor, estimated to have lived less than 4,000 years ago. While phaeohyphomycosis caused by Phialophora spp. was common in the Chinese patients, none of the five patients in our study displayed Phialophora spp.-induced disease. This difference between Chinese and our patients probably results from environmental factors. (161/250).


Subject(s)
CARD Signaling Adaptor Proteins , Founder Effect , Humans , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/deficiency , Male , Female , Candidiasis, Chronic Mucocutaneous/genetics , Candidiasis, Chronic Mucocutaneous/diagnosis , Haplotypes , Mutation/genetics , Asia, Eastern , Alleles , Candida albicans/genetics , Adult , Pedigree , Asian People/genetics
8.
Planta ; 259(6): 148, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717679

ABSTRACT

MAIN CONCLUSION: Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.


Subject(s)
Gene Expression Regulation, Plant , Nitrogen , Oryza , Transcription Factors , Gene Expression Regulation, Plant/drug effects , Meristem/genetics , Meristem/growth & development , Meristem/drug effects , Mutation , Nitrogen/metabolism , Nitrogen/pharmacology , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Oryza/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Brief Bioinform ; 23(2)2022 03 10.
Article in English | MEDLINE | ID: mdl-35043159

ABSTRACT

Although drug combinations in cancer treatment appear to be a promising therapeutic strategy with respect to monotherapy, it is arduous to discover new synergistic drug combinations due to the combinatorial explosion. Deep learning technology holds immense promise for better prediction of in vitro synergistic drug combinations for certain cell lines. In methods applying such technology, omics data are widely adopted to construct cell line features. However, biological network data are rarely considered yet, which is worthy of in-depth study. In this study, we propose a novel deep learning method, termed PRODeepSyn, for predicting anticancer synergistic drug combinations. By leveraging the Graph Convolutional Network, PRODeepSyn integrates the protein-protein interaction (PPI) network with omics data to construct low-dimensional dense embeddings for cell lines. PRODeepSyn then builds a deep neural network with the Batch Normalization mechanism to predict synergy scores using the cell line embeddings and drug features. PRODeepSyn achieves the lowest root mean square error of 15.08 and the highest Pearson correlation coefficient of 0.75, outperforming two deep learning methods and four machine learning methods. On the classification task, PRODeepSyn achieves an area under the receiver operator characteristics curve of 0.90, an area under the precision-recall curve of 0.63 and a Cohen's Kappa of 0.53. In the ablation study, we find that using the multi-omics data and the integrated PPI network's information both can improve the prediction results. Additionally, the case study demonstrates the consistency between PRODeepSyn and previous studies.


Subject(s)
Neural Networks, Computer , Protein Interaction Maps , Cell Line , Drug Combinations , Machine Learning
10.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37261842

ABSTRACT

MOTIVATION: Drug combination therapy shows significant advantages over monotherapy in cancer treatment. Since the combinational space is difficult to be traversed experimentally, identifying novel synergistic drug combinations based on computational methods has become a powerful tool for pre-screening. Among them, methods based on deep learning have far outperformed other methods. However, most deep learning-based methods are unstable and will give inconsistent predictions even by simply changing the input order of drugs. In addition, the insufficient experimental data of drug combination screening limits the generalization ability of existing models. These problems prevent the deep learning-based models from being in service. RESULTS: In this article, we propose CGMS to address the above problems. CGMS models a drug combination and a cell line as a heterogeneous complete graph, and generates the whole-graph embedding to characterize their interaction by leveraging the heterogeneous graph attention network. Based on the whole-graph embedding, CGMS can make a stable, order-independent prediction. To enhance the generalization ability of CGMS, we apply the multi-task learning technique to train the model on drug synergy prediction task and drug sensitivity prediction task simultaneously. We compare CGMS's generalization ability with six state-of-the-art methods on a public dataset, and CGMS significantly outperforms other methods in the leave-drug combination-out scenario, as well as in the leave-cell line-out and leave-drug-out scenarios. We further present the benefit of eliminating the order dependency and the discrimination power of whole-graph embeddings, interpret the rationality of the attention mechanism, and verify the contribution of multi-task learning. AVAILABILITY AND IMPLEMENTATION: The code of CGMS is available via https://github.com/TOJSSE-iData/CGMS.


Subject(s)
Penicillins , Drug Combinations , Cell Line , Drug Evaluation, Preclinical
11.
Plant Physiol ; 194(1): 530-545, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37757884

ABSTRACT

Soil salinity is often heterogeneous in saline fields. Nonuniform root salinity increases nitrate uptake into cotton (Gossypium hirsutum) root portions exposed to low salinity, which may be regulated by root portions exposed to high salinity through a systemic long-distance signaling mechanism. However, the signals transmitted between shoots and roots and their precise molecular mechanisms for regulating nitrate uptake remain unknown. Here, we showed that nonuniform root salinity treatment using split-root systems increases the expression of C-TERMINALLY ENCODED PEPTIDE (GhCEP) genes in high-saline-treated root portions. GhCEP peptides originating in high-saline-treated root portions act as ascending long-distance mobile signals transported to the shoots to promote the expression of CEP DOWNSTREAM (GhCEPD) genes by inducing the expression of CEP receptor (GhCEPR) genes. The shoot-derived GhCEPD polypeptides act as descending mobile signals transported to the roots through the phloem, increasing the expression of nitrate transport genes NITRATE TRANSPORTER 1.1 (GhNRT1.1), GhNRT2.1, and GhNRT1.5 in nonsaline-treated root portions, thereby increasing nitrate uptake in the nonsaline-treated root portions. This study indicates that GhCEP and GhCEPD signals are transported between roots and shoots to increase nitrate uptake in cotton, and the transport from the nonsaline root side is in response to nonuniform root salinity distribution.


Subject(s)
Gossypium , Nitrates , Gossypium/metabolism , Nitrates/metabolism , Salinity , Ion Transport , Salt Stress , Plant Roots/metabolism
12.
BMC Cancer ; 24(1): 435, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589858

ABSTRACT

BACKGROUND: To establish and validate a predictive model combining pretreatment multiparametric MRI-based radiomic signatures and clinical characteristics for the risk evaluation of early rapid metastasis in nasopharyngeal carcinoma (NPC) patients. METHODS: The cutoff time was used to randomly assign 219 consecutive patients who underwent chemoradiation treatment to the training group (n = 154) or the validation group (n = 65). Pretreatment multiparametric magnetic resonance (MR) images of individuals with NPC were employed to extract 428 radiomic features. LASSO regression analysis was used to select radiomic features related to early rapid metastasis and develop the Rad-score. Blood indicators were collected within 1 week of pretreatment. To identify independent risk variables for early rapid metastasis, univariate and multivariate logistic regression analyses were employed. Finally, multivariate logistic regression analysis was applied to construct a radiomics and clinical prediction nomogram that integrated radiomic features and clinical and blood inflammatory predictors. RESULTS: The NLR, T classification and N classification were found to be independent risk indicators for early rapid metastasis by multivariate logistic regression analysis. Twelve features associated with early rapid metastasis were selected by LASSO regression analysis, and the Rad-score was calculated. The AUC of the Rad-score was 0.773. Finally, we constructed and validated a prediction model in combination with the NLR, T classification, N classification and Rad-score. The area under the curve (AUC) was 0.936 (95% confidence interval (95% CI): 0.901-0.971), and in the validation cohort, the AUC was 0.796 (95% CI: 0.686-0.905). CONCLUSIONS: A predictive model that integrates the NLR, T classification, N classification and MR-based radiomics for distinguishing early rapid metastasis may serve as a clinical risk stratification tool for effectively guiding individual management.


Subject(s)
Multiparametric Magnetic Resonance Imaging , Nasopharyngeal Neoplasms , Humans , Nasopharyngeal Carcinoma/diagnostic imaging , Nasopharyngeal Carcinoma/therapy , Radiomics , Biomarkers , Nomograms , Nasopharyngeal Neoplasms/diagnostic imaging , Nasopharyngeal Neoplasms/therapy , Retrospective Studies
13.
Langmuir ; 40(20): 10449-10459, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38717310

ABSTRACT

It is widely acknowledged that doping silicon can significantly enhance the friction performance of diamond-like carbon (DLC) films in a water environment. However, the mechanism of low friction caused by doped silicon is still highly controversial. Therefore, this article compares the interface interaction between DLC and Si-DLC films in a water environment through first-principles calculations of physisorption and chemisorption effects. The results indicate that water molecules are predominantly chemically adsorbed rather than physically adsorbed on the Si-DLC surface. Further study reveals that when OH-termination is formed on the Si-DLC surface, water molecules are predominantly physically adsorbed rather than chemically adsorbed on the Si-DLC hydroxylation surface. Consequently, a more stable hydration layer is formed on the surface through the hydrogen bond network formed by Si-OH groups, ultimately leading to lower friction. Moreover, molecular dynamics simulations further suggest that the lower friction coefficient of Si-DLC films in a water environment may be due to more water molecules at the friction interface and fewer interface covalent bonds. In short, the low-friction coefficient of the Si-DLC film in a water environment may be caused not only by the chemisorption of water molecules on its surface but also by the physisorption of water molecules on the Si-DLC film after surface hydroxylation.

14.
Inflamm Res ; 73(6): 961-978, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587531

ABSTRACT

BACKGROUND: Atherosclerosis is a chronic inflammatory disease characterized by abnormal lipid deposition in the arteries. Programmed cell death is involved in the inflammatory response of atherosclerosis, but PANoptosis, as a new form of programmed cell death, is still unclear in atherosclerosis. This study explored the key PANoptosis-related genes involved in atherosclerosis and their potential mechanisms through bioinformatics analysis. METHODS: We evaluated differentially expressed genes (DEGs) and immune infiltration landscape in atherosclerosis using microarray datasets and bioinformatics analysis. By intersecting PANoptosis-related genes from the GeneCards database with DEGs, we obtained a set of PANoptosis-related genes in atherosclerosis (PANoDEGs). Functional enrichment analysis of PANoDEGs was performed and protein-protein interaction (PPI) network of PANoDEGs was established. The machine learning algorithms were used to identify the key PANoDEGs closely linked to atherosclerosis. Receiver operating characteristic (ROC) analysis was used to assess the diagnostic potency of key PANoDEGs. CIBERSORT was used to analyze the immune infiltration patterns in atherosclerosis, and the Spearman method was used to study the relationship between key PANoDEGs and immune infiltration abundance. The single gene enrichment analysis of key PANoDEGs was investigated by GSEA. The transcription factors and target miRNAs of key PANoDEGs were predicted by Cytoscape and online database, respectively. The expression of key PANoDEGs was validated through animal and cell experiments. RESULTS: PANoDEGs in atherosclerosis were significantly enriched in apoptotic process, pyroptosis, necroptosis, cytosolic DNA-sensing pathway, NOD-like receptor signaling pathway, lipid and atherosclerosis. Four key PANoDEGs (ZBP1, SNHG6, DNM1L, and AIM2) were found to be closely related to atherosclerosis. The ROC curve analysis demonstrated that the key PANoDEGs had a strong diagnostic potential in distinguishing atherosclerotic samples from control samples. Immune cell infiltration analysis revealed that the proportion of initial B cells, plasma cells, CD4 memory resting T cells, and M1 macrophages was significantly higher in atherosclerotic tissues compared to normal tissues. Spearman analysis showed that key PANoDEGs showed strong correlations with immune cells such as T cells, macrophages, plasma cells, and mast cells. The regulatory networks of the four key PANoDEGs were established. The expression of key PANoDEGs was verified in further cell and animal experiments. CONCLUSIONS: This study evaluated the expression changes of PANoptosis-related genes in atherosclerosis, providing a reference direction for the study of PANoptosis in atherosclerosis and offering potential new avenues for further understanding the pathogenesis and treatment strategies of atherosclerosis.


Subject(s)
Atherosclerosis , Gene Expression Profiling , Atherosclerosis/genetics , Atherosclerosis/immunology , Animals , Protein Interaction Maps/genetics , Transcriptome , Humans , Computational Biology , Male , Pyroptosis/genetics , Mice
15.
Soft Matter ; 20(20): 4052-4056, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38738402

ABSTRACT

Stimuli-responsive upconversion nanoparticle (UCNP)-poly-N-isopropylacrylamide (pNIPAM)/DNA core-shell microgels with tunable sizes and programmable functions have been prepared. Thanks to the near-infrared (NIR)-responsive UCNP cores and thermosensitive polymeric shells, functional DNA-incorporated microgels with high DNA activity and loading efficiency are obtained, and the activity of the loaded DNA structures can be smartly regulated by NIR illumination and temperature simultaneously.

16.
Clin Transplant ; 38(5): e15320, 2024 May.
Article in English | MEDLINE | ID: mdl-38690617

ABSTRACT

BACKGROUND AND OBJECTIVE: Pneumocystis jirovecii pneumonia (PJP), an opportunistic infection, often leads to an increase in hospitalization time and mortality rates in kidney transplant (KT) recipients. However, the risk factors associated with PJP in KT recipients remain debatable. Therefore, we conducted this meta-analysis to identify risk factors for PJP, which could potentially help to reduce PJP incidence and improve outcome of KT recipients. METHODS: We systematically retrieved relevant studies in PubMed, EMBASE, and the Cochrane Library up to November 2023. Pooled odds ratios (ORs) or mean differences (MDs) and the corresponding 95% confidence intervals (CIs) were calculated to assess the impact of potential risk factors on the occurrence of PJP. RESULTS: 27 studies including 42383 KT recipients were included. In this meta-analysis, age at transplantation (MD = 3.48; 95% CI = .56-6.41; p = .02), cytomegalovirus (CMV) infection (OR = 4.00; 95% CI = 2.53-6.32; p = .001), BK viremia (OR = 3.38; 95% CI = 1.70-6.71; p = .001), acute rejection (OR = 3.66; 95% CI = 2.44-5.49; p = .001), ABO-incompatibility (OR = 2.51; 95% CI = 1.57-4.01; p = .001), estimated glomerular filtration rate (eGFR) (MD = -14.52; 95% CI = -25.37- (-3.67); p = .009), lymphocyte count (MD = -.54; 95% CI = -.92- (-.16); p = .006) and anti-PJP prophylaxis (OR = .53; 95% CI = .28-.98; p = .04) were significantly associated with PJP occurrence. CONCLUSION: Our findings suggest that transplantation age greater than 50 years old, CMV infection, BK viremia, acute rejection, ABO-incompatibility, decreased eGFR and lymphopenia were risk factors for PJP.


Subject(s)
Kidney Transplantation , Pneumocystis carinii , Pneumonia, Pneumocystis , Humans , Kidney Transplantation/adverse effects , Pneumonia, Pneumocystis/etiology , Risk Factors , Prognosis , Postoperative Complications , Graft Rejection/etiology
17.
Fish Shellfish Immunol ; 148: 109519, 2024 May.
Article in English | MEDLINE | ID: mdl-38508540

ABSTRACT

Viperin, also known as radical S-Adenosyl methionine domain containing 2 (RSAD2), is an IFN stimulated protein that plays crucial roles in innate immunity. Here, we identified a viperin gene from the koi carp (Cyprinus carpio) (kVip). The ORF of kVip is 1047 bp in length, encoding a polypeptide of 348 amino acids with neither signal peptide nor transmembrane protein. The predicted molecular weight is 40.37 kDa and the isoelectric point is 7.7. Multiple sequence alignment indicated that putative kVip contains a radical SAM superfamily domain and a conserved C-terminal region. kVip was highly expressed in the skin and spleen of healthy koi carps, and significantly stimulated in both natural and artificial CEV-infected koi carps. In vitro immune stimulation analysis showed that both extracellular and intracellular poly (I: C) or poly (dA: dT) caused a significant increase in kVip expression of spleen cells. Furthermore, intraperitoneal injection of recombinant kVip (rkVip) not only reduced the CEV load in the gills, but also improved the survival of koi carps following CEV challenge. Additionally, rkVip administration effectively regulated inflammatory and anti-inflammatory cytokines (IL-6, IL-1ß, TNF-α, IL-10) and interferon-related molecules (cGAS, STING, MyD88, IFN-γ, IFN-α, IRF3 and IRF9). Collectively, kVip effectively responded to CEV infection and exerted antiviral function against CEV partially by regulation of inflammatory and interferon responses.


Subject(s)
Carps , Fish Diseases , Poxviridae Infections , Poxviridae , Animals , Carps/genetics , Edema , Interferons , Antiviral Agents/pharmacology
18.
Inorg Chem ; 63(16): 7504-7511, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38598777

ABSTRACT

Lamellar metal-organic frameworks (MOFs) have attracted significant attention in the field of electrochemical sensing due to their abundant open active sites and specific electron conductivity. Herein, by employing a bottom-up synthesis strategy, rhombic lamellar heterometallic CoNi-MOFs with varying thicknesses are constructed. This is achieved by using 4-methylpyridine as a capping agent based on the (4,6)-linked Co2(azpy)2(bptc) (azpy = 4,4'-azopyridine, bptc = 3,3',5,5'-biphenyltetracarboxylic acid) structure with a fsc topology and by introducing Ni species simultaneously. To mitigate sulfur deposition on electrodes, the triple pulse amperometry (TPA) method is employed. Among the synthesized lamellar CoNi-MOFs, lamellar CoNi-MOF-3 with the minimum thickness exhibits an optimal electrochemical sensing performance toward hydrogen sulfide, with a sensitivity of 119.3 µA·mM-1·cm-2 in the linear range of 2-2000 µM. This study pioneers a new approach to the controlled construction and electrochemical activity modification of lamellar MOF materials.

19.
Pediatr Nephrol ; 39(6): 1779-1781, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38030834

ABSTRACT

Acute kidney injury (AKI) is a common complication in children with hematological malignancies. Although AKI due to infiltration of tumor cells in children is rare, it negatively impacts treatment outcomes and increases the risk of mortality. We introduce a case of a child with acute lymphoblastic leukemia (ALL) who experienced kidney relapse resulting in asymptomatic AKI after remission from treatment, to remind clinicians not to overlook the primary disease in clinical judgment. In cases of unexplained AKI, kidney biopsy should be performed when feasible to get an accurate diagnosis and scientific treatment. In brief, children with leukemia who have achieved remission after treatment still need regular monitoring of urine routine and kidney function.


Subject(s)
Acute Kidney Injury , Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Transplantation, Homologous , Hematopoietic Stem Cell Transplantation/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Treatment Outcome , Recurrence
20.
BMC Geriatr ; 24(1): 220, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438862

ABSTRACT

OBJECTIVE: To analyse and discuss the association of gender differences with the risk and incidence of poststroke aphasia (PSA) and its types, and to provide evidence-based guidance for the prevention and treatment of poststroke aphasia in clinical practice. DATA SOURCES: Embase, PubMed, Cochrane Library and Web of Science were searched from January 1, 2002, to December 1, 2023. STUDY SELECTION: Including the total number of strokes, aphasia, the number of different sexes or the number of PSA corresponding to different sex. DATA EXTRACTION: Studies with missing data, aphasia caused by nonstroke and noncompliance with the requirements of literature types were excluded. DATA SYNTHESIS: 36 papers were included, from 19 countries. The analysis of 168,259 patients with stroke and 31,058 patients with PSA showed that the risk of PSA was 1.23 times higher in female than in male (OR = 1.23, 95% CI = 1.19-1.29, P < 0.001), with a prevalence of PSA of 31% in men and 36% in women, and an overall prevalence of 34% (P < 0.001). Analysis of the risk of the different types of aphasia in 1,048 patients with PSA showed a high risk in females for global, broca and Wenicke aphasia, and a high risk in males for anomic, conductive and transcortical aphasia, which was not statistically significant by meta-analysis. The incidence of global aphasia (males vs. females, 29% vs. 32%) and broca aphasia (17% vs 19%) were higher in females, and anomic aphasia (19% vs 14%) was higher in males, which was statistically significant (P < 0.05). CONCLUSIONS: There are gender differences in the incidence and types of PSA. The risk of PSA in female is higher than that in male.


Subject(s)
Aphasia , Stroke , Female , Humans , Male , Incidence , Aphasia/diagnosis , Aphasia/epidemiology , Aphasia/etiology , Stroke/complications , Stroke/epidemiology , Patient Compliance
SELECTION OF CITATIONS
SEARCH DETAIL