Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 287
Filter
Add more filters

Publication year range
1.
Nat Mater ; 23(2): 244-251, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191629

ABSTRACT

Interface reaction between lithium (Li) and materials at the anode is not well understood in an all-solid environment. This paper unveils a new phenomenon of constriction susceptibility for materials at such an interface, the utilization of which helps facilitate the design of an active three-dimensional scaffold to host rapid plating and stripping of a significant amount of a thick Li metal layer. Here we focus on the well-known anode material silicon (Si) to demonstrate that, rather than strong Li-Si alloying at the conventional solid-liquid interface, the lithiation reaction of micrometre-sized Si can be significantly constricted at the solid-solid interface so that it occurs only at thin surface sites of Si particles due to a reaction-induced, diffusion-limiting process. The dynamic interaction between surface lithiation and Li plating of a family of anode materials, as predicted by our constrained ensemble computational approach and represented by Si, silver (Ag) and alloys of magnesium (Mg), can thus more homogeneously distribute current densities for the rapid cycling of Li metal at high areal capacity, which is important in regard to solid-state battery application.

2.
J Cell Mol Med ; 28(9): e18353, 2024 May.
Article in English | MEDLINE | ID: mdl-38682742

ABSTRACT

Non-small-cell lung cancer (NSCLC) is a major cause of worldwide cancer death, posing a challenge for effective treatment. Our previous findings showed that Chinese herbal medicine (CHM) QiDongNing (QDN) could upregulate the expression of p53 and trigger cell apoptosis in NSCLC. Here, our objective was to investigate the mechanisms of QDN-induced apoptosis enhancement. We chose A549 and NCI-H460 cells for validation in vitro, and LLC cells were applied to form a subcutaneous transplantation tumour model for validation in more depth. Our findings indicated that QDN inhibited multiple biological behaviours, including cell proliferation, cloning, migration, invasion and induction of apoptosis. We further discovered that QDN increased the pro-apoptotic BAX while inhibiting the anti-apoptotic Bcl2. QDN therapy led to a decline in adenosine triphosphate (ATP) and a rise in reactive oxygen species (ROS). Furthermore, QDN elevated the levels of the tumour suppressor p53 and the mitochondrial division factor DRP1 and FIS1, and decreased the mitochondrial fusion molecules MFN1, MFN2, and OPA1. The results were further verified by rescue experiments, the p53 inhibitor Pifithrin-α and the mitochondrial division inhibitor Mdivi1 partially inhibited QDN-induced apoptosis and mitochondrial dysfunction, whereas overexpression of p53 rather increased the efficacy of the therapy. Additionally, QDN inhibited tumour growth with acceptable safety in vivo. In conclusion, QDN induced apoptosis via triggering p53/DRP1-mediated mitochondrial fission in NSCLC cells.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Drugs, Chinese Herbal , Dynamins , Lung Neoplasms , Mitochondrial Dynamics , Tumor Suppressor Protein p53 , Animals , Humans , Mice , A549 Cells , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Drugs, Chinese Herbal/pharmacology , Dynamins/metabolism , Dynamins/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Dynamics/drug effects , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
3.
Small ; 20(26): e2308681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38234151

ABSTRACT

Na4Fe3(PO4)2(P2O7) (NFPP) has been considered a promising cathode material for sodium-ion batteries (SIBs) owing to its environmental friendliness and economic viability. However, its electrochemical performance is constrained by connatural low electronic conductivity and inadequate sodium ion diffusion. Herein, a high-entropy substitution strategy is employed in NFPP to address these limitations. Ex situ X-ray diffraction analysis reveals a single-phase electrochemical reaction during the sodiation/desodiation processes and the increased configurational entropy in HE-NFPP endows an enhanced structure, which results in a minimal volume variation of only 1.83%. Kinetic analysis and density functional theory calculation further confirm that the orbital hybrid synergy of high-entropy transition metals offers a favorable electronic structure, which efficaciously boosts the charge transfer kinetics and optimizes the sodium ion diffusion channel. Based on this versatile strategy, the as-prepared high-entropy Na4Fe2.5Mn0.1Mg0.1Co0.1Ni0.1Cu0.1(PO4)2(P2O7) (HE-NFPP) cathode can deliver a prominent rate performance of 55 mAh g-1 at 10 A g-1 and an ultra-long cycling lifespan of over 18 000 cycles at 5 A g-1. When paired with a hard carbon (HC) anode, HE-NFPP//HC full cell exhibits a favorable cycling durability of 1000 cycles. This high-entropy engineering offers a feasible route to improve the electrochemical performance of NFPP and provides a blueprint for exploring high-performance SIBs.

4.
Small ; : e2403211, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958082

ABSTRACT

Prussian blue analogs (PBAs) have been widely recognized as superior cathode materials for sodium-ion batteries (SIBs) owing to numerous merits. However, originating from the rapid crystal growth, PBAs still suffer from considerable vacancy defects and interstitial water, making the preparation of long-cycle-life PBAs the greatest challenge for its practical application. Herein, a novel equilibrium chelation strategy is first proposed to synthesize a high crystallinity (94.7%) PBAs, which is realized by modulating the chelating potency of strong chelating agents via "acid effect" to achieve a moderate chelating effect, forcefully breaking through the bottleneck of poor cyclic stability for PBAs cathodes. Impressively, the as-prepared highly crystalline PBAs represent an unprecedented level of electrochemical performance including ultra-long lifespan (10000 cycles with 86.32% capacity maintenance at 6 A g-1), excellent rate capability (82.0 mAh g-1 at 6 A g-1). Meanwhile, by pairing with commercial hard carbon, the as-prepared PBAs-based SIBs exhibit high energy density (350 Wh kg-1) and excellent capacity retention (82.4% after 1500 cycles), highlighting its promising potential for large-scale energy storage applications.

5.
Small ; : e2400652, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38552224

ABSTRACT

Designing a reasonable heterojunction is an efficient path to improve the separation of photogenerated charges and enhance photocatalytic activity. In this study, Cu2-xS@NiFe-LDH hollow nanoboxes with core-shell structure are successfully prepared. The results show that Cu2-xS@NiFe-LDH with broad-spectrum response has good photothermal and photocatalytic activity, and the photocatalytic activity and stability of the catalyst are enhanced by the establishment of unique hollow structure and core-shell heterojunction structure. Transient PL spectra (TRPL) indicates that constructing Cu2-xS@NiFe-LDH heterojunction can prolong carrier lifetime obviously. Cu2-xS@NiFe-LDH shows a high photocatalytic hydrogen production efficiency (5176.93 µmol h-1 g-1), and tetracycline degradation efficiency (98.3%), and its hydrogen production rate is ≈10-12 times that of pure Cu2-xS and NiFe-LDH. In situ X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) provide proofs of the S-scheme electron transfer path. The S-scheme heterojunction achieves high spatial charge separation and exhibits strong photoredox ability, thus improving the photocatalytic performance.

6.
J Sci Food Agric ; 104(6): 3697-3704, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160247

ABSTRACT

INTRODUCTION: One of the main allergens in soybeans is glycinin, which seriously impacts the normal lives of allergic people. Previous studies have confirmed that thermal processing and thermal processing combined with ultrahigh-pressure processing could significantly reduce the antigenicity of glycinin. The dominant antigen region of acidic peptide chain A2 of G2 subunit was located by phage display experiment. METHODS: In this paper, overlapping peptides and alanine substitution techniques were used to explore the key amino acids that significantly affect the antigenicity of A2 peptide chain. The purity of peptide 1, peptide 2 and peptide 3 was identified by mass spectrometry and high-performance liquid chromatography, and the results showed that the purity of the synthesized overlapping peptide was more than 90%. SDS-PAGE showed that the peptide was successfully coupled with bovine serum albumin. The antigenicity of the coupling peptide was tested by ELISA and Dot-Blot, and the allergenicity was detected by reacting with the serum of patients with soybean globulin allergy. CONCLUSION: The results showed that peptide 3 has stronger antigenicity and sensitization. Alanine substitution technology allowed one to perform site-directed mutagenesis on peptide 3. Dot-Blot and ELISA tests showed that D259, E260, E261, Q263 and C266 may be the key amino acids that significantly affect the antigenicity of peptide 3. The research presented is of great significance for correctly guiding the production of safe food and preventing the occurrence of food allergic diseases. © 2023 Society of Chemical Industry.


Subject(s)
Globulins , Soybean Proteins , Humans , Epitopes/chemistry , Soybean Proteins/chemistry , Glycine max , Globulins/chemistry , Allergens , Peptides , Alanine , Amino Acids , Immunoglobulin E
7.
J Integr Plant Biol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578151

ABSTRACT

By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.

8.
Angew Chem Int Ed Engl ; : e202400214, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299760

ABSTRACT

Prussian blue analogues (PBAs) have been widely applied in many fields, especially as cathode materials of sodium-ion batteries on account of their low cost and open framework for fast ions transport. However, the capacity of reported PBAs has a great distance from its theoretical value. Herein, we proposed that [Fe(CN)6 ] vacancies are crucial point for the high specific capacity for the first time. The [Fe(CN)6 ] vacancies may create net electrons and reduce obstacles to ionic transport, which is conducive to rate performance of PBAs by increasing electronic and ionic conductivity to some extent. As a proof of concept, a series of PBAs have been prepared by co-precipitation method. And then, a novel precipitation conversion method has been designed, by which unique PBAs with a specific quantity of [Fe(CN)6 ] vacancies was successfully synthesized. Remarkably, the as-prepared PBAs possessing hierarchical hollow morphology have reached a unprecedent level of high capacity (168 mAh g-1 at 25 mA g-1 , close to PBAs' theoretical capacity 170 mAh g-1 ), high rate performance (90 mAh g-1 at 5 A g-1 ), and high energy density (over 500 Wh kg-1 ).

9.
Anal Chem ; 95(31): 11800-11806, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37506318

ABSTRACT

Organic photoelectrochemical transistor (OPECT) biosensor with a removed background is desired but remains challenging. So far, scientists still lack a solution to this issue. The light-matter interplay is expected to achieve an advanced OPECT with unknown possibilities. Here, we address this challenge by tailoring a unique heterogeneous light antenna as the functional gating module and its cascade interaction with a proper channel, which is exemplified by bioinduced [Ru(bpy)2dppz]2+-intercalated DNA nanotubes (NTs)/NiO heterojunction and its modulation against a diethylenetriamine-treated poly(ethylene dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel. Light stimulation of the antenna can generate the obvious cathodic photocurrent and, hence, modulate the channel, accomplishing OPECT with a minimal background and the hitherto highest current gain of 19 000. Linking with nucleic acid hybridization using microRNA-155 as the representative target, the device achieves sensitive biosensing down to 5.0 fM.


Subject(s)
Biosensing Techniques , Nanotubes , Electrochemical Techniques , DNA , Nucleic Acid Hybridization
10.
Anal Chem ; 95(23): 9052-9059, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37249351

ABSTRACT

The sensitive detection of neuron-specific enolase (NSE) as a biomarker for lung cancer at an early stage is critical but has long been a challenge. The emergence of polarity-switchable photoelectrochemical (PEC) bioanalysis has opened up new avenues for developing highly sensitive NSE sensors. In this study, we present such a biosensor depending on the bioinduced AgI transition on MOF-on-MOF-derived semiconductor heterojunctions. Specifically, treatment of ZnO@In2O3@AgI by bioproduced H2S can in situ generate the ZnO@In2O3@In2S3@Ag2S heterojunction, with the photocurrent switching from the cathodic to anodic one due to the changes in the carrier transfer pathway. Linking an NSE-targeted sandwich immunorecognition with labeled alkaline phosphatase (ALP) catalyzed generation of H2S, such a phenomenon was correlated to NSE concentration with good performance in terms of selectivity and sensitivity and a low detection limit of 0.58 pg/mL. This study offered a new perspective on the use of MOF-on-MOF-derived heterostructures for advanced polarity-switchable PEC bioanalysis.


Subject(s)
Biosensing Techniques , Zinc Oxide , Semiconductors , Phosphopyruvate Hydratase/analysis , Electrodes , Electrochemical Techniques , Limit of Detection
11.
Small ; 19(43): e2300671, 2023 10.
Article in English | MEDLINE | ID: mdl-37381636

ABSTRACT

Artificially augmented photosynthesis in nano-bionic plants requires tunable nano-antenna structures with physiochemical and optoelectronic properties, as well as unique light conversion capabilities. The use of nanomaterials to promote light capture across photosystems, primarily by carbon dots, has shown promising results in enhancing photosynthesis through tunable uptake, translocation, and biocompatibility. Carbon dots possess the ability to perform both down and up-light conversions, making them effective light promoters for harnessing solar energy beyond visible light wavelengths.This review presents and discusses the recent progress in fabrication, chemistry, and morphology, as well as other properties such as photoluminescence and energy conversion efficiency of nano-antennas based on carbon dots. The performance of artificially boosted photosynthesis is discussed and then correlated with the conversion properties of carbon dots and how they are applied to plant models. The challenges related to the nanomaterial delivery and the performance evaluation practices in modified photosystems, consideration of the reliability of this approach, and the potential avenues for performance improvements through other types of nano-antennas based on alternative nanomaterials are also critically evaluated. It is anticipated that this review will stimulate more high-quality research in plant nano-bionics and provide avenues to enhance photosynthesis for future agricultural applications.


Subject(s)
Carbon , Photosynthesis , Carbon/chemistry , Reproducibility of Results , Light , Plants
12.
J Transl Med ; 21(1): 250, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37038181

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer with high morbidity and mortality rates. Due to the heterogeneity of LUAD, its characteristics remain poorly understood. Exploring the clinical and molecular characteristics of LUAD is challenging but vital for early diagnosis. METHODS: This observational and validation study enrolled 80 patients and 13 healthy controls. Nuclear and mtDNA-captured sequencings were performed. RESULTS: This study identified a spectrum of nuclear and mitochondrial genome mutations in early-stage lung adenocarcinoma and explored their association with diagnosis. The correlation coefficient for somatic mutations in cfDNA and patient-matched tumor tissues was high in nuclear and mitochondrial genomes. The mutation number of highly mutated genes was evaluated, and the Least Absolute Shrinkage and Selection Operator (LASSO) established a diagnostic model. Receiver operating characteristic (ROC) curve analysis explored the diagnostic ability of the two panels. All models were verified in the testing cohort, and the mtDNA panel demonstrated excellent performance. This study identified somatic mutations in the nuclear and mitochondrial genomes, and detecting mutations in cfDNA displayed good diagnostic performance for early-stage LUAD. Moreover, detecting somatic mutations in the mitochondria may be a better tool for diagnosing early-stage LUAD. CONCLUSIONS: This study identified specific and sensitive diagnostic biomarkers for early-stage LUAD by focusing on nuclear and mitochondrial genome mutations. This also further developed an early-stage LUAD-specific mutation gene panel for clinical utility. This study established a foundation for further investigation of LUAD molecular pathogenesis.


Subject(s)
Adenocarcinoma of Lung , Cell-Free Nucleic Acids , Genome, Mitochondrial , Lung Neoplasms , Humans , Genome, Mitochondrial/genetics , Early Detection of Cancer , Adenocarcinoma of Lung/diagnosis , Adenocarcinoma of Lung/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , DNA, Mitochondrial/genetics
13.
Clin Endocrinol (Oxf) ; 98(5): 709-718, 2023 05.
Article in English | MEDLINE | ID: mdl-36394172

ABSTRACT

OBJECTIVE: To evaluate the diagnostic performance and cost-effectiveness of calcitonin assays in fine-needle aspiration washout fluid (FNA-CT) compared to fine-needle aspiration cytology (FNAC) for medullary thyroid carcinoma (MTC). METHODS: A total of 27,404 patients from three medical centres between January 2020 and May 2022 were screened for serum calcitonin (sCT). Of whom, 223 patients met endpoints and were enroled for analyses. Based on sCT levels, patients were divided into two groups (group 1: 10 pg/ml< sCT ≤100 pg/ml and group 2: sCT > 100 pg/ml). The diagnostic performance and cost-effectiveness of FNA-CT and FNAC were compared. RESULTS: Most patients (N = 25,228; 92.1%) with thyroid nodules had normal sCT levels. In group 1, 24 and 167 nodules were diagnosed as MTC and non-MTC lesions, respectively. FNA-CT showed better performance in diagnosing MTC than FNAC in terms of sensitivity (100.0% vs. 58.3%), negative predictive value (100.0% vs. 94.3%), and overall accuracy (100.0% vs. 94.7%). In group 2, 67 and 7 nodules were diagnosed as MTC and non-MTC lesions, respectively. The diagnostic performance of FNA-CT was superior to FNAC in terms of sensitivity (100.0% vs. 64.2%), negative predictive value (100.0% vs. 22.6%), and overall accuracy (100.0% vs. 67.6%). Furthermore, analysis from the decision tree model showed that FNA-CT was a cost-effective tool for diagnosing MTC lesions. CONCLUSIONS: FNA-CT can serve as an auxiliary and cost-effective approach for patients with indeterminate sCT levels to detect occult MTC lesions. FNA-CT can be recommended for patients with sCT >100 pg/ml to overcome the high false-negative rate of FNAC.


Subject(s)
Bone Density Conservation Agents , Thyroid Neoplasms , Thyroid Nodule , Humans , Calcitonin/analysis , Cost-Benefit Analysis , Biopsy, Fine-Needle , Thyroid Neoplasms/pathology , Thyroid Nodule/diagnostic imaging , Calcium-Regulating Hormones and Agents , Tomography, X-Ray Computed
14.
BMC Psychiatry ; 23(1): 174, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927467

ABSTRACT

BACKGROUND: We aimed to compare differences in infant feeding patterns (breastfeeding and complementary food supplementation) between children with the autism spectrum disorder (ASD) and typically developing (TD) children through a multicentre study. The relationship between these patterns and later core symptoms and neurodevelopment in children with ASD was also investigated. METHODS: We analysed breastfeeding and complementary feeding patterns in 1389 children with ASD and 1190 TD children. The Children Neuropsychological and Behavior Scale-Revision 2016 (CNBS-R2016) was used to assess neurodevelopmental levels. The Autism Behavior Checklist (ABC), Social Responsiveness Scale (SRS), Childhood Autism Rating Scale (CARS), and ASD Warning Behavior Subscale of the CNBS-R2016 were used to assess ASD symptoms. RESULTS: Children with ASD had a shorter breastfeeding duration in infancy (8 (3-12) months vs. 10 (6-14) months, P < 0.001), later introduction of complementary foods (P < 0.001), and poorer acceptance of complementary foods (P < 0.001) than TD children. Total ABC and CARS scores were lower in the group of children with ASD who had been breastfed for 12 months or more than in the group who had been breastfed for less than 6 months. Children with ASD who were given complementary food after 6 months had lower general quotient (GQ), adaptive ability, fine motor and language scores than those who were given complementary food within 4-6 months. Children with ASD with poor acceptance of complementary foods had higher ABC and SRS scores and lower gross motor scores than those who had good acceptance. CONCLUSIONS: Children with ASD have a shorter duration of breastfeeding, a later introduction of complementary foods, and poorer acceptance of complementary foods than TD children. These feeding patterns may be related to the symptoms and growth of children with ASD. The research suggests that continued breastfeeding for longer than 12 months may be beneficial in reducing ASD symptoms and that infants who have difficulty introducing complementary foods should be followed up for neurodevelopment. TRIAL REGISTRATION: The ethics committee of the Children's Hospital of Chongqing Medical University approved the study. Approval Number: (2018) IRB (STUDY) NO. 121, and registered in the Chinese Clinical Trial Registry (Registration number: ChiCTR2000031194, registered on 23/03/2020).


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Child , Humans , Infant , Autism Spectrum Disorder/psychology , Autistic Disorder/complications , Dietary Supplements , Feeding Behavior
15.
J Sci Food Agric ; 103(5): 2700-2708, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36335553

ABSTRACT

BACKGROUND: Glycinin is one of the most highly allergenic proteins in soybeans, and G2 is one of the five allergenic subunits of glycinin. Compared with the alkaline chain, the acidic chain A2 of the G2 subunit has strong allergenicity. However, the precise epitopes of A2 and the epitopes destroyed during processing are still unknown. RESULTS: In the present study, preparation of two specific antibodies damaged by processing and phage display techniques were applied to locate the antigenic epitopes of glycinin A2 polypeptide chains disrupted by two processing techniques (thermal processing and ultra-high pressure combined thermal processing). Bioinformatics methods were used to predict the possible epitopes of the A2 chain. The A2 chain and its overlapping segments were introduced into T7 phages and expressed on phage shell by phage display. An indirect enzyme-linked immunosorbent assay was used to screen for antigenic epitopes that had been disrupted by the two processing technologies. The results showed that the dominant antigenic region disrupted by processing was located mainly in the A2-3-B fragment. The reacting experiment with the serum of allergic patients showed that the A2-3-B fragment protein was not only an antigenic region, but also an allergenic region. The two processing technologies destroyed the allergenic epitopes of A2 chain, thereby reducing the allergenicity of protein. The amino acids where the dominant allergenic region disrupted by processing was located were: 233 AIVTVKGGLRVTAPAMRKPQQEEDDDDEEEQPQCVE268 . CONCLUSION: Precise epitopes of the acidic chain A2 in glycinin were identified and epitopes destroyed in two common processing methods were also obtained. The application products of rapid detection of de-allergenicity effect of processed food can be developed according to the location of processed destruction allergenic region, which is of great significance with respect to preventing the occurrence of soybean allergenic diseases. © 2022 Society of Chemical Industry.


Subject(s)
Food Hypersensitivity , Globulins , Humans , Glycine max/chemistry , Epitopes/chemistry , Allergens , Antigens, Plant , Soybean Proteins/chemistry , Globulins/chemistry
16.
J Environ Sci (China) ; 127: 187-196, 2023 May.
Article in English | MEDLINE | ID: mdl-36522052

ABSTRACT

In this study, aluminum-based P-inactivation agent (Al-PIA) was used as a high-efficiency microbial carrier, and the biological Al-PIA (BA-PIA) was prepared by artificial aeration. Laboratory static experiments were conducted to study the effect of BA-PIA on reducing nitrogen and phosphorus contents in water. Physicochemical characterization and isotope tracing method were applied to analyze the removal mechanism of nitrogen and phosphorus. High-throughput techniques were used to analyze the characteristic bacterial genus in the BA-PIA system. The nitrogen and phosphorus removal experiment was conducted for 30 days, and the removal rates of NH4+-N, TN and TP by BA-PIA were 81.87%, 66.08% and 87.97%, respectively. The nitrogen removal pathways of BA-PIA were as follows: the nitrification reaction accounted for 59.0% (of which denitrification reaction accounted for 56.4%), microbial assimilation accounted for 18.1%, and the unreacted part accounted for 22.9%. The characteristic bacteria in the BA-PIA system were Streptomyces, Nocardioides, Saccharopolyspora, Nitrosomonas, and Marinobacter. The loading of microorganisms only changed the surface physical properties of Al-PIA (such as specific surface area, pore volume and pore size), without changing its surface chemical properties. The removal mechanism of nitrogen by BA-PIA is the conversion of NH4+-N into NO2--N and NO3--N by nitrifying bacteria, which are then reduced to nitrogen-containing gas by aerobic denitrifying bacteria. The phosphorus removal mechanism is that metal compounds (such as Al) on the surface of BA-PIA fix phosphorus through chemisorption processes, such as ligand exchange. Therefore, BA-PIA overcomes the deficiency of Al-PIA with only phosphorus removal ability, and has better application prospects.


Subject(s)
Nitrogen , Phosphorus , Phosphorus/metabolism , Nitrogen/metabolism , Denitrification , Aluminum , Bioreactors/microbiology , Sewage/chemistry , Biological Factors/metabolism , Nitrification , Bacteria/metabolism , Waste Disposal, Fluid
17.
Gut ; 71(8): 1588-1599, 2022 08.
Article in English | MEDLINE | ID: mdl-34930815

ABSTRACT

OBJECTIVE: Recent studies have provided insights into the gut microbiota in autism spectrum disorder (ASD); however, these studies were restricted owing to limited sampling at the unitary stage of childhood. Herein, we aimed to reveal developmental characteristics of gut microbiota in a large cohort of subjects with ASD combined with interindividual factors impacting gut microbiota. DESIGN: A large cohort of 773 subjects with ASD (aged 16 months to 19 years), 429 neurotypical (NT) development subjects (aged 11 months to 15 years) were emolyed to determine the dynamics change of gut microbiota across different ages using 16S rRNA sequencing. RESULT: In subjects with ASD, we observed a distinct but progressive deviation in the development of gut microbiota characterised by persistently decreased alpha diversity, early unsustainable immature microbiota, altered aboudance of 20 operational taxonomic units (OTUs), decreased taxon detection rate and 325 deregulated microbial metabolic functions with age-dependent patterns. We further revealed microbial relationships that have changed extensively in ASD before 3 years of age, which were associated with the severity of behaviour, sleep and GI symptoms in the ASD group. This analysis demonstrated that a signature of the combination of 2 OTUs, Veillonella and Enterobacteriaceae, and 17 microbial metabolic functions efficiently discriminated ASD from NT subjects in both the discovery (area under the curve (AUC)=0.86), and validation 1 (AUC=0.78), 2 (AUC=0.82) and 3 (AUC=0.67) sets. CONCLUSION: Our large cohort combined with clinical symptom analysis highlights the key regulator of gut microbiota in the pathogenesis of ASD and emphasises the importance of monitoring and targeting the gut microbiome in future clinical applications of ASD.


Subject(s)
Autism Spectrum Disorder , Gastrointestinal Microbiome , Microbiota , Autism Spectrum Disorder/metabolism , Child , Cohort Studies , Gastrointestinal Microbiome/genetics , Humans , RNA, Ribosomal, 16S/genetics
18.
Small ; 18(31): e2202544, 2022 08.
Article in English | MEDLINE | ID: mdl-35691938

ABSTRACT

Major issues in photocatalysis include improving charge carrier separation efficiency at the interface of semiconductor photocatalysts and rationally developing efficient hierarchical heterostructures. Surface continuous growth deposition is used to make hollow Cu2-x S nanoboxes, and then simple hydrothermal reaction is used to make core-shell Cu2-x S@ZnIn2 S4 S-scheme heterojunctions. The photothermal and photocatalytic performance of Cu2-x S@ZnIn2 S4 is improved. In an experimental hydrogen production test, the Cu2-x S@ZnIn2 S4 photocatalyst produces 4653.43 µmol h-1 g-1 of hydrogen, which is 137.6 and 13.8 times higher than pure Cu2-x S and ZnIn2 S4 , respectively. Furthermore, the photocatalyst exhibits a high tetracycline degradation efficiency in the water of up to 98.8%. For photocatalytic reactions, the hollow core-shell configuration gives a large specific surface area and more reactive sites. The photocatalytic response range is broadened, infrared light absorption enhanced, the photothermal effect is outstanding, and the photocatalytic process is promoted. Meanwhile, characterizations, degradation studies, active species trapping investigations, energy band structure analysis, and theoretical calculations all reveal that the S-scheme heterojunction can efficiently increase photogenerated carrier separation. This research opens up new possibilities for future S-scheme heterojunction catalyst design and development.


Subject(s)
Anti-Bacterial Agents , Tetracycline , Anti-Bacterial Agents/chemistry , Catalysis , Hydrogen , Tetracycline/chemistry
19.
J Transl Med ; 20(1): 235, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35590418

ABSTRACT

BACKGROUND: Necroptosis is a new form of programmed cell death that is associated with cancer initiation, progression, immunity, and chemoresistance. However, the roles of necroptosis-related genes (NRGs) in colorectal cancer (CRC) have not been explored comprehensively. METHODS: In this study, we obtained NRGs and performed consensus molecular subtyping by "ConsensusClusterPlus" to determine necroptosis-related subtypes in CRC bulk transcriptomic data. The ssGSEA and CIBERSORT algorithms were used to evaluate the relative infiltration levels of different cell types in the tumor microenvironment (TME). Single-cell transcriptomic analysis was performed to confirm classification related to NRGs. NRG_score was developed to predict patients' survival outcomes with low-throughput validation in a patients' cohort from Fudan University Shanghai Cancer Center. RESULTS: We identified three distinct necroptosis-related classifications (NRCs) with discrepant clinical outcomes and biological functions. Characterization of TME revealed that there were two stable necroptosis-related phenotypes in CRC: a phenotype characterized by few TME cells infiltration but with EMT/TGF-pathways activation, and another phenotype recognized as immune-excluded. NRG_score for predicting survival outcomes was established and its predictive capability was verified. In addition, we found NRCs and NRG_score could be used for patient or drug selection when considering immunotherapy and chemotherapy. CONCLUSIONS: Based on comprehensive analysis, we revealed the potential roles of NRGs in the TME, and their correlations with clinicopathological parameters and patients' prognosis in CRC. These findings could enhance our understanding of the biological functions of necroptosis, which thus may aid in prognosis prediction, drug selection, and therapeutics development.


Subject(s)
Colorectal Neoplasms , Tumor Microenvironment , Biomarkers, Tumor/genetics , China , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Necroptosis/genetics , Prognosis , Transcriptome/genetics
20.
J Bioenerg Biomembr ; 54(2): 119-134, 2022 04.
Article in English | MEDLINE | ID: mdl-35322289

ABSTRACT

Increasing studies indicate that circular RNAs (circRNAs) play critical roles in tumor metabolism of multiple cancers. However, the contribution of circRNAs in glutamine metabolism of esophageal squamous cell carcinoma (ESCC) remains elusive. The objective of this research was to investigate the role and mechanism of circRNA hsa_circ_0001093 (circ_0001093) in the glutamine metabolism and tumorigenesis of ESCC. Circ_0001093, microRNA-579-3p (miR-579-3p) and glutaminase (GLS) expressions in ESCC tissues and cell lines were measured by qRT-PCR, tissue array or Western blot. Cell proliferation, invasion and migration were assessed by CCK-8 or transwell assays. Glutamine consumption, glutamate and ATP production were detected by indicated assay kits. The relationships between circ_0001093 and miR-579-3p or GLS mRNA were investigated by bioinformatics analysis, RNA pull-down, luciferase reporter and RNA immunoprecipitation (RIP) assays. Here, we found that circ_0001093 expression was up-regulated in ESCC tissues and cell lines. Increased circ_0001093 expression predicted an unfavourable prognosis, and was associated with the lymph node metastasis, TNM staging and tumor size in ESCC tissues. Circ_0001093 knockdown suppressed cell proliferation, invasion, migration and glutamine metabolism of ESCC cells, while circ_0001093 over-expression showed the opposite effects. Mechanistically, circ_0001093 acted as a competing endogenous RNA (ceRNA) by sponging miR-579-3p, thereby increasing GLS expression. Furthermore, the inhibitory effects of circ_0001093 knockdown on the invasion, migration and glutamine metabolism were partly rescued by miR-579-3p inhibition or GLS over-expression in ESCC cells. Additionally, miR-579-3p expression was down-regulated in ESCC tissues, while GLS expression was up-regulated. In conclusion, this study first provides evidence that the circ_0001093/miR-579-3p/GLS regulatory network can affect glutamine metabolism and malignant phenotype of ESCC, which can further impact ESCC progression.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Cell Line, Tumor , Cell Movement , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Gene Expression Regulation, Neoplastic , Glutaminase/genetics , Glutaminase/metabolism , Glutamine/genetics , Glutamine/metabolism , Humans , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL