Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 69(3): 451-464.e6, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29358078

ABSTRACT

S-nitrosylation, the oxidative modification of Cys residues by nitric oxide (NO) to form S-nitrosothiols (SNOs), modifies all main classes of proteins and provides a fundamental redox-based cellular signaling mechanism. However, in contrast to other post-translational protein modifications, S-nitrosylation is generally considered to be non-enzymatic, involving multiple chemical routes. We report here that endogenous protein S-nitrosylation in the model organism E. coli depends principally upon the enzymatic activity of the hybrid cluster protein Hcp, employing NO produced by nitrate reductase. Anaerobiosis on nitrate induces both Hcp and nitrate reductase, thereby resulting in the S-nitrosylation-dependent assembly of a large interactome including enzymes that generate NO (NO synthase), synthesize SNO-proteins (SNO synthase), and propagate SNO-based signaling (trans-nitrosylases) to regulate cell motility and metabolism. Thus, protein S-nitrosylation by NO in E. coli is essentially enzymatic, and the potential generality of the multiplex enzymatic mechanism that we describe may support a re-conceptualization of NO-based cellular signaling.


Subject(s)
Nitrosation/physiology , S-Nitrosothiols/metabolism , Cysteine/metabolism , Escherichia coli , Escherichia coli Proteins , Nitric Oxide/metabolism , Oxidation-Reduction , Protein Processing, Post-Translational/physiology , Proteins/metabolism , Proteolysis , Proteomics/methods , Signal Transduction
2.
Acta Pharmacol Sin ; 45(2): 282-297, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37803141

ABSTRACT

The GRIN genes encoding N-methyl-D-aspartate receptor (NMDAR) subunits are remarkably intolerant to variation. Many pathogenic NMDAR variants result in their protein misfolding, inefficient assembly, reduced surface expression, and impaired function on neuronal membrane, causing neurological disorders including epilepsy and intellectual disability. Here, we investigated the proteostasis maintenance of NMDARs containing epilepsy-associated variations in the GluN2A subunit, including M705V and A727T. In the transfected HEK293T cells, we showed that the two variants were targeted to the proteasome for degradation and had reduced functional surface expression. We demonstrated that the application of BIX, a known small molecule activator of an HSP70 family chaperone BiP (binding immunoglobulin protein) in the endoplasmic reticulum (ER), dose-dependently enhanced the functional surface expression of the M705V and A727T variants in HEK293T cells. Moreover, BIX (10 µM) increased the surface protein levels of the M705V variant in human iPSC-derived neurons. We revealed that BIX promoted folding, inhibited degradation, and enhanced anterograde trafficking of the M705V variant by modest activation of the IRE1 pathway of the unfolded protein response. Our results suggest that adapting the ER proteostasis network restores the folding, trafficking, and function of pathogenic NMDAR variants, representing a potential treatment for neurological disorders resulting from NMDAR dysfunction.


Subject(s)
Epilepsy , Receptors, N-Methyl-D-Aspartate , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Proteostasis , HEK293 Cells , Epilepsy/genetics , Epilepsy/metabolism , Endoplasmic Reticulum/metabolism
3.
BMC Nurs ; 23(1): 57, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38243209

ABSTRACT

BACKGROUND: Newly graduated registered nurses leaving the nursing profession in the early stages of their career have enormous financial and time implications for nursing organizations and affect the quality of nursing care. OBJECTIVE: To identify the factors influencing newly graduated registered nurses' intention to leave the nursing profession over the past 10 years. METHODS: The framework developed by Whittemore and Knafl was used to conduct this integrative review. An electronic search was conducted for English articles to identify research studies published between 2011-2022 using the following databases of PubMed, MEDLINE, CINAHL, PsycINFO, and Scopus. Eligible publications were critically reviewed and scored using the Critical Appraisal Skills Program Checklist and the Center for Evidence-Based Management appraisal. RESULTS: Twenty-one studies were analyzed. The main factors affecting newly graduated registered nurses' intention to leave the nursing profession included demographic factors (age, educational level, year of experience, professional title, employment status, health status, shift, hospital location and size), supervisor and peer support, challenges in the workplace, cognitive and affective response to work, work environment (collegial nurse-physician relations, insufficient staffing level, person-work environment fit), gender stereotypes, autonomous motivation, role models, and resilience. CONCLUSIONS: The factors affecting newly graduated registered nurses' intention to leave the nursing profession are multifaceted and should receive continuous attention from nurse managers. The findings provide more comprehensive for nurse administrators to develop intervention strategies to mitigate newly graduated registered nurses' turnover intention.

4.
J Biol Chem ; 298(10): 102423, 2022 10.
Article in English | MEDLINE | ID: mdl-36030824

ABSTRACT

Gamma-aminobutyric acid type A (GABAA) receptors are the primary inhibitory neurotransmitter-gated ion channels in the mammalian central nervous system. Maintenance of GABAA receptor protein homeostasis (proteostasis) in cells utilizing its interacting proteins is essential for the function of GABAA receptors. However, how the proteostasis network orchestrates GABAA receptor biogenesis in the endoplasmic reticulum is not well understood. Here, we employed a proteomics-based approach to systematically identify the interactomes of GABAA receptors. We carried out a quantitative immunoprecipitation-tandem mass spectrometry analysis utilizing stable isotope labeling by amino acids in cell culture. Furthermore, we performed comparative proteomics by using both WT α1 subunit and a misfolding-prone α1 subunit carrying the A322D variant as the bait proteins. We identified 125 interactors for WT α1-containing receptors, 105 proteins for α1(A322D)-containing receptors, and 54 overlapping proteins within these two interactomes. Our bioinformatics analysis identified potential GABAA receptor proteostasis network components, including chaperones, folding enzymes, trafficking factors, and degradation factors, and we assembled a model of their potential involvement in the cellular folding, degradation, and trafficking pathways for GABAA receptors. In addition, we verified endogenous interactions between α1 subunits and selected interactors by using coimmunoprecipitation in mouse brain homogenates. Moreover, we showed that TRIM21 (tripartite motif containing-21), an E3 ubiquitin ligase, positively regulated the degradation of misfolding-prone α1(A322D) subunits selectively. This study paves the way for understanding the molecular mechanisms as well as fine-tuning of GABAA receptor proteostasis to ameliorate related neurological diseases such as epilepsy.


Subject(s)
Proteostasis , Receptors, GABA-A , Animals , Mice , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , gamma-Aminobutyric Acid/metabolism , Proteomics , Receptors, GABA-A/metabolism
5.
Microb Pathog ; 185: 106425, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923181

ABSTRACT

Rabies, caused by the rabies virus (RABV), is the most fatal zoonotic disease. It is a neglected tropical disease which remains a major public health problem, causing approximately 59,000 deaths worldwide annually. Despite the existence of effective vaccines, the high incidence of human rabies is mainly linked to tedious vaccine immunisation procedures and the overall high cost of post-exposure prophylaxis. Therefore, it is necessary to develop an effective vaccine that has a simple procedure and is affordable to prevent rabies infection in humans. RABV belongs to the genus Lyssavirus and family Rhabdoviridae. Previous phylogenetic analyses have identified seven major clades of RABV in China (China I-VII), confirmed by analysing nucleotide sequences from both the G and N proteins. This study evaluated the immunogenicity and protective capacity of SYS6008, an mRNA rabies vaccine expressing rabies virus glycoprotein, in mice and cynomolgus macaques. We demonstrated that SYS6008 induced sufficient levels of rabies neutralising antibody (RVNA) in mice. In addition, SYS6008 elicited strong and durable RVNA responses in vaccinated cynomolgus macaques. In the pre-exposure prophylaxis murine model, one or two injections of SYS6008 at 1/10 or 1/30 of dosage provided protection against a challenge with a 30-fold LD50 of rabies virus (China I and II clades). We also demonstrated that in the post-exposure prophylaxis murine model, which was exposed to lethal rabies virus (China I-VII clades) before vaccination, one or two injections of SYS6008 at both 1/10 and 1/30 dosages provided better protection against rabies virus challenge than the immunization by five injections of commercial vaccines at the same dosage. In addition, we proved that SYS6008-induced RVNAs could neutralise RABV from the China I-VII clades. Finally, 1/10 of the dosage of SYS6008 was able to stimulate significant RABV-G specificity in the T cell response. Furthermore, we found that SYS6008 induced high cellular immunity, including RABV-G-specific T cell responses and memory B cells. Our results imply that the SYS6008 rabies vaccine, with a much simpler vaccination procedure, better immunogenicity, and enhanced protective capacity, could be a candidate vaccine for post-exposure prophylaxis of rabies infections.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , Humans , Animals , Mice , Rabies/prevention & control , Rabies Vaccines/genetics , Rabies virus/genetics , Post-Exposure Prophylaxis/methods , Disease Models, Animal , Phylogeny , Antibodies, Viral , Macaca
6.
Cell ; 134(5): 769-81, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18775310

ABSTRACT

Loss-of-function diseases are often caused by a mutation in a protein traversing the secretory pathway that compromises the normal balance between protein folding, trafficking, and degradation. We demonstrate that the innate cellular protein homeostasis, or proteostasis, capacity can be enhanced to fold mutated enzymes that would otherwise misfold and be degraded, using small molecule proteostasis regulators. Two proteostasis regulators are reported that alter the composition of the proteostasis network in the endoplasmic reticulum through the unfolded protein response, increasing the mutant folded protein concentration that can engage the trafficking machinery, restoring function to two nonhomologous mutant enzymes associated with distinct lysosomal storage diseases. Coapplication of a pharmacologic chaperone and a proteostasis regulator exhibits synergy because of the former's ability to further increase the concentration of trafficking-competent mutant folded enzymes. It may be possible to ameliorate loss-of-function diseases by using proteostasis regulators alone or in combination with a pharmacologic chaperone.


Subject(s)
Lysosomal Storage Diseases/metabolism , Protein Folding , Proteins/metabolism , Cell Line , Fibroblasts/metabolism , Gaucher Disease/drug therapy , Gaucher Disease/metabolism , Humans , Leupeptins/pharmacology , Lysosomal Storage Diseases/drug therapy , Molecular Chaperones/pharmacology , Pentacyclic Triterpenes , Tay-Sachs Disease/drug therapy , Tay-Sachs Disease/metabolism , Triterpenes/pharmacology
7.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(9): 889-895, 2021.
Article in English, Zh | MEDLINE | ID: mdl-34535202

ABSTRACT

OBJECTIVES: To investigate the incidence of maternal group B Streptococcus (GBS) colonization and neonatal early-onset GBS disease (GBS-EOD), and to study the factors associated with the development of GBS-EOD in the offspring of pregnant women with GBS colonization. METHODS: A total of 16 384 pregnant women and 16 634 neonates delivered by them were enrolled prospectively who had medical records in Xiamen Maternal and Child Care Hospital, Beijing Obstetrics and Gynecology Hospital of Capital Medical University, and Zhangzhou Zhengxing Hospital from May 1, 2019 to April 30, 2020. Unified GBS screening time, culture method, and indication for intrapartum antibiotic prophylaxis (IAP) were adopted in the three hospitals. The incidence rates of maternal GBS colonization and neonatal GBS-EOD were investigated. A multivariate logistic regression analysis was used to identify the factors associated with the development of GBS-EOD in the offspring of pregnant women with GBS colonization. RESULTS: In these three hospitals, the positive rate of GBS culture among the pregnant women in late pregnancy was 11.29% (1 850/16 384), and the incidence rate of neonatal GBS-EOD was 0.96‰ (16/16 634). The admission rate of live infants born to the GBS-positive pregnant women was higher than that of those born to the GBS-negative ones (P<0.05). The live infants born to the GBS-positive pregnant women had a higher incidence rate of GBS-EOD than those born to the GBS-negative ones [6.38‰ (12/1 881) vs 0.27‰ (4/14 725), P<0.05]. The multivariate logistic regression analysis showed that placental swabs positive for GBS and positive GBS in neonatal gastric juice at birth were independent predictive factors for the development of GBS-EOD (P<0.05), while adequate IAP was a protective factor (P<0.05) in the offspring of pregnant women with GBS colonization. CONCLUSIONS: GBS colonization of pregnant women in late pregnancy has adverse effects on their offspring. It is important to determine prenatal GBS colonization status of pregnant women and administer with adequate IAP based on the indications of IAP to reduce the incidence of neonatal GBS-EOD. Citation.


Subject(s)
Pregnancy Complications, Infectious , Streptococcal Infections , Antibiotic Prophylaxis , Female , Humans , Infectious Disease Transmission, Vertical/prevention & control , Placenta , Pregnancy , Pregnancy Complications, Infectious/drug therapy , Pregnancy Complications, Infectious/epidemiology , Prospective Studies , Streptococcal Infections/drug therapy , Streptococcal Infections/epidemiology , Streptococcus agalactiae
8.
J Biol Chem ; 291(18): 9526-39, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26945068

ABSTRACT

Proteostasis maintenance of γ-aminobutyric acid type A (GABAA) receptors dictates their function in controlling neuronal inhibition in mammalian central nervous systems. However, as a multisubunit, multispan, integral membrane protein, even wild type subunits of GABAA receptors fold and assemble inefficiently in the endoplasmic reticulum (ER). Unassembled and misfolded subunits undergo ER-associated degradation (ERAD), but this degradation process remains poorly understood for GABAA receptors. Here, using the α1 subunits of GABAA receptors as a model substrate, we demonstrated that Grp94, a metazoan-specific Hsp90 in the ER lumen, uses its middle domain to interact with the α1 subunits and positively regulates their ERAD. OS-9, an ER-resident lectin, acts downstream of Grp94 to further recognize misfolded α1 subunits in a glycan-dependent manner. This delivers misfolded α1 subunits to the Hrd1-mediated ubiquitination and the valosin-containing protein-mediated extraction pathway. Repressing the initial ERAD recognition step by inhibiting Grp94 enhances the functional surface expression of misfolding-prone α1(A322D) subunits, which causes autosomal dominant juvenile myoclonic epilepsy. This study clarifies a Grp94-mediated ERAD pathway for GABAA receptors, which provides a novel way to finely tune their function in physiological and pathophysiological conditions.


Subject(s)
Endoplasmic Reticulum-Associated Degradation/physiology , Endoplasmic Reticulum/metabolism , Membrane Glycoproteins/metabolism , Proteolysis , Receptors, GABA-A/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Substitution , Endoplasmic Reticulum/genetics , HEK293 Cells , Humans , Membrane Glycoproteins/genetics , Mutation, Missense , Receptors, GABA-A/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination/physiology
9.
Proc Natl Acad Sci U S A ; 111(52): 18572-7, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25512491

ABSTRACT

Coenzyme A (CoA) mediates thiol-based acyl-group transfer (acetylation and palmitoylation). However, a role for CoA in the thiol-based transfer of NO groups (S-nitrosylation) has not been considered. Here we describe protein S-nitrosylation in yeast (heretofore unknown) that is mediated by S-nitroso-CoA (SNO-CoA). We identify a specific SNO-CoA reductase encoded by the alcohol dehydrogenase 6 (ADH6) gene and show that deletion of ADH6 increases cellular S-nitrosylation and alters CoA metabolism. Further, we report that Adh6, acting as a selective SNO-CoA reductase, protects acetoacetyl-CoA thiolase from inhibitory S-nitrosylation and thereby affects sterol biosynthesis. Thus, Adh6-regulated, SNO-CoA-mediated protein S-nitrosylation provides a regulatory mechanism paralleling protein acetylation. We also find that SNO-CoA reductases are present from bacteria to mammals, and we identify aldo-keto reductase 1A1 as the mammalian functional analog of Adh6. Our studies reveal a novel functional class of enzymes that regulate protein S-nitrosylation from yeast to mammals and suggest that SNO-CoA-mediated S-nitrosylation may subserve metabolic regulation.


Subject(s)
Acetyl-CoA C-Acetyltransferase/metabolism , Acyl Coenzyme A/metabolism , Alcohol Dehydrogenase/metabolism , Coenzyme A/metabolism , Protein Processing, Post-Translational/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Acetyl-CoA C-Acetyltransferase/genetics , Acyl Coenzyme A/genetics , Alcohol Dehydrogenase/genetics , Animals , Cattle , Coenzyme A/genetics , Gene Deletion , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
10.
PLoS Genet ; 10(9): e1004641, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25233454

ABSTRACT

High blood pressure (BP) is the most common cardiovascular risk factor worldwide and a major contributor to heart disease and stroke. We previously discovered a BP-associated missense SNP (single nucleotide polymorphism)-rs2272996-in the gene encoding vanin-1, a glycosylphosphatidylinositol (GPI)-anchored membrane pantetheinase. In the present study, we first replicated the association of rs2272996 and BP traits with a total sample size of nearly 30,000 individuals from the Continental Origins and Genetic Epidemiology Network (COGENT) of African Americans (P=0.01). This association was further validated using patient plasma samples; we observed that the N131S mutation is associated with significantly lower plasma vanin-1 protein levels. We observed that the N131S vanin-1 is subjected to rapid endoplasmic reticulum-associated degradation (ERAD) as the underlying mechanism for its reduction. Using HEK293 cells stably expressing vanin-1 variants, we showed that N131S vanin-1 was degraded significantly faster than wild type (WT) vanin-1. Consequently, there were only minimal quantities of variant vanin-1 present on the plasma membrane and greatly reduced pantetheinase activity. Application of MG-132, a proteasome inhibitor, resulted in accumulation of ubiquitinated variant protein. A further experiment demonstrated that atenolol and diltiazem, two current drugs for treating hypertension, reduce the vanin-1 protein level. Our study provides strong biological evidence for the association of the identified SNP with BP and suggests that vanin-1 misfolding and degradation are the underlying molecular mechanism.


Subject(s)
Amidohydrolases/genetics , Amidohydrolases/metabolism , Blood Pressure/genetics , Endoplasmic Reticulum-Associated Degradation/genetics , Genetic Variation , Alleles , Amidohydrolases/blood , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Cohort Studies , Enzyme Activation , GPI-Linked Proteins/blood , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Genetic Association Studies , Genotype , Humans , Hypertension/drug therapy , Hypertension/epidemiology , Hypertension/genetics , Mutation , Phenotype , Polymorphism, Single Nucleotide
11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 38(6): 632-636, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-28065227

ABSTRACT

Objective To assess the impacts of anesthetic brochure on anesthetic information gain, preoperative anxiety, trust to anesthesiologists, and satisfaction to the preanesthesia visit for patients undergoing general anesthesia. Methods Totally 134 patients scheduled for elective thyroid surgery under general anesthesia in Peking Union Medical College Hospital were assigned to two groups using the random number table method, among whom 68 patients received brochure before preoperative visit (brochure group) and 66 patients did not (control group). Questionnaires with items for evaluating patient's information gain, preoperative anxiety and trust were completed after preanesthetic visit. Patient's satisfaction with preanesthetic visit was evaluated on the second postoperative day. Results Compared with the control group, patients in the brochure group had significantly higher information gain scores (7.2±1.8 vs. 5.2±2.1, P<0.001) and satisfaction scores (25.0±3.4 vs. 22.7±3.1, P<0.001). There was no significant difference in anxiety scores and trust scores between these two groups. Conclusion Preoperative anesthetic brochure-assisted education can improve information gain and satisfaction among patients undergoing general anesthesia; however, it can not remarkably alter patient's preoperative anxiety and trust.


Subject(s)
Anesthesia, General , Anxiety/prevention & control , Pamphlets , Patient Education as Topic , Patient Satisfaction , Anesthetics , Elective Surgical Procedures , Humans , Preoperative Care , Surveys and Questionnaires
12.
J Biol Chem ; 289(12): 8612-9, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24509862

ABSTRACT

The ryanodine receptor/Ca(2+)-release channels (RyRs) of skeletal and cardiac muscle are essential for Ca(2+) release from the sarcoplasmic reticulum that mediates excitation-contraction coupling. It has been shown that RyR activity is regulated by dynamic post-translational modifications of Cys residues, in particular S-nitrosylation and S-oxidation. Here we show that the predominant form of RyR in skeletal muscle, RyR1, is subject to Cys-directed modification by S-palmitoylation. S-Palmitoylation targets 18 Cys within the N-terminal, cytoplasmic region of RyR1, which are clustered in multiple functional domains including those implicated in the activity-governing protein-protein interactions of RyR1 with the L-type Ca(2+) channel CaV1.1, calmodulin, and the FK506-binding protein FKBP12, as well as in "hot spot" regions containing sites of mutations implicated in malignant hyperthermia and central core disease. Eight of these Cys have been identified previously as subject to physiological S-nitrosylation or S-oxidation. Diminishing S-palmitoylation directly suppresses RyR1 activity as well as stimulus-coupled Ca(2+) release through RyR1. These findings demonstrate functional regulation of RyR1 by a previously unreported post-translational modification and indicate the potential for extensive Cys-based signaling cross-talk. In addition, we identify the sarco/endoplasmic reticular Ca(2+)-ATPase 1A and the α1S subunit of the L-type Ca(2+) channel CaV1.1 as S-palmitoylated proteins, indicating that S-palmitoylation may regulate all principal governors of Ca(2+) flux in skeletal muscle that mediates excitation-contraction coupling.


Subject(s)
Calcium/metabolism , Muscle, Skeletal/metabolism , Palmitic Acid/metabolism , Protein Processing, Post-Translational , Ryanodine Receptor Calcium Release Channel/metabolism , Animals , Cells, Cultured , Humans , Mice , Mice, Inbred C57BL , Palmitic Acid/chemistry , Rabbits , Ryanodine Receptor Calcium Release Channel/chemistry
13.
Antimicrob Agents Chemother ; 59(11): 7061-72, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26349829

ABSTRACT

Here we first identified a novel pyridazinone derivative, compound 3711, as a nonnucleosidic hepatitis B virus (HBV) inhibitor in a cell model system. 3711 decreased extracellular HBV DNA levels by 50% (50% inhibitory concentration [IC50]) at 1.5 ± 0.2 µM and intracellular DNA levels at 1.9 ± 0.1 µM, which demonstrated antiviral activity at levels far below those associated with toxicity. Both the 3TC/ETV dually resistant L180M/M204I mutant and the adefovir (ADV)-resistant A181T/N236T mutant were as susceptible to 3711 as wild-type HBV. 3711 treatment induced the formation of genome-free capsids, a portion of which migrated faster on 1.8% native agarose gel. The induced genome-free capsids sedimented more slowly in isopycnic CsCl gradient centrifugation without significant morphological changes. 3711 treatment decreased levels of HBV DNA contained in both secreted enveloped virion and naked virus particles in supernatant. 3711 could interfere with capsid formation of the core protein (Cp) assembly domain. A Cp V124W mutant, which strengthens capsid interdimer interactions, recapitulated the effect of 3711 on capsid assembly. Pyridazinone derivative 3711, a novel chemical entity and HBV inhibitor, may provide a new opportunity to combat chronic HBV infection.


Subject(s)
Antiviral Agents/pharmacology , Capsid/metabolism , Hepatitis B virus/drug effects , Virus Replication/drug effects , Capsid Proteins/metabolism , DNA, Viral/genetics , Drug Resistance, Viral
14.
Pharmacol Res ; 83: 3-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24747662

ABSTRACT

Normal organismal physiology depends on the maintenance of proteostasis in each cellular compartment to achieve a delicate balance between protein synthesis, folding, trafficking, and degradation while minimizing misfolding and aggregation. Defective proteostasis leads to numerous protein misfolding diseases. Pharmacological chaperones are cell-permeant small molecules that promote the proper folding and trafficking of a protein via direct binding to that protein. They stabilize their target protein in a protein-pharmacological chaperone state, increasing the natively folded protein population that can effectively engage trafficking machinery for transport to the final destination for function. Here, as regards the application of pharmacological chaperones, we focus on their capability to promote the folding and trafficking of lysosomal enzymes, G protein coupled receptors (GPCRs), and ion channels, each of which is presently an important drug target. Pharmacological chaperones hold great promise as potential therapeutics to ameliorate a variety of protein misfolding diseases.


Subject(s)
Drug Discovery , Ion Channels/metabolism , Lysosomes/enzymology , Protein Folding/drug effects , Protein Transport/drug effects , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Ion Channels/chemistry , Lysosomes/drug effects , Lysosomes/pathology , Proteostasis Deficiencies/drug therapy , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Receptors, G-Protein-Coupled/chemistry
15.
Yao Xue Xue Bao ; 49(9): 1326-30, 2014 Sep.
Article in Zh | MEDLINE | ID: mdl-25518334

ABSTRACT

In order to solve the problem of selection and in vivo delivery problem in siRNA treatment, hepatitis B virus (HBV) HBx gene which could be targeted by siRNA was studied. The siRNA expression plasmid which specific inhibits HBx expression was obtained by in vitro selection via a dual-luciferase plasmid including HBx-Fluc fusion protein expression domain. The selected siRNA expression plasmid was then encapsulated in PEG-modified cationic liposome, which was devoted into pharmacodynamic studies at both cellular and animal level. The results illustrated that the cationic liposome which encapsulated siRNA expression plasmid could effectively inhibit HBx gene expression both in vitro and in vivo.


Subject(s)
Gene Expression Regulation, Viral/drug effects , Liposomes/chemistry , RNA, Small Interfering/chemistry , Trans-Activators/metabolism , Cations , Hepatitis B virus/genetics , Plasmids , Trans-Activators/genetics , Viral Regulatory and Accessory Proteins
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 16(10): 975-8, 2014 Oct.
Article in Zh | MEDLINE | ID: mdl-25344174

ABSTRACT

OBJECTIVE: To study the clinical characteristics of whooping cough in neonates and the antimicrobial resistance of the bacterial isolates. METHODS: Clinical information of 7 neonates with whooping cough confirmed by bacterial culture was collected. The antimirobial resistance of the isolates was tested using E-test and disk diffusion methods. RESULTS: The children′s mothers or other family members had cough for more than 10 days in 6 neonates, in which four neonates contacted with 3 or more family members with cough. All the neonates had rhinobyon and slight cough at the beginning of the disease. Five cases presented typical spasmodic cough after 4-7 days of the onset. Five cases displayed cyanosis, four cases occurred apnea, three cases suffered breath holding, and only two cases had fever. Nares flaring and three depression signs were found in the physical examination. No bacteriostatic ring around the erythromycin disks were found for five bacterial isolates. The minimal inhibitory concentration (MIC) for erythromycin, azithromycin, clarithromycin and clindamycin were all >256 mg/L against the five isolates. CONCLUSIONS: Whooping cough should be considered for neonates with respiratory symptoms and a history of close contact with respiratory infection patients. Macrolide-resistant Bordetella pertussis is common in children with whooping cough.


Subject(s)
Bordetella pertussis/drug effects , Whooping Cough/complications , Drug Resistance, Bacterial , Female , Humans , Infant, Newborn , Male , Whooping Cough/microbiology
17.
Elife ; 132024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963323

ABSTRACT

Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

18.
Enzyme Microb Technol ; 178: 110447, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38626534

ABSTRACT

Clostridium butyricum (C. butyricum) represents a new generation of probiotics, which is beneficial because of its good tolerance and ability to produce beneficial metabolites, such as short-chain fatty acids and enzymes; however, its low enzyme activity limits its probiotic efficacy. In this study, a mutant strain, C. butyricum FZM 240 was obtained using carbon ion beam irradiation, which exhibited greatly improved enzyme production and tolerance. The highest filter paper, endoglucanase, and amylase activities produced by C. butyricum FZM 240 were 125.69 U/mL, 225.82 U/ mL, and 252.28 U/mL, which were 2.58, 1.95, and 2.21-fold higher, respectively, than those of the original strain. The survival rate of the strain increased by 11.40 % and 5.60 % after incubation at 90 °C for 5 min and with simulated gastric fluid at pH 2.5 for 2 h, respectively, compared with that of the original strain. Whole-genome resequencing and quantitative real-time PCR(qRT-PCR) analysis showed that the expression of genes related to enzyme synthesis (GE000348, GE001963 and GE003123) and tolerance (GE001114) was significantly up-regulated, while that of genes related to acid metabolism (GE003450) was significantly down-regulated. On this basis, homology modeling and functional prediction of the proteins encoded by the mutated genes were performed. According to the results, the properties related to the efficacy of C. butyricum as a probiotic were significantly enhanced by carbon ion beam irradiation, which is a novel strategy for the application of Clostridium spp. as feed additives.


Subject(s)
Clostridium butyricum , Mutation , Probiotics , Clostridium butyricum/genetics , Clostridium butyricum/metabolism , Clostridium butyricum/radiation effects , Carbon/metabolism , Animals , Cellulase/metabolism , Cellulase/genetics , Amylases/metabolism , Amylases/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
19.
Front Microbiol ; 15: 1410968, 2024.
Article in English | MEDLINE | ID: mdl-38873149

ABSTRACT

Introduction: Sweet sorghum juice is a typical production feedstock for natural, eco-friendly sweeteners and beverages. Clostridium tyrobutyricum is one of the widely used microorganisms in the food industry, and its principal product, bio-butyric acid is an important food additive. There are no published reports of Clostridium tyrobutyricum producing butyric acid using SSJ as the sole substrate without adding exogenous substances, which could reach a food-additive grade. This study focuses on tailoring a cost-effective, safe, and sustainable process and strategy for their production and application. Methods: This study modeled the enzymolysis of non-reducing sugars via the first/second-order kinetics and added food-grade diatomite to the hydrolysate. Qualitative and quantitative analysis were performed using high-performance liquid chromatography, gas chromatography-mass spectrometer, full-scale laser diffraction method, ultra-performance liquid chromatography-tandem mass spectrometry, the cell double-staining assay, transmission electron microscopy, and Oxford nanopore technology sequencing. Quantitative real-time polymerase chain reaction, pathway and process enrichment analysis, and homology modeling were conducted for mutant genes. Results: The treated sweet sorghum juice showed promising results, containing 70.60 g/L glucose and 63.09 g/L fructose, with a sucrose hydrolysis rate of 98.29% and a minimal sucrose loss rate of 0.87%. Furthermore, 99.62% of the colloidal particles and 82.13% of the starch particles were removed, and the concentrations of hazardous substances were effectively reduced. A food microorganism Clostridium tyrobutyricum TGL-A236 with deep utilization value was developed, which showed superior performance by converting 30.65% glucose and 37.22% fructose to 24.1364 g/L bio-butyric acid in a treated sweet sorghum juice (1:1 dilution) fermentation broth. This titer was 2.12 times higher than that of the original strain, with a butyric acid selectivity of 86.36%. Finally, the Genome atlas view, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and evolutionary genealogy of genes: Non-supervised Orthologous (eggNOG) functional annotations, three-dimensional structure and protein cavity prediction of five non-synonymous variant genes were obtained. Conclusion: This study not only includes a systematic process flow and in-depth elucidation of relevant mechanisms but also provides a new strategy for green processing of food raw materials, improving food microbial performance, and ensuring the safe production of food additives.

20.
J Proteome Res ; 12(12): 5570-86, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24079818

ABSTRACT

γ-Amino butyric acid type C (GABA(C)) receptors inhibit neuronal firing primarily in retina. Maintenance of GABA(C) receptor protein homeostasis in cells is essential for its function. However, a systematic study of GABA(C) receptor protein homeostasis (proteostasis) network components is absent. Here coimmunoprecipitation of human GABA(C)-ρ1-receptor complexes was performed in HEK293 cells overexpressing ρ1 receptors. To enhance the coverage and reliability of identified proteins, immunoisolated ρ1-receptor complexes were subjected to three tandem mass spectrometry (MS)-based proteomic analyses, namely, gel-based tandem MS (GeLC-MS/MS), solution-based tandem MS (SoLC-MS/MS), and multidimensional protein identification technology (MudPIT). From the 107 identified proteins, we assembled GABA(C)-ρ1-receptor proteostasis network components, including proteins with protein folding, degradation, and trafficking functions. We studied representative individual ρ1-receptor-interacting proteins, including calnexin, a lectin chaperone that facilitates glycoprotein folding, and LMAN1, a glycoprotein trafficking receptor, and global effectors that regulate protein folding in cells based on bioinformatics analysis, including HSF1, a master regulator of the heat shock response, and XBP1, a key transcription factor of the unfolded protein response. Manipulating selected GABA(C) receptor proteostasis network components is a promising strategy to regulate GABA(C) receptor folding, trafficking, degradation and thus function to ameliorate related retinal diseases.


Subject(s)
Eye Proteins/chemistry , Homeostasis/genetics , Protein Subunits/chemistry , Receptors, GABA/chemistry , Binding Sites , Calnexin/genetics , Calnexin/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Eye Proteins/genetics , Eye Proteins/metabolism , Gene Expression Regulation , HEK293 Cells , Heat Shock Transcription Factors , Humans , Mannose-Binding Lectins/genetics , Mannose-Binding Lectins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Binding , Protein Folding , Protein Multimerization , Protein Subunits/genetics , Protein Subunits/metabolism , Proteomics , Receptors, GABA/genetics , Receptors, GABA/metabolism , Regulatory Factor X Transcription Factors , Tandem Mass Spectrometry/methods , Transcription Factors/genetics , Transcription Factors/metabolism , Unfolded Protein Response/genetics , X-Box Binding Protein 1
SELECTION OF CITATIONS
SEARCH DETAIL