Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
J Environ Manage ; 353: 120213, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38295637

ABSTRACT

Contamination of heavy metals has always been a pressing concern. The dry-wet alternately treated carboxymethylcellulose bentonite (DW-CB) was successfully prepared by intercalating bentonite (BT) with carboxymethyl cellulose (CMC) obtained by solvent processes using enzymatically digested wastepaper as cellulosic raw material, and the adsorption capacity of Cu2+ on DW-CB in aqueous solution was investigated. A 98.18 ± 2.31 % removal efficiency was achieved by 4 g/L of DW-CB after 8 h in a solution containing 100 mg/L of Cu2+, which were 4.1 times and 1.5 times of that of BT and adsorbent prepared without alternating dry-wet process, respectively. The introduction of -COOH groups during the preparation of DW-CB enhanced the electrostatic interaction between DW-CB and Cu2+, which was the main driving force for Cu2+ removal. The pseudo-first-order kinetic model and Langmuir model better described the adsorption process and adsorption capacity of Cu2+ on DW-CB. DW-CB still showed high removal of Cu2+ (19.61 ± 0.99 mg/g) in the presence of multiple metal ions, while exhibiting the potential for removal of Zn2+, Mg2+ and K+, especially Mg2+ (22.69 ± 1.48 mg/g). However, the interactions of organics with Cu2+ severely affected the removal of Cu2+ by DW-CB (removal efficiency: 17.90 ± 4.17 % - 95.33 ± 0.27 %). In this study, an adsorbent with high targeted adsorption of Cu2+ was prepared by utilizing wastepaper and BT, which broadened the way of wastepaper resource utilization and had good economic and social benefits.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bentonite , Copper/analysis , Water Pollutants, Chemical/analysis , Water , Kinetics , Adsorption , Hydrogen-Ion Concentration
2.
J Integr Plant Biol ; 66(7): 1313-1333, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38751035

ABSTRACT

Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.


Subject(s)
Abscisic Acid , Calcium , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Protein Kinases , Zea mays , Zea mays/drug effects , Zea mays/metabolism , Zea mays/genetics , Zea mays/physiology , Calcium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Gene Expression Regulation, Plant/drug effects , Phosphorylation , Protein Kinases/metabolism , Plants, Genetically Modified , Stress, Physiological/drug effects , Protein Binding/drug effects
3.
Nano Lett ; 22(15): 6276-6284, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35913397

ABSTRACT

Silver is an attractive catalyst for converting CO2 into CO. However, the high CO2 activation barrier and the hydrogen evolution side reaction seriously limit its practical application and industrial perspective. Here, an ordered Ag nanoneedle array (Ag-NNAs) was prepared by template-assisted vacuum thermal-evaporation for CO2 electroreduction into CO. The nanoneedle array structure induces a strong local electric field at the tips, which not only reduces the activation barrier for CO2 electroreduction but also increases the energy barrier for the hydrogen evolution reaction (HER). Moreover, the array structure endows a high surface hydrophobicity, which can regulate the adsorption of water molecules at the interface and thus dynamically inhibit the competitive HER. As a result, the optimal Ag-NNAs exhibits 91.4% Faradaic efficiency (FE) of CO for over 700 min at -1.0 V vs RHE. This work provides a new concept for the application of nanoneedle array structures in electrocatalytic CO2 reduction reactions.

4.
Nano Lett ; 22(5): 1963-1970, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35166553

ABSTRACT

Electrocatalytic reduction of CO2 to multicarbon products is a potential strategy to solve the energy crisis while achieving carbon neutrality. To improve the efficiency of multicarbon products in Cu-based catalysts, optimizing the *CO adsorption and reducing the energy barrier for carbon-carbon (C-C) coupling are essential features. In this work, a strong local electric field is obtained by regulating the arrangement of Cu nanoneedle arrays (CuNNAs). CO2 reduction performance tests indicate that an ordered nanoneedle array reaches a 59% Faraday efficiency for multicarbon products (FEC2) at -1.2 V (vs RHE), compared to a FEC2 of 20% for a disordered nanoneedle array (CuNNs). As such, the very high and local electric fields achieved by an ordered Cu nanoneedle array leads to the accumulation of K+ ions, which benefit both *CO adsorption and C-C coupling. Our results contribute to the design of highly efficient catalysts for multicarbon products.

5.
Angew Chem Int Ed Engl ; 62(42): e202309351, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37639659

ABSTRACT

Electrocatalytic CO2 reduction reaction (CO2 RR) to multi-carbon products (C2+ ) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+ ) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C-C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2 RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) - thus breaking the K+ solubility limit (3.5 M) - which enables a highly efficient CO2 RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+ ) can be achieved at 1400 mA.cm-2 , simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.

6.
Bioprocess Biosyst Eng ; 45(9): 1581-1593, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35932338

ABSTRACT

Chlorophenols are widely used in industry and are known environmental pollutants. The degradation of chlorophenols is important for environmental remediation. In this study, we evaluated the biodegradation of 2-chlorophenol using crude laccase produced by Myrothecium verrucaria. Atmospheric and room temperature plasma technology was used to increase laccase production. The culture conditions of the M-6 mutant were optimized. Our results showed that corn stover could replace glucose as a carbon source and promote laccase production. The maximum laccase activity of 30.08 U/mL was achieved after optimization, which was a 19.04-fold increase. The biodegradation rate of 2-chlorophenol using crude laccase was 97.13%, a positive correlation was determined between laccase activity and degradation rate. The toxicity of 2-CP was substantially reduced after degradation by laccase solution. Our findings show the feasibility of the use of corn stover in laccase production by M. verrucaria mutant and the subsequent biodegradation of 2-chlorophenol using crude laccase.


Subject(s)
Chlorophenols , Laccase , Biodegradation, Environmental , Carbon , Chlorophenols/metabolism , Hypocreales , Zea mays
7.
J Environ Manage ; 301: 113914, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34628280

ABSTRACT

Humic acid (HA) is an important active compound formed during anaerobic digestion process, with a complex structure and dynamic electron transfer capacity (ETC). However, the mechanisms by which these macromolecular organic compounds dynamically interact with the microbial anaerobic digestion process at different operating temperatures are still unclear. In this study, the link between the evolution of the ETC of HAs and the microbial community under mesophilic and thermophilic conditions was investigated. The results showed an increasing trend in the ETC of HAs in both mesophilic (671-1479 µmol gHA-1) and thermophilic (774-1506 µmol gHA-1) anaerobic digestion (AD) until day 25. The ETC was positively correlated with the bacterial community of hydrolytic and acidogenic phases, but negatively correlated with the archaeal community of the methanogenic phase. Furthermore, the relationship between ETC and key enzyme activity was explored using a co-occurrence network analysis. HAs revealed a high potential to promote key enzyme activities during hydrolysis (amylase and protease) and acidification (acetate kinase, butyrate kinase, and phosphotransacetylase) while inhibiting the key enzyme activity in the methanogenic phase during the anaerobic digestion process. Moreover, HAs formed under thermophilic conditions had a greater influence on key enzyme activities than those formed under mesophilic conditions. This study advances our understanding of the mechanisms underlying the influence of HAs on anaerobic digestion performance.


Subject(s)
Euryarchaeota , Humic Substances , Anaerobiosis , Bioreactors , Electrons , Methane , Sewage , Temperature
8.
Angew Chem Int Ed Engl ; 61(28): e202204290, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35536725

ABSTRACT

Catalytic selective hydroxylation of unactivated aliphatic (sp3 ) C-H bonds without a directing group represents a formidable task for synthetic chemists. Through directed evolution of P450BSß hydroxylase, we realize oxyfunctionalization of unactivated C-H bonds in a broad spectrum of aliphatic carboxylic acids with varied chain lengths, functional groups and (hetero-)aromatic moieties in a highly chemo-, regio- and enantioselective fashion (>30 examples, Cß/Cα>20 : 1, >99 % ee). The X-ray structure of the evolved variant, P450BSß -L78I/Q85H/G290I, in complex with palmitic acid well rationalizes the experimentally observed regio- and enantioselectivity, and also reveals a reduced catalytic pocket volume that accounts for the increased reactivity with smaller substrates. This work showcases the potential of employing a biocatalyst to enable a chemical transformation that is particularly challenging by chemical methods.


Subject(s)
Carboxylic Acids , Cytochrome P-450 Enzyme System , Biocatalysis , Cytochrome P-450 Enzyme System/metabolism , Hydroxylation , Stereoisomerism
9.
Small ; 17(50): e2104482, 2021 12.
Article in English | MEDLINE | ID: mdl-34796649

ABSTRACT

The excellent stretchability and biocompatibility of flexible sensors have inspired an emerging field of plant wearables, which enable intimate contact with the plants to continuously monitor the growth status and localized microclimate in real-time. Plant flexible wearables provide a promising platform for the development of plant phenotype and the construction of intelligent agriculture via monitoring and regulating the critical physiological parameters and microclimate of plants. Here, the emerging applications of plant flexible wearables together with their pros and cons from four aspects, including physiological indicators, surrounding environment, crop quality, and active control of growth, are highlighted. Self-powered energy supply systems and signal transmission mechanisms are also elucidated. Furthermore, the future opportunities and challenges of plant wearables are discussed in detail.


Subject(s)
Wearable Electronic Devices , Agriculture , Monitoring, Physiologic , Plants
10.
Plant Cell Environ ; 44(2): 559-573, 2021 02.
Article in English | MEDLINE | ID: mdl-33215716

ABSTRACT

In plants, cellular lipid peroxidation is enhanced under low nitrogen (LN) stress; this increases the lipid-derived reactive carbonyl species (RCS) levels. The cellular toxicity of RCS can be reduced by various RCS-scavenging enzymes. However, the roles of these enzymes in alleviating oxidative stress and improving nutrient use efficiency (NUE) under nutrient stress remain unknown. Here, we overexpressed maize endogenous NADPH-dependent 2-alkenal reductase (ZmAER) in maize; it significantly increased the tolerance of transgenic plants (OX-AER) to LN stress. Under LN condition, the biomass, nitrogen accumulation, NUE, and leaf photosynthesis of the OX-AER plants were significantly higher than those of the wild-type (WT) plants. The leaf and root malondialdehyde and H2 O2 levels in the transgenic plants were significantly lower than those in WT. The expression of antioxidant enzyme-related genes ZmCAT3, ZmPOD5 and ZmPOD13 was significantly higher in the transgenic lines than in WT. Under LN stress, the nitrate reductase activity in the OX-AER leaves was significantly increased compared with that in the WT leaves. Furthermore, under LN stress, ZmNRT1.1 and ZmNRT2.5 expression was upregulated in the OX-AER plants compared with that in WT. Overall, up-regulated ZmAER expression could enhance maize's tolerance to LN stress by alleviating oxidative stress and improve NUE.


Subject(s)
Antioxidants/metabolism , Nitrogen/metabolism , Zea mays/enzymology , Lipid Peroxidation , Malondialdehyde/metabolism , Oxidative Stress , Oxidoreductases/genetics , Oxidoreductases/metabolism , Photosynthesis , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Zea mays/genetics
11.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34830369

ABSTRACT

It is vital to develop high-throughput methods to determine transgene copy numbers initially and zygosity during subsequent breeding. In this study, the target sequence of the previously reported endogenous reference gene hmg was analyzed using 633 maize inbred lines, and two SNPs were observed. These SNPs significantly increased the PCR efficiency, while the newly developed hmg gene assay (hmg-taq-F2/R2) excluding these SNPs reduced the efficiency into normal ranges. The TaqMan amplification efficiency of bar and hmg with newly developed primers was calculated as 0.993 and 1.000, respectively. The inter-assay coefficient of variation (CV) values for the bar and hmg genes varied from 1.18 to 2.94%. The copy numbers of the transgene bar using new TaqMan assays were identical to those using dPCR. Significantly, the precision of one repetition reached 96.7% of that of three repetitions of single-copy plants analyzed by simple random sampling, and the actual accuracy reached 95.8%, confirmed by T1 and T2 progeny. With the high-throughput DNA extraction and automated data analysis procedures developed in this study, nearly 2700 samples could be analyzed within eight hours by two persons. The combined results suggested that the new hmg gene assay developed here could be a universal maize reference gene system, and the new assay has high throughput and high accuracy for large-scale screening of maize varieties around the world.


Subject(s)
DNA Copy Number Variations/genetics , Plants, Genetically Modified/genetics , Transgenes/genetics , Zea mays/genetics , DNA Primers , Gene Dosage/genetics , Plant Breeding
12.
Ann Bot ; 126(4): 765-773, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32432702

ABSTRACT

BACKGROUND AND AIMS: High-throughput phenotyping is a limitation in plant genetics and breeding due to large-scale experiments in the field. Unmanned aerial vehicles (UAVs) can help to extract plant phenotypic traits rapidly and non-destructively with high efficiency. The general aim of this study is to estimate the dynamic plant height and leaf area index (LAI) by nadir and oblique photography with a UAV, and to compare the integrity of the established three-dimensional (3-D) canopy by these two methods. METHODS: Images were captured by a high-resolution digital RGB camera mounted on a UAV at five stages with nadir and oblique photography, and processed by Agisoft Metashape to generate point clouds, orthomosaic maps and digital surface models. Individual plots were segmented according to their positions in the experimental design layout. The plant height of each inbred line was calculated automatically by a reference ground method. The LAI was calculated by the 3-D voxel method. The reconstructed canopy was sliced into different layers to compare leaf area density obtained from oblique and nadir photography. KEY RESULTS: Good agreements were found for plant height between nadir photography, oblique photography and manual measurement during the whole growing season. The estimated LAI by oblique photography correlated better with measured LAI (slope = 0.87, R2 = 0.67), compared with that of nadir photography (slope = 0.74, R2 = 0.56). The total number of point clouds obtained by oblique photography was about 2.7-3.1 times than those by nadir photography. Leaf area density calculated by nadir photography was much less than that obtained by oblique photography, especially near the plant base. CONCLUSIONS: Plant height and LAI can be extracted automatically and efficiently by both photography methods. Oblique photography can provide intensive point clouds and relatively complete canopy information at low cost. The reconstructed 3-D profile of the plant canopy can be easily recognized by oblique photography.


Subject(s)
Plant Leaves , Zea mays , Photography , Seasons
13.
Angew Chem Int Ed Engl ; 59(8): 3043-3047, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31828916

ABSTRACT

Herein, we report an engineered enzyme that can monooxygenate unprotected tryptophan into the corresponding 3a-hydroxyhexahydropyrrolo[2,3-b]indole-2-carboxylic acid (HPIC) in a single, scalable step with excellent turnover number and diastereoselectivity. Taking advantage of directed evolution, we analyzed the stepwise oxygen-insertion mechanism of tryptophan 2,3-dioxygenases, and transformed tryptophan 2,3-dioxygenase from Xanthomonas campestris into a monooxygenase for oxidative cyclization of tryptophans. It was revealed that residue F51 is vital in determining the product ratio of HPIC to N'-formylkynurenine. Our reactions and purification procedures use no organic solvents, resulting in an eco-friendly method to prepare HPICs for further applications.


Subject(s)
Mixed Function Oxygenases/chemistry , Tryptophan Oxygenase/chemistry , Tryptophan/chemistry , Humans , Oxidation-Reduction
14.
J Bacteriol ; 200(10)2018 05 15.
Article in English | MEDLINE | ID: mdl-29483161

ABSTRACT

The histidine kinase CheA plays a central role in signal integration, conversion, and amplification in the bacterial chemotaxis signal transduction pathway. The kinase activity is regulated in chemotaxis signaling complexes formed via the interactions among CheA's regulatory domain (P5), the coupling protein CheW, and transmembrane chemoreceptors. Despite recent advancements in the understanding of the architecture of the signaling complex, the molecular mechanism underlying this regulation remains elusive. An interdomain linker that connects the catalytic (P4) and regulatory domains of CheA may mediate regulatory signals from the P5-CheW-receptor interactions to the catalytic domain. To investigate whether this interdomain linker is capable of both activating and inhibiting CheA, we performed in vivo screens to search for P4-P5 linker mutations that result in different CheA autokinase activities. Several CheA variants were identified with kinase activities ranging from 30% to 670% of the activity of wild-type CheA. All of these CheA variants were defective in receptor-mediated kinase activation, indicating that the natural receptor-mediated signal transmission pathway was simultaneously affected by these mutations. The altered P4-P5 linkers were sufficient for making significant changes in the kinase activity even in the absence of the P5 domain. Therefore, the interdomain linker is an active module that has the ability to impose regulatory effects on the catalytic activity of the P4 domain. These results suggest that chemoreceptors may manipulate the conformation of the P4-P5 linker to achieve CheA regulation in the platform of the signaling complex.IMPORTANCE The molecular mechanism underlying kinase regulation in bacterial chemotaxis signaling complexes formed by the regulatory domain of the histidine kinase CheA, the coupling protein CheW, and chemoreceptors is still unknown. We isolated and characterized mutations in the interdomain linker that connects the catalytic and regulatory domains of CheA and found that the linker mutations resulted in different CheA autokinase activities in the absence and presence of the regulatory domain as well as a defect in receptor-mediated kinase activation. These results demonstrate that the interdomain linker is an active module that has the ability to impose regulatory effects on CheA activity. Chemoreceptors may manipulate the conformation of this interdomain linker to achieve CheA regulation in the platform of the signaling complex.


Subject(s)
Chemotaxis , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Gene Expression Regulation , Histidine Kinase/chemistry , Methyl-Accepting Chemotaxis Proteins/chemistry , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Histidine Kinase/genetics , Methyl-Accepting Chemotaxis Proteins/genetics , Models, Molecular , Phosphorylation , Signal Transduction
16.
Nat Prod Rep ; 34(12): 1345-1358, 2017 Dec 13.
Article in English | MEDLINE | ID: mdl-29168875

ABSTRACT

Covering: 2012 to June 2017This review aims to show that complex natural product synthesis can be streamlined by taking advantage of molecular symmetry. Various strategies to construct molecules with either evident or hidden symmetry are illustrated. Insights regarding the origins and adjustments of these strategies as well as inspiring new methodological developments are deliberated. When a symmetric strategy fails, the corresponding reason is analysed and an alternative approach is briefly provided. Finally, the importance of exploiting molecular symmetry and future research directions are discussed.


Subject(s)
Biological Products/chemical synthesis , Biological Products/chemistry , Molecular Structure
17.
J Am Chem Soc ; 137(41): 13282-9, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26186087

ABSTRACT

Core-shell magnetic mesoporous silica microspheres (Magn-MSMs) with tunable large mesopores in the shell are highly desired in biocatalysis, magnetic bioseparation, and enrichment. In this study, a shearing assisted interface coassembly in n-hexane/water biliquid systems is developed to synthesize uniform Magn-MSMs with magnetic core and mesoporous silica shell for an efficient size-selective biocatalysis. The synthesis features the rational control over the electrostatic interaction among cationic surfactant molecules, silicate oligomers, and Fe3O4@RF microspheres (RF: resorcinol formaldehyde) in the presence of shearing-regulated solubilization of n-hexane in surfactant micelles. Through this multicomponent interface coassembly, surfactant-silica mesostructured composite has been uniformly deposited on the Fe3O4@RF microspheres, and core-shell Magn-MSMs are obtained after removing the surfactant and n-hexane. The obtained Magn-MSMs possess excellent water dispersibility, uniform diameter (600 nm), large and tunable perpendicular mesopores (5.0-9.0 nm), high surface area (498-623 m(2)/g), large pore volume (0.91-0.98 cm(3)/g), and high magnetization (34.5-37.1 emu/g). By utilization of their large and open mesopores, Magn-MSMs with a pore size of about 9.0 nm have been demonstrated to be able to immobilize a large bioenzyme (trypsin with size of 4.0 nm) with a high loading capacity of ∼97 µg/mg via chemically binding. Magn-MSMs with immobilized trypsin exhibit an excellent convenient and size selective enzymolysis of low molecular proteins in the mixture of proteins of different sizes and a good recycling performance by using the magnetic separability of the microspheres.


Subject(s)
Magnetics , Microspheres , Silicon Dioxide/chemistry , Microscopy, Electron, Transmission , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
Biochemistry ; 53(5): 855-61, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24444349

ABSTRACT

The histidine kinase, CheA, couples environmental stimuli to changes in bacterial swimming behavior, converting a sensory signal to a chemical signal in the cytosol via autophosphorylation. The kinase activity is regulated in the platform of chemotaxis signaling complexes formed by CheW, chemoreceptors, and the regulatory domain of CheA. Our previous computational and mutational studies have revealed that two interdomain linkers play important roles in CheA's enzymatic activity. Of the two linkers, one that connects the dimerization and ATP binding domains is essential for both basal autophosphorylation and activation of the kinase. However, the mechanistic role of this linker remains unclear, given that it is far from the autophosphorylation reaction center (the ATP binding site). Here we investigate how this interdomain linker is coupled to CheA's enzymatic activity. Using modern nuclear magnetic resonance (NMR) techniques, we find that by interacting with the catalytic domain, the interdomain linker initiates long-range structural and dynamic changes directed toward the catalytic center of the autophosphorylation reaction. Subsequent biochemical assays define the functional relevance of these NMR-based observations. These findings extend our understanding of the chemotaxis signal transduction pathway.


Subject(s)
Bacterial Proteins/chemistry , Protein Kinases/chemistry , Thermotoga maritima/metabolism , Catalytic Domain , Enzyme Activation , Histidine Kinase , Models, Molecular , Phosphorylation , Protein Multimerization
20.
J Am Chem Soc ; 136(5): 1884-92, 2014 Feb 05.
Article in English | MEDLINE | ID: mdl-24417352

ABSTRACT

A facile and controllable interface-directed coassembly (IDCA) approach is developed for the first time to synthesize uniform discrete mesoporous silica particles with a large pore size (ca. 8 nm) by using 3-dimensional macroporous carbon (3DOMC) as the nanoreactor for the confined coassembly of template molecules and silica source. By controlling the amount of the precursor solution and using Pluronic templates with different compositions, we can synthesize mesoporous silica particles with diverse morphologies (spheres, hollow spheres, and hemispheres) and different mesostructure (e.g., 2-D hexagonal and 3D face centered cubic symmetry), high surface area of about 790 m(2)/g, and large pore volume (0.98 cm(3)/g). The particle size can be tunable from submicrometer to micrometer regimes by changing the macropore diameter of 3DOMC. Importantly, this synthesis concept can be extended to fabricate multifunctional mesoporous composite spheres with a magnetic core and a mesoporous silica shell, large saturated magnetization (23.5 emu/g), and high surface area (280 m(2)/g). With the use of the magnetic mesoporous silica spheres as a magnetically recyclable absorbent, a fast and efficient removal of microcystin from water is achieved, and they can be recycled for 10 times without a significant decrease of removal efficiency for microcystin.


Subject(s)
Carbon/chemistry , Poloxalene/chemical synthesis , Silicon Dioxide/chemical synthesis , Colloids , Magnetics , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Microspheres , Particle Size , Poloxalene/chemistry , Porosity , Scattering, Small Angle , Silicon Dioxide/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL