Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Anal Chem ; 96(14): 5702-5710, 2024 04 09.
Article in English | MEDLINE | ID: mdl-38538555

ABSTRACT

Glass nanopipets have been demonstrated to be a powerful tool for the sensing and discrimination of biomolecules, such as DNA strands with different lengths or configurations. Despite progress made in nanopipet-based sensors, it remains challenging to develop effective strategies that separate and sense in one operation. In this study, we demonstrate an agarose gel-filled nanopipet that enables hyphenated length-dependent separation and electrochemical sensing of short DNA fragments based on the electrokinetic flow of DNA molecules in the nanoconfined channel at the tip of the nanopipet. This nanoconfined electrokinetic chromatography (NEC) method is used to distinguish the mixture of DNA strands without labels, and the ionic current signals measured in real time show that the mixed DNA strands pass through the tip hole in order according to the molecular weight. With NEC, gradient separation and electrochemical measurement of biomolecules can be achieved simultaneously at the single-molecule level, which is further applied for programmable gene delivery into single living cells. Overall, NEC provides a multipurpose platform integrating separation, sensing, single-cell delivery, and manipulation, which may bring new insights into advanced bioapplication.


Subject(s)
DNA , Nanotechnology , DNA/chemistry , Nanotechnology/methods , Chromatography
2.
Anal Chem ; 96(4): 1506-1514, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38215343

ABSTRACT

The localized surface-plasmon resonance of the AuNP in aqueous media is extremely sensitive to environmental changes. By measuring the signal of plasmon scattering light, the dark-field microscopic (DFM) imaging technique has been used to monitor the aggregation of AuNPs, which has attracted great attention because of its simplicity, low cost, high sensitivity, and universal applicability. However, it is still challenging to interpret DFM images of AuNP aggregation due to the heterogeneous characteristics of the isolated and discontinuous color distribution. Herein, we introduce machine vision algorithms for the training of DFM images of AuNPs in different saline aqueous media. A visual deep learning framework based on AlexNet is constructed for studying the aggregation patterns of AuNPs in aqueous suspensions, which allows for rapid and accurate identification of the aggregation extent of AuNPs, with a prediction accuracy higher than 0.96. With the aid of machine learning analysis, we further demonstrate the prediction ability of various aggregation phenomena induced by both cation species and the concentration of the external saline solution. Our results suggest the great potential of machine vision frameworks in the accurate recognition of subtle pattern changes in DFM images, which can help researchers build predictive analytics based on DFM imaging data.

3.
Mol Pharm ; 21(2): 760-769, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38175712

ABSTRACT

Acoustic kinetic therapy systems that target specific organelles can improve the precision of a sonosensitizer, which is a perfect combination of targeted therapy and sonodynamic therapy (SDT) and plays an important role in current acoustic kinetic therapy. In this study, we loaded PpIX, a sonosensitizer, on targeted-functional carbon dots (CDs) via an amide reaction and then generated the mitochondria-targeted system (Mit-CDs-PpIX) and nucleus-targeted system (Nuc-CDs-PpIX), respectively, to deliver the sonosensitizer. Both systems exhibited minimal cytotoxicity in the absence of ultrasound stimulation. The efficacy of the targeted SDT systems was investigated using methylthiazol tetrazolium (MTT) assays, live/dead staining, flow cytometry, etc. Compared with the free PpIX and mitochondria-targeted system, the nucleus-targeted system is more potent in killing effect under ultrasound stimulation and induces apoptosis with higher intensity. To achieve the equal killing effect, the effective concentration of Nuc-CDs-PpIX is just one third of that of Mit-CDs-PpIX.


Subject(s)
Ultrasonic Therapy , Apoptosis , Mitochondria , Reactive Oxygen Species , Cell Line, Tumor
4.
Horm Metab Res ; 56(6): 455-462, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710215

ABSTRACT

Serum uric acid (UA) and homocysteine (Hcy) are potential biomarkers of systemic lupus erythematosus (SLE). In this study, the expressions of UA and Hcy in SLE patients and the predictive value of these two parameters for lupus nephritis (LN) were studied. A total of 476 SLE patients were recruited to this case-control study, of which 176 SLE patients diagnosed with LN and 300 without LN. Serum UA and Hcy levels were analyzed. Multivariate logistic regression analysis was used to evaluate the relationship between serum UA and Hcy and LN. The receiver operating characteristic (ROC) curves were used to predict the role of combination of serum UA and Hcy in LN. We found that serum UA and Hcy levels in SLE patients with LN were significantly higher than those in controls (p<0.05). Multivariate logistic regressions showed that serum UA (OR+=+1.003, 95+% CI: 1.001-1.006, p+=+0.003), apolipoprotein B (Apo B) (OR+=+21.361, 95+% CI: 2.312-195.373, p+=+0.007) and Hcy (OR+=+1.042, 95+% CI: 1.011-1.080, p+=+0.014) were independent markers of LN. Combined serum UA and Hcy revealed a better result (AUC+=+0.718, 95+% CI: 0.670-0.676, p<0.001) in prediction of LN compared to that of the serum UA (AUC+=+0.710) and Hcy (AUC+=+0.657) independently. In conclusion, serum UA and Hcy could be predictive biomarkers of LN, and joint detection of serum UA and Hcy might be useful in the clinical setting.


Subject(s)
Biomarkers , Homocysteine , Lupus Nephritis , ROC Curve , Uric Acid , Humans , Uric Acid/blood , Homocysteine/blood , Lupus Nephritis/blood , Lupus Nephritis/diagnosis , Female , Biomarkers/blood , Male , Adult , Case-Control Studies , Middle Aged , Prognosis
5.
Pharmacol Res ; 200: 107071, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38218354

ABSTRACT

Plant-derived exosome-like nanoparticles (ELNs) have drawn considerable attention for oral treatment of colonic diseases. However, the roles of ELNs derived from garlic on colitis remain unclear. Here, we demonstrate that garlic ELNs (GELNs), with desirable particle sizes (79.60 nm) and trafficking large amounts of functional proteins and microRNAs, stably roam in the gut and confer protection against ulcerative colitis (UC). In mice with DSS-induced colitis, orally administered GELNs effectively ameliorated bloody diarrhea, normalized the production of proinflammatory cytokines, and prevented colonic barrier impairment. Mechanistically, GELNs were taken up by gut microbes and reshaped DSS-induced gut microbiota dysbiosis, in which Bacteroides was the dominant respondent genus upon GELNs treatment. Notably, GELNs-enriched peu-MIR2916-p3 specifically promoted the growth of Bacteroides thetaiotaomicron, an intestinal symbiotic bacterium with palliative effects on colitis. Our findings provide new insights into the medicinal application of GELNs and highlight their potential as natural nanotherapeutic agents for preventing and treating UC.


Subject(s)
Bacteroides thetaiotaomicron , Colitis, Ulcerative , Colitis , Exosomes , Garlic , Gastrointestinal Microbiome , Mice , Animals , Exosomes/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/microbiology , Colon , Dextran Sulfate/pharmacology , Disease Models, Animal , Mice, Inbred C57BL
6.
Microb Cell Fact ; 23(1): 55, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368340

ABSTRACT

BACKGROUND: Pichia pastoris is a widely utilized host for heterologous protein expression and biotransformation. Despite the numerous strategies developed to optimize the chassis host GS115, the potential impact of changes in cell wall polysaccharides on the fitness and performance of P. pastoris remains largely unexplored. This study aims to investigate how alterations in cell wall polysaccharides affect the fitness and function of P. pastoris, contributing to a better understanding of its overall capabilities. RESULTS: Two novel mutants of GS115 chassis, H001 and H002, were established by inactivating the PAS_chr1-3_0225 and PAS_chr1-3_0661 genes involved in ß-glucan biosynthesis. In comparison to GS115, both modified hosts exhibited a looser cell surface and larger cell size, accompanied by faster growth rates and higher carbon-to-biomass conversion ratios. When utilizing glucose, glycerol, and methanol as exclusive carbon sources, the carbon-to-biomass conversion rates of H001 surpassed GS115 by 10.00%, 9.23%, and 33.33%, respectively. Similarly, H002 exhibited even higher increases of 32.50%, 12.31%, and 53.33% in carbon-to-biomass conversion compared to GS115 under the same carbon sources. Both chassis displayed elevated expression levels of green fluorescent protein (GFP) and human epidermal growth factor (hegf). Compared to GS115/pGAPZ A-gfp, H002/pGAPZ A-gfp showed a 57.64% higher GFP expression, while H002/pPICZα A-hegf produced 66.76% more hegf. Additionally, both mutant hosts exhibited enhanced biosynthesis efficiencies of S-adenosyl-L-methionine and ergothioneine. H001/pGAPZ A-sam2 synthesized 21.28% more SAM at 1.14 g/L compared to GS115/pGAPZ A-sam2, and H001/pGAPZ A-egt1E obtained 45.41% more ERG at 75.85 mg/L. The improved performance of H001 and H002 was likely attributed to increased supplies of NADPH and ATP. Specifically, H001 and H002 exhibited 5.00-fold and 1.55-fold higher ATP levels under glycerol, and 6.64- and 1.47-times higher ATP levels under methanol, respectively, compared to GS115. Comparative lipidomic analysis also indicated that the mutations generated richer unsaturated lipids on cell wall, leading to resilience to oxidative damage. CONCLUSIONS: Two novel P. pastoris chassis hosts with impaired ß-1,3-D-glucan biosynthesis were developed, showcasing enhanced performances in terms of growth rate, protein expression, and catalytic capabilities. These hosts exhibit the potential to serve as attractive alternatives to P. pastoris GS115 for various bioproduction applications.


Subject(s)
Methanol , Pichia , Saccharomycetales , Humans , Pichia/metabolism , Methanol/metabolism , Glycerol/metabolism , Adenosine Triphosphate/metabolism , Carbon/metabolism , Cell Wall/metabolism , Polysaccharides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
7.
Foodborne Pathog Dis ; 21(3): 174-182, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38112720

ABSTRACT

Cronobacter sakazakii, an opportunistic milk-borne pathogen responsible for severe neonatal meningitis and bacteremia, can synthesize yellow pigment (various carotenoids) benefiting for bacterial survival, while little literature was available about the influence of various carotenoids on bacterial resistance to a series of stresses and the characteristics of cell membrane, obstructing the development of novel bactericidal strategies overcoming the strong tolerance of C. sakazakii. Thus in this study, for the first time, five carotenogenic genes of C. sakazakii BAA-894 were inactivated, respectively, to construct a series of mutants producing various carotenoids and their effects on the cell membrane properties, and resistances to food- and host-related stresses, were investigated systematically. Furthermore, to explore its possible mode of action, comparative lipidomics analysis was performed to reveal the change of lipids that were mainly located at cell membranes. The results showed that five mutants (ΔcrtB, ΔcrtI, ΔcrtY, ΔcrtZ, and ΔcrtX) displayed negligible change in growth rate but higher permeability of the outer membrane and lower fluidity of cell membrane compared to the wild type. Besides, these mutants exhibited poorer ability of biofilm formation and lower resistances to acid, oxidative, osmotic, and desiccation stresses, indicating that different carotenoid composition significantly affected environmental tolerance of C. sakazakii. To discover the possible causes, lipidomics analysis of C. sakazakii was conducted and more than 500 lipid species belonging to 27 classes had been identified at first. Compared to that of BAA-894, the composition and relative intensity of lipid species in five mutants varied significantly, especially the monounsaturated and biunsaturated phosphatidylethanolamine. The evidence presented in this study demonstrated that the varied composition of carotenoids in C. sakazakii significantly altered the lipid profile and intensity, which maybe a crucial means to influencing the characteristics of cell membranes and resistance to environmental stresses.


Subject(s)
Cronobacter sakazakii , Cronobacter , Infant, Newborn , Humans , Cronobacter sakazakii/genetics , Carotenoids/metabolism , Stress, Physiological , Lipids
8.
Ren Fail ; 46(1): 2349133, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726999

ABSTRACT

OBJECTIVE:  The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS:  We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS:  All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION:  Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.


Subject(s)
Chloride Channels , Dent Disease , Phosphoric Monoester Hydrolases , Humans , Male , Child , Chloride Channels/genetics , Retrospective Studies , Child, Preschool , China/epidemiology , Dent Disease/genetics , Dent Disease/diagnosis , Phosphoric Monoester Hydrolases/genetics , Mutation , Proteinuria/genetics , Adolescent , Hypercalciuria/genetics , Nephrocalcinosis/genetics , Nephrolithiasis/genetics , Infant , Genetic Testing , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/diagnosis , Mutation, Missense , Female , Glomerulosclerosis, Focal Segmental/genetics , Kidney/pathology , East Asian People
9.
Sensors (Basel) ; 24(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39001171

ABSTRACT

The driver in road hypnosis has not only some external characteristics, but also some internal characteristics. External features have obvious manifestations and can be directly observed. Internal features do not have obvious manifestations and cannot be directly observed. They need to be measured with specific instruments. Electroencephalography (EEG), as an internal feature of drivers, is the golden parameter for drivers' life identification. EEG is of great significance for the identification of road hypnosis. An identification method for road hypnosis based on human EEG data is proposed in this paper. EEG data on drivers in road hypnosis can be collected through vehicle driving experiments and virtual driving experiments. The collected data are preprocessed with the PSD (power spectral density) method, and EEG characteristics are extracted. The neural networks EEGNet, RNN, and LSTM are used to train the road hypnosis identification model. It is shown from the results that the model based on EEGNet has the best performance in terms of identification for road hypnosis, with an accuracy of 93.01%. The effectiveness and accuracy of the identification for road hypnosis are improved in this study. The essential characteristics for road hypnosis are also revealed. This is of great significance for improving the safety level of intelligent vehicles and reducing the number of traffic accidents caused by road hypnosis.


Subject(s)
Automobile Driving , Electroencephalography , Hypnosis , Neural Networks, Computer , Humans , Electroencephalography/methods , Hypnosis/methods , Accidents, Traffic
10.
Sensors (Basel) ; 24(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065987

ABSTRACT

Protection suits are vital for firefighters' safety. Traditional protection suits physically protect firemen from burns, but cannot locate the position of bodily injuries caused by impact debris. Herein, we present a wearable impact debris positioning system for firefighter protection suits based on an accelerometer array. Wearable piezoelectric accelerometers are distributed regularly on the suit to detect the vibration on different body parts, which is conducive to determining the position of injured body parts. In addition, the injured parts can be displayed on a dummy body model on the upper computer with a higher localization accuracy of 4 cm. The positioning alarm system has a rapid response time of 0.11 ms, attributed to the smart signal processing method. This work provides a reliable and smart method for locating and assessing the position of bodily injuries caused by impact debris, which is significant because it enables fire commanders to rescue injured firefighters in time.


Subject(s)
Accelerometry , Firefighters , Accelerometry/instrumentation , Humans , Protective Clothing , Wearable Electronic Devices , Vibration
11.
Fish Physiol Biochem ; 50(2): 785-796, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38108936

ABSTRACT

To elucidate the underlying mechanism of the energy metabolism in largemouth bass (Micropterus salmoides), cultured fish (initial body weight: 77.57 ± 0.75 g) in the present study were starved for 0 h, 12 h, 24 h, 48 h, 96 h and 192 h, respectively. The proximate composition analysis showed that short-term starvation induced a significant up-regulation in crude protein proportion in hepatic of cultured fish (P < 0.05). However, short-term starvation significantly decreased the hepatosomatic index and the viscerosomatic index of cultured fish (P < 0.05). The exact hepatic glycogen content in the group starved for 92 h presented remarkable decrease (P < 0.05). Meanwhile, compared with the weight change of lipid and protein (mg) in hepatic (y = 0.0007x2 - 0.2827x + 49.402; y = 0.0013x2 - 0.5666x + 165.31), the decreasing trend of weight in glycogen (mg) was more pronounced (y = 0.0032x2 - 1.817x + 326.52), which suggested the preferential utilization of hepatic glycogen as energy substrates under short-term starvation. Gene expression analysis revealed that the starvation down-regulated the expression of insulin-like growth factor 1 and genes of TOR pathway, such as target of rapamycin (tor) and ribosomal protein S6 (s6) (P < 0.05). In addition, the starvation significantly enhanced expression of lipolysis-related genes, including hormone-sensitive lipase (hsl) and carnitine palmitoyl transferase I (cpt1), but down-regulated lipogenesis as indicated by the inhibited expression of fatty acids synthase (fas), acetyl-CoA carboxylase 1 (acc1) and acetyl-CoA carboxylase 2 (acc2) (P < 0.05). Starvation of 24 h up-regulated the expression of glycolysis genes, glucokinase (gk), phosphofructokinase liver type (pfkl) and pyruvate kinase (pk), and then their expression returned to the normal level. Meanwhile, the expression of gluconeogenesis genes, such as glucose-6-phosphatase catalytic subunit (g6pc), fructose-1,6-bisphosphatase-1 (fbp1) and phosphoenolpyruvate carboxy kinase (pepck), was significantly inhibited with the short-term starvation (P < 0.05). In conclusion, short-term starvation induced an overall decline in growth performance, but it could deplete the hepatic glycogen accumulation and mobilize glycogen for energy effectively.


Subject(s)
Bass , Animals , Liver Glycogen/metabolism , Acetyl-CoA Carboxylase/metabolism , Lipogenesis , Glycogen/metabolism , Proteins/metabolism , Liver/metabolism
12.
World J Microbiol Biotechnol ; 40(5): 159, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607454

ABSTRACT

Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.


Subject(s)
Corynebacterium glutamicum , gamma-Aminobutyric Acid , Agriculture , Corynebacterium glutamicum/genetics , Drug Industry , Engineering , Escherichia coli/genetics
13.
Heliyon ; 10(5): e27071, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463784

ABSTRACT

Background: Lung cancer metastasis to the brain presents significant clinical challenges. Therefore, elucidating its underlying mechanisms and characterizing its transcriptomic landscape is essential for developing therapeutic interventions. Methods: We analyzed two distinct single-cell RNA sequencing datasets of lung cancer metastasis to analyze the evolutionary trajectory of brain metastatic tumors. In addition, a systematic comparison of cell-cell interaction between tumor cells and lymphocytes was conducted within primary and brain metastatic tumors. Results: The brain metastatic tumors showed greater transcriptomic changes (reflected by a higher pseudotime) than tumors in the lymph nodes and primary tumors. Furthermore, our investigation has not only revealed specific shared ligand-receptor pairs in both mLN and mBrain, exemplified by the interaction between SPP1 and CD99 in T cells, but has also unveiled a diverse array of ligand-receptor pairs exclusive to the mBrain. Notably, this includes distinctive pairs such as APP and IL1 observed specifically in myeloid cells. Conclusion: The distinct microenvironment in the brain may influence the observed transcriptomic changes in tumors, emphasizing the significance of the specific environment in determining tumor behavior and therapeutic response.

14.
Microbiol Res ; 283: 127712, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38593580

ABSTRACT

Lipid A plays a crucial role in Vibrio parahaemolyticus. Previously we have reported the diversity of secondary acylation of lipid A in V. parahaemolyticus and four V. parahaemolyticus genes VP_RS08405, VP_RS01045, VP_RS12170, and VP_RS00880 exhibiting homology to the secondary acyltransferases in Escherichia coli. In this study, the gene VP_RS12170 was identified as a specific lipid A secondary hydroxy-acyltransferase responsible for transferring a 3-hydroxymyristate to the 2'-position of lipid A. Four E. coli mutant strains WHL00, WHM00, WH300, and WH001 were constructed, and they would synthesize lipid A with different structures due to the absence of genes encoding lipid A secondary acyltransferases or Kdo transferase. Then V. parahaemolyticus VP_RS12170 was overexpressed in W3110, WHL00, WHM00, WH300, and WH001, and lipid A was isolated from these strains and analyzed by using thin-layer chromatography and high-performance liquid chromatography-tandem mass spectrometry. The detailed structural changes of lipid A in these mutant strains with and without VP_RS12170 overexpression were compared and conclude that VP_RS12170 can specifically transfer a 3-hydroxymyristate to the 2'-position of lipid A. This study also demonstrated that the function of VP_RS12170 is Kdo-dependent and its favorite substrate is Kdo-lipid IVA. These findings give us better understanding the biosynthetic pathway and the structural diversity of V. parahaemolyticus lipid A.


Subject(s)
Lipid A , Vibrio parahaemolyticus , Lipid A/chemistry , Lipid A/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Mass Spectrometry
15.
Microbiol Res ; 284: 127720, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640767

ABSTRACT

Imbalance in carbon flux distribution is one of the most important factors affecting the further increase in the yield of high value-added natural products in microbial metabolic engineering. Meanwhile, the most common inducible expression systems are difficult to achieve industrial-scale production due to the addition of high-cost or toxic inducers during the fermentation process. Quorum sensing system, as a typical model for density-dependent induction of gene expression, has been widely applied in synthetic biology. However, there are currently few reports for efficient production of microbial natural products by using quorum sensing system to self-regulate carbon flux distribution. Here, we designed an artificial quorum sensing system to achieve efficient production of L-threonine in engineered Escherichia coli by altering the carbon flux distribution of the central metabolic pathways at specific periods. Under the combination of switch module and production module, the system was applied to divide the microbial fermentation process into two stages including growth and production, and improve the production of L-threonine by self-inducing the expression of pyruvate carboxylase and threonine extracellular transporter protease after a sufficient amount of cell growth. The final strain TWF106/pST1011, pST1042pr could produce 118.2 g/L L-threonine with a yield of 0.57 g/g glucose and a productivity of 2.46 g/(L· h). The establishment of this system has important guidance and application value for the production of other high value-added chemicals in microorganisms by self-regulation.


Subject(s)
Escherichia coli , Fermentation , Gene Expression Regulation, Bacterial , Metabolic Engineering , Quorum Sensing , Threonine , Quorum Sensing/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Metabolic Engineering/methods , Threonine/metabolism , Threonine/biosynthesis , Metabolic Networks and Pathways/genetics , Glucose/metabolism
16.
Prev Med Rep ; 44: 102793, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38979480

ABSTRACT

This study attempted to investigate relationship between rheumatoid arthritis and serum vitamin C levels using data from National Health and Nutrition Examination Survey (NHANES). The NHANES database aims to collect health, nutrition, biological, and behavioral data from a nationally representative sample of the population. This study utilizes NHANES data from three cycles: 2003-2004, 2005-2006, and 2017-2018, extracting data on the prevalence of rheumatoid arthritis and serum vitamin C levels. A generalized linear model is used to evaluate the association between the two. A total of 12,665 participants were included in the final analysis. Serum vitamin C levels were significantly higher in the non-rheumatoid arthritis group compared to the rheumatoid arthritis group (0.63 vs. 0.59, P = 0.042). Generalized linear model analysis showed that higher serum vitamin C levels were associated with a decreased risk of rheumatoid arthritis (OR = 0.62, 95 %CI: 0.40-0.98, P = 0.034). Stratified analysis revealed a significant interaction between non-hypertensive individuals and rheumatoid arthritis with serum vitamin C levels (P < 0.05). After adjusting for confounding factors, serum vitamin C levels remained significantly associated with rheumatoid arthritis in all models (P < 0.05). Restricted cubic spline results indicated that serum vitamin C levels above 0.95 mg/dL could help prevent rheumatoid arthritis. Increasing dietary vitamin C intake through supplementation was found to raise serum vitamin C levels. There was a significant association between rheumatoid arthritis and serum vitamin C levels, indicating that high levels of serum vitamin C may be a protective factor against rheumatoid arthritis.

17.
Int J Biol Macromol ; 262(Pt 1): 130066, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38340911

ABSTRACT

Accurate and convenient monitoring of pH under extreme alkaline conditions is still a challenge. In this work, 4-(3-(7-hydroxy-2-oxo-2H-chromen-3-yl)-3-oxoprop-1-en-1-yl)benzamide (HCB), a coumarin derivative, was grafted onto dialdehyde cellulose (DAC) to obtain a sensor DAC-HCB, which exhibited a ratiometric fluorescent response to the pH of alkaline solutions, resulting in a significant fluorescent color change from yellow to blue (FI459 nm/FI577 nm) at pH 7.5-14. The structure of DAC-HCB was characterized through FT-IR, XRD, XPS, SEM. The pKa of sensor DAC-HCB was 13.16, and the fluorescent intensity ratio FI459 nm/FI577 nm possessed an excellent linear characteristic with pH in the scope of 9.0-13.0. Meanwhile, sensor DAC-HCB showed good selectivity, anti-interference, and fast response time to basic pH, which is an effective fluorescent sensor for examination of pH in alkali circumstance. The recognition mechanism of DAC-HCB to OH- was elucidated with HRMS and density-functional theory (DFT) computational analyses. Sensor DAC-HCB was successfully used for precise detection of environmental water samples pH. This work furnished a new protocol for test strips as a convenient and highly efficient pH detection tool for the high pH environment, and it has great potential for application in environmental monitoring.


Subject(s)
Cellulose , Fluorescent Dyes , Fluorescent Dyes/chemistry , Spectroscopy, Fourier Transform Infrared , Cellulose/chemistry , Coumarins/chemistry , Hydrogen-Ion Concentration
18.
Intern Emerg Med ; 19(3): 681-688, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372886

ABSTRACT

Stress hyperglycemia has been confirmed as a strong predictor of poor short-term prognosis in acute pancreatitis. However, whether stress hyperglycemia affects the long-term prognosis of patients with acute pancreatitis is unclear. We aimed to investigate the effect of stress hyperglycemia on the long-term prognosis of non-diabetic patients with acute pancreatitis. This retrospective observational study was conducted on 4055 patients with acute pancreatitis from 1 January 2016 to 31 October 2020. The association between stress hyperglycemia and the prognosis was evaluated using regression modeling. There were 935(71.5%) normoglycemic and 373(28.5%) stress hyperglycemia patients. 46(12.3%) patients with stress hyperglycemia had evidence of diabetes compared with 33(3.5%) patients without stress hyperglycemia (P < 0.001). After multivariate adjustment, patients with stress hyperglycemia were more likely to have evidence of diabetes (OR 2.905, 95% CI 1.688-4.999) compared with normoglycemic. However, stress hyperglycemia is not associated with the recurrence of pancreatitis and progression to chronic pancreatitis. Stress hyperglycemia was independently associated with diabetes secondary to acute pancreatitis. Accordingly, a follow-up diabetes-screening program for AP with stress hyperglycemia is an important part of identifying the disease as soon as possible, delaying islet damage, and improving the prognosis of post-acute pancreatitis diabetes mellitus.


Subject(s)
Hyperglycemia , Pancreatitis , Humans , Male , Female , Retrospective Studies , Hyperglycemia/complications , Middle Aged , Prognosis , Pancreatitis/complications , Pancreatitis/physiopathology , Adult , Aged , Diabetes Mellitus/epidemiology
19.
J Agric Food Chem ; 72(28): 15811-15822, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38975865

ABSTRACT

Colanic acid (CA) is exopolysaccharide that presents growing potential in the food and healthcare industry as a versatile polymer. Previously, we have constructed the Escherichia coli strain WWM16 which can efficiently produce CA. In this study, WWM16 has been further engineered to produce a higher yield of CA with low molecular mass and viscosity. The gene mcbR encoding a transcriptional factor, and the genes opgD, opgG, and opgH related to the biosynthesis of osmoregulated periplasmic glucans were deleted in E. coli WWM16, and the resulting strain WWM166 produced 18.1 g/L CA. The expression level of wcaD encoding the polymerase in WWM166 was downregulated using CRISPRi. As a result, the strain WWM166/pWpD1 could produce 49.9 g/L CA with lower molecular mass. CA products were purified from both WWM166 and WWM166/pWpD1, and their molecular mass, viscosity, fluidity, hygroscopicity, and antioxidant activity were determined and compared. These findings demonstrate the potential application of CA with different molecular masses to prolong life and protect skin in the food and cosmetic industries.


Subject(s)
Escherichia coli , Molecular Weight , Escherichia coli/genetics , Escherichia coli/metabolism , Viscosity , Metabolic Engineering , Polysaccharides/metabolism , Polysaccharides/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/chemistry
20.
Biosens Bioelectron ; 259: 116385, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38759310

ABSTRACT

Cell-substrate interaction plays a critical role in determining the mechanical status of living cell membrane. Changes of substrate surface properties can significantly alter the cell mechanical microenvironment, leading to mechanical changes of cell membrane. However, it is still difficult to accurately quantify the influence of the substrate surface properties on the mechanical status of living cell membrane without damage. This study addresses the challenge by using an electrochemical sensor made from an ultrasmall quartz nanopipette. With the tip diameter less than 100 nm, the nanopipette-based sensor achieves highly sensitive, noninvasive and label-free monitoring of the mechanical status of single living cells by collecting stable cyclic membrane oscillatory signals from continuous current versus time traces. The electrochemical signals collected from PC12 cells cultured on three different substrates (bare ITO (indium tin oxides) glass, hydroxyl modified ITO glass, amino modified ITO glass) indicate that the microenvironment more favorable for cell adhesion can increase the membrane stiffness. This work provides a label-free electrochemical approach to accurately quantify the mechanical status of single living cells in real-time, which may help to better understand the relationship between the cell membrane and the extra cellular matrix.


Subject(s)
Biosensing Techniques , Cell Membrane , Electrochemical Techniques , Tin Compounds , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Animals , Rats , PC12 Cells , Tin Compounds/chemistry , Electrochemical Techniques/methods , Cell Membrane/chemistry , Cell Adhesion , Vibration , Surface Properties , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL