Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 143(1): 84-98, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20887894

ABSTRACT

Ca(2+) is an essential and ubiquitous second messenger. Changes in cytosolic Ca(2+) trigger events critical for tumorigenesis, such as cellular motility, proliferation, and apoptosis. We show that an isoform of Secretory Pathway Ca(2+)-ATPase, SPCA2, is upregulated in breast cancer-derived cells and human breast tumors, and suppression of SPCA2 attenuates basal Ca(2+) levels and tumorigenicity. Contrary to its conventional role in Golgi Ca(2+) sequestration, expression of SPCA2 increased Ca(2+) influx by a mechanism dependent on the store-operated Ca(2+) channel Orai1. Unexpectedly, SPCA2-Orai1 signaling was independent of ER Ca(2+) stores or STIM1 and STIM2 sensors and uncoupled from Ca(2+)-ATPase activity of SPCA2. Binding of the SPCA2 amino terminus to Orai1 enabled access of its carboxyl terminus to Orai1 and activation of Ca(2+) influx. Our findings reveal a signaling pathway in which the Orai1-SPCA2 complex elicits constitutive store-independent Ca(2+) signaling that promotes tumorigenesis.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Calcium Channels/metabolism , Calcium Signaling , Calcium-Transporting ATPases/metabolism , Amino Acid Sequence , Animals , Cell Line , Female , Gene Expression Profiling , Humans , Mice , Mice, Nude , Models, Molecular , Molecular Sequence Data , Neoplasm Transplantation , ORAI1 Protein , Rats , Sequence Alignment , Transplantation, Heterologous
2.
Lab Invest ; 104(7): 102087, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797344

ABSTRACT

Addressing the existing gaps in our understanding of sex- and strain-dependent disparities in renal microhemodynamics, this study conducted an investigation into the variations in renal function and related biological oscillators. Using the genetically diverse mouse models BALB/c, C57BL/6, and Kunming, which serve as established proxies for the study of renal pathophysiology, we implemented laser Doppler flowmetry conjoined with wavelet transform analyses to interrogate dynamic renal microcirculation. Creatinine, urea, uric acid, glucose, and cystatin C levels were quantified to investigate potential divergences attributable to sex and genetic lineage. Our findings reveal marked sexual dimorphism in metabolite concentrations, as well as strain-specific variances, particularly in creatinine and cystatin C levels. Through the combination of Mantel tests and Pearson correlation coefficients, we delineated the associations between renal functional metrics and microhemodynamics, uncovering interactions in female BALB/c mice for creatinine and uric acid, and in male C57BL/6 mice for cystatin C. Histopathologic examination confirmed an augmented microvascular density in female mice and elucidating variations in the expression of estrogen receptor ß among the strains. These data collectively highlight the influence of both sex and genetic constitution on renal microcirculation, providing an understanding that may inform the etiologic exploration of renal ailments.


Subject(s)
Kidney , Animals , Female , Male , Kidney/metabolism , Kidney/blood supply , Mice , Sex Characteristics , Mice, Inbred BALB C , Mice, Inbred C57BL , Microcirculation , Cystatin C/metabolism , Cystatin C/blood , Creatinine/blood , Species Specificity , Laser-Doppler Flowmetry , Uric Acid/blood , Uric Acid/metabolism , Sex Factors
3.
Small ; 20(2): e2305949, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37658496

ABSTRACT

Traditional alternating current filter based on aluminum electrolytic capacitors (AECs) suffer from abrupt drop of filtering capability at ultra-low temperatures (≤-30 °C), which greatly hinders the reliable working of electronics at extremely cold conditions. Herein, an ultra-low-temperature alternating current (AC) filter for the first time enabled by high-frequency supercapacitor based on covalently bonded hollow carbon onion-graphene hybrid structure is reported. It is found that the covalent bonding junctions enable high electronic conductivity and efficient ion adsorption/desorption behavior in the hybrid structure. Moreover, the hybrid structure owns positive curvature and shallows pores for fast ion diffusion kinetics. Consequently, the supercapacitor exhibits a record short resistor-capacitor time constant (τRC ) of 0.098 ms at 120 Hz at room temperature. Combining with low-melting-point electrolyte, the supercapacitor possesses excellent filtering capability and can output stable direct current signal with low fluctuation coefficients in a temperature range of -50 to 0 °C. More interestingly, the filter presents high negative phase angle, low dissipation factor, short τRC , and high capacitance retention below -30 °C, whereas AEC cannot work properly owing to its phase angle<45°. This work realizes the fabrication of an ultra-low-temperature AC filter, which presents a critical step forward for promoting the development of ultra-low-temperature electronics.

4.
Small ; : e2311810, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38385819

ABSTRACT

Low-temperature operation of sodium metal batteries (SMBs) at the high rate faces challenges of unstable solid electrolyte interphase (SEI), Na dendrite growth, and sluggish Na+ transfer kinetics, causing a largely capacity curtailment. Herein, low-temperature and fast-charge SMBs are successfully constructed by synergetic design of the electrolyte and electrode. The optimized weak-solvation dual-salt electrolyte enables high Na plating/stripping reversibility and the formation of NaF-rich SEI layer to stabilize sodium metal. Moreover, an integrated copper sulfide electrode is in situ fabricated by directly chemical sulfuration of copper current collector with micro-sized sulfur particles, which significantly improves the electronic conductivity and Na+ diffusion, knocking down the kinetic barriers. Consequently, this SMB achieves the reversible capacity of 202.8 mAh g-1 at -20 °C and 1 C (1 C = 558 mA g-1 ). Even at -40 °C, a high capacity of 230.0 mAh g-1 can still be delivered at 0.2 C. This study is encouraging for further exploration of cryogenic alkali metal batteries, and enriches the electrode material for low-temperature energy storage.

5.
Blood ; 139(22): 3290-3302, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35134139

ABSTRACT

Tumor-associated macrophages (TAMs) are often the most abundant immune cells in the tumor microenvironment (TME). Strategies targeting TAMs to enable tumor cell killing through cellular phagocytosis have emerged as promising cancer immunotherapy. Although several phagocytosis checkpoints have been identified, the desired efficacy has not yet been achieved by blocking such checkpoints in preclinical models or clinical trials. Here, we showed that late-stage non-Hodgkin lymphoma (NHL) was resistant to therapy targeting phagocytosis checkpoint CD47 due to the compromised capacity of TAMs to phagocytose lymphoma cells. Via a high-throughput screening of the US Food and Drug Administration-approved anticancer small molecule compounds, we identified paclitaxel as a potentiator that promoted the clearance of lymphoma by directly evoking phagocytic capability of macrophages, independently of paclitaxel's chemotherapeutic cytotoxicity toward NHL cells. A combination with paclitaxel dramatically enhanced the anticancer efficacy of CD47-targeted therapy toward late-stage NHL. Analysis of TME by single-cell RNA sequencing identified paclitaxel-induced TAM populations with an upregulation of genes for tyrosine kinase signaling. The activation of Src family tyrosine kinases signaling in macrophages by paclitaxel promoted phagocytosis against NHL cells. In addition, we identified a role of paclitaxel in modifying the TME by preventing the accumulation of a TAM subpopulation that was only present in late-stage lymphoma resistant to CD47-targeted therapy. Our findings identify a novel and effective strategy for NHL treatment by remodeling TME to enable the tumoricidal roles of TAMs. Furthermore, we characterize TAM subgroups that determine the efficiency of lymphoma phagocytosis in the TME and can be potential therapeutic targets to unleash the antitumor activities of macrophages.


Subject(s)
Lymphoma , Neoplasms , CD47 Antigen , Humans , Immunosuppression Therapy , Immunotherapy , Lymphoma/drug therapy , Macrophages , Paclitaxel/pharmacology , Phagocytosis , Tumor Microenvironment
6.
Microvasc Res ; 151: 104617, 2024 01.
Article in English | MEDLINE | ID: mdl-37918522

ABSTRACT

Type 1 diabetes mellitus (T1DM) is predominantly managed using insulin replacement therapy, however, pancreatic microcirculatory disturbances play a critical role in T1DM pathogenesis, necessitating alternative therapies. This study aimed to investigate the protective effects of glycine supplementation on pancreatic microcirculation in T1DM. Streptozotocin-induced T1DM and glycine-supplemented mice (n = 6 per group) were used alongside control mice. Pancreatic microcirculatory profiles were determined using a laser Doppler blood perfusion monitoring system and wavelet transform spectral analysis. The T1DM group exhibited disorganized pancreatic microcirculatory oscillation. Glycine supplementation significantly restored regular biorhythmic contraction and relaxation, improving blood distribution patterns. Further-more, glycine reversed the lower amplitudes of endothelial oscillators in T1DM mice. Ultrastructural deterioration of islet microvascular endothelial cells (IMECs) and islet microvascular pericytes, including membrane and organelle damage, collagenous fiber proliferation, and reduced edema, was substantially reversed by glycine supplementation. Additionally, glycine supplementation inhibited the production of IL-6, TNF-α, IFN-γ, pro-MMP-9, and VEGF-A in T1DM, with no significant changes in energetic metabolism observed in glycine-supplemented IMECs. A statistically significant decrease in MDA levels accompanied by an increase in SOD levels was also observed with glycine supplementation. Notably, negative correlations emerged between inflammatory cytokines and microhemodynamic profiles. These findings suggest that glycine supplementation may offer a promising therapeutic approach for protecting against pancreatic microcirculatory dysfunction in T1DM.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Mice , Animals , Microcirculation , Endothelial Cells , Islets of Langerhans/blood supply , Islets of Langerhans/metabolism , Dietary Supplements
7.
Langmuir ; 40(8): 4236-4244, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38364369

ABSTRACT

NiOx-based two-dimensional perovskite solar cells (2D-PSCs) have the advantages of low fabrication temperature, suitable energy level matching, suppressed hysteresis, and superior stability, while the poor interfacial contacts between NiOx and perovskite layers limit the perovskite film growth and charge transfer. Herein, a simple molecule, urea, was used as a molecular modifier to form bifacial passivation on the buried interface of NiOx/perovskite, resulting in better interfacial contact and efficient bifacial passivation. We demonstrated that efficient bifacial passivation mainly comes from strong interactions between urea and NiOx or perovskite, which make urea a molecular bridge for smoother charge transfer. Moreover, urea can regulate the ratio of Ni3+/Ni2+, therefore boosting the conductivity of NiOx, and adjust the morphology of the NiOx film for better 2D-perovskite crystal growth. Besides, urea also passivates the bifacial defect states of both NiOx and perovskite film, yielding reduced defect density of the perovskite film and superior charge transfer on the buried interface. Consequently, inverted 2D-PSCs with urea modification proved significant improvements in short-circuit current density and fill factor, resulting in improved power conversion efficiency from 14.64 to 16.84% with better stability in air.

8.
J Gastroenterol Hepatol ; 39(7): 1367-1373, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38528742

ABSTRACT

BACKGROUND AND AIM: This study aims to determine whether endoscopic papillectomy (EP) is a safe and effective treatment for early duodenal papillary carcinoma with long-term follow-up. METHODS: From June 2012 to September 2022, 48 patients with early duodenal papilloma carcinoma who received endoscopic treatment were included. The histological types, percentage of complete resections, postoperative residuals, adverse events, and recurrences were evaluated. RESULTS: EP was successful in all patients; 46 were lumped, and two were fragmented, with a 95.8% intact removal rate (46/48). The preoperative biopsy pathological positive rate was 70.8% (34/48). The incidence of early postoperative adverse events (within 1 month after EP) were 16.7% (8/48), including four cases of acute pancreatitis, three cases of delayed bleeding, and one case of acute cholangitis. In addition, 4.2% (2/48) of the late adverse events were bile duct stenosis. After 6 months, the postoperative residual rate was 0%. The median time to recurrence was 17.5 months, and the postoperative recurrence rate was 16.7% (8/48) in patients treated with radiofrequency ablation. The median progression-free survival was 18.6 months (95% CI, 12.1-25.1), and the median overall survival was 121.5 months (95% CI, 105.6-120.9). CONCLUSIONS: EP is a safe and efficient alternative therapy for early duodenal papillary carcinoma. Endoscopic follow-up and treatment are essential because of the potential for recurrence.


Subject(s)
Duodenal Neoplasms , Humans , Male , Female , Duodenal Neoplasms/surgery , Duodenal Neoplasms/pathology , Duodenal Neoplasms/mortality , Middle Aged , Aged , Treatment Outcome , Time Factors , Carcinoma, Papillary/surgery , Carcinoma, Papillary/pathology , Carcinoma, Papillary/mortality , Follow-Up Studies , Adult , Neoplasm Recurrence, Local , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Aged, 80 and over
9.
Ren Fail ; 46(1): 2329249, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38482598

ABSTRACT

BACKGROUND: Renal microcirculation plays a pivotal role in kidney function by maintaining structural and functional integrity, facilitating oxygen and nutrient delivery, and waste removal. However, a thorough bibliometric analysis in this area remains lacking. Therefore, we aim to provide valuable insights through a bibliometric analysis of renal microcirculation literature using the Web of Science database. METHODS: We collected renal microcirculation-related publications from the Web of Science database from January 01, 1990, to December 31, 2022. The co-authorship of authors, organizations, and countries/regions was analyzed with VOSviewer1.6.18. The co-occurrence of keywords and co-cited references were analyzed using CiteSpace6.1.R6 software to generate visualization maps. Additionally, burst detection was applied to keywords and cited references to forecast research hotspots and future trends. RESULTS: Our search yielded 7462 publications, with the American Journal of Physiology-Renal Physiology contributing the most articles. The United States, Mayo Clinic, and Lerman Lilach O emerged with the highest publication count, indicating their active collaborations. 'Type 2 diabetes' was the most significant keyword cluster, and 'diabetic kidney disease' was the largest cluster of cited references. 'Cardiovascular outcome' and 'diabetic kidney diseases' were identified as keywords in their burst period over the past three years. CONCLUSION: Our bibliometric analysis illuminates the contours of nephrology and microcirculation research, revealing a landscape ripe for challenges and the seeds of future scientific innovation. While the trends discerned from the literature emerging opportunities in diagnostic innovation, renal microcirculation research, and precision medicine interventions, their translation to clinical practice is anticipated to be a deliberate process.


Subject(s)
Diabetic Nephropathies , Kidney , Humans , Microcirculation , Bibliometrics , Databases, Factual
10.
J Gerontol Nurs ; 50(6): 44-52, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38815222

ABSTRACT

PURPOSE: Medication adherence in adults with H-type hypertension plays a crucial role in lowering blood pressure and treating complications. Cognitive function has been identified as a significant influencing factor for medication adherence, whereas excessive levels of homocysteine can impair cognitive function. Metamemory, which is influenced by cognitive function, also affects medication adherence. However, the complex relationship among these factors remains poorly understood among adults with H-type hypertension. Therefore, we hypothesize that metamemory serves as a mediator for the impact of cognitive function on medication adherence. METHOD: A total of 232 adults with H-type hypertension were enrolled to provide cognitive function scores, metamemory scores, and medication adherence rates. RESULTS: A pairwise correlation exists among cognitive function, metamemory, and medication adherence. Metamemory partially mediates (57.5%) the relationship between cognitive function and medication adherence. CONCLUSION: Our findings suggest that interventions targeting improvements in metamemory may enhance medication adherence among individuals with H-type hypertension. [Journal of Gerontological Nursing, 50(6), 44-52.].


Subject(s)
Antihypertensive Agents , Cognition , Hypertension , Medication Adherence , Humans , Hypertension/drug therapy , Hypertension/psychology , Aged , Medication Adherence/psychology , Medication Adherence/statistics & numerical data , Male , Female , Cognition/drug effects , Antihypertensive Agents/therapeutic use , Middle Aged , Aged, 80 and over
11.
Angew Chem Int Ed Engl ; 63(7): e202315624, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38151704

ABSTRACT

Graphite (Gr) has been considered as the most promising anode material for potassium-ion batteries (PIBs) commercialization due to its high theoretical specific capacity and low cost. However, Gr-based PIBs remain unfeasible at low temperature (LT), suffering from either poor kinetics based on conventional carbonate electrolytes or K+ -solvent co-intercalation issue based on typical ether electrolytes. Herein, a high-performance Gr-based LT rechargeable PIB is realized for the first time by electrolyte chemistry. Applying unidentate-ether-based molecule as the solvent dramatically weakens the K+ -solvent interactions and lowers corresponding K+ de-solvation kinetic barrier. Meanwhile, introduction of steric hindrance suppresses co-intercalation of K+ -solvent into Gr, greatly elevating operating voltage and cyclability of the full battery. Consequently, the as-prepared Gr||prepotassiated 3,4,9,10-perylene-tetracarboxylicacid-dianhydride (KPTCDA) full PIB can reversibly charge/discharge between -30 and 45 °C with a considerable energy density up to 197 Wh kgcathode -1 at -20 °C, hopefully facilitating the development of LT PIBs.

12.
Crit Rev Food Sci Nutr ; 63(22): 5841-5855, 2023.
Article in English | MEDLINE | ID: mdl-35014569

ABSTRACT

Fermented foods are important parts of traditional food culture with a long history worldwide. Abundant nutritional materials and open fermentation contribute to the diversity of microorganisms, resulting in unique product quality and flavor. Lactic acid bacteria (LAB), as important part of traditional fermented foods, play a decisive role in the quality and safety of fermented foods. Reproduction and metabolic of microorganisms drive the food fermentation, and microbial interaction plays a major role in the fermentation process. Nowadays, LAB have attracted considerable interest due to their potentialities to add functional properties to certain foods or as supplements along with the research of gut microbiome. This review focuses on the characteristics of diversity and variability of LAB in traditional fermented foods, and describes the principal mechanisms involved in the flavor formation dominated by LAB. Moreover, microbial interactions and their mechanisms in fermented foods are presented. They provide a theoretical basis for exploiting LAB in fermented foods and improving the quality of traditional fermented foods. The traditional fermented food industry should face the challenge of equipment automation, green manufacturing, and quality control and safety in the production.


Subject(s)
Fermented Foods , Lactobacillales , Lactobacillales/metabolism , Fermented Foods/microbiology , Food , Fermentation , Food Microbiology
13.
Clin Exp Pharmacol Physiol ; 50(10): 789-805, 2023 10.
Article in English | MEDLINE | ID: mdl-37430476

ABSTRACT

Diosmetin-7-O-ß-D-glucopyranoside (Diosmetin-7-O-glucoside) is a natural flavonoid glycoside known to have a therapeutic application for cardiovascular diseases. Cardiac fibrosis is the main pathological change in the end stage of cardiovascular diseases. Endothelial-mesenchymal transformation (EndMT) induced by endoplasmic reticulum stress (ER stress) via Src pathways is involved in the process of cardiac fibrosis. However, it is unclear whether and how diosmetin-7-O-glucoside regulates EndMT and ER stress to treat cardiac fibrosis. In this study, molecular docking results showed that diosmetin-7-O-glucoside bound well to ER stress and Src pathway markers. Diosmetin-7-O-glucoside suppressed cardiac fibrosis induced by isoprenaline (ISO) and reduced the levels of EndMT, ER stress in mice heart. Primary cardiac microvascular endothelial cells (CMECs) were induced by transforming growth factor-ß1 (TGF-ß1) to perform EndMT. Diosmetin-7-O-glucoside could effectively regulate EndMT and diminish the accumulation of collagen I and collagen III. We also showed that the tube formation in CMECs was restored, and the capacity of migration was partially inhibited. Diosmetin-7-O-glucoside also ameliorated ER stress through the three unfolded protein response branches, as evidenced by organelle structure in transmission electron microscopy images and the expression of protein biomarkers like the glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). Further analysis showed that diosmetin-7-O-glucoside could suppress the expression level of Src phosphorylation, then block EndMT with the maintenance of endothelial appearance and endothelial marker expression. These results suggested that the diosmetin-7-O-glucoside can regulate EndMT through ER stress, at least in part via Src-dependent pathways.


Subject(s)
Cardiomyopathies , Cardiovascular Diseases , Animals , Mice , Endothelial Cells/metabolism , Cardiovascular Diseases/metabolism , Molecular Docking Simulation , Epithelial-Mesenchymal Transition , Cardiomyopathies/metabolism , Flavonoids/pharmacology , Flavonoids/therapeutic use , Endoplasmic Reticulum Stress , Collagen , Fibrosis , Glucosides/pharmacology , Glucosides/therapeutic use
14.
Sensors (Basel) ; 23(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37514748

ABSTRACT

Soft robotic grippers offer great advantages over traditional rigid grippers with respect to grabbing objects with irregular or fragile shapes. Shape memory polymer composites are widely used as actuators and holding elements in soft robotic grippers owing to their finite strain, high specific strength, and high driving force. In this paper, a general 3D anisotropic thermomechanical model for woven fabric-reinforced shape memory polymer composites (SMPCs) is proposed based on Helmholtz free energy decomposition and the second law of thermodynamics. Furthermore, the rule of mixtures is modified to describe the stress distribution in the SMPCs, and stress concentration factors are introduced to account for the shearing interaction between the fabric and matrix and warp yarns and weft yarns. The developed model is implemented with a user material subroutine (UMAT) to simulate the shape memory behaivors of SMPCs. The good consistency between the simulation results and experimental validated the proposed model. Furthermore, a numerical investigation of the effects of yarn orientation on the shape memory behavior of the SMPC soft gripper was also performed.

15.
Angew Chem Int Ed Engl ; 62(33): e202307122, 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37370245

ABSTRACT

Potassium-ion batteries (PIBs) are promising for cryogenic energy storage. However, current researches on low-temperature PIBs are limited to half cells utilizing potassium metal as an anode, and realizing rechargeable full cells is challenged by lacking viable anode materials and compatible electrolytes. Herein, a hard carbon (HC)-based low-temperature potassium-ion full cell is successfully fabricated for the first time. Experimental evidence and theoretical analysis revealed that potassium storage behaviors of HC anodes in the matched low-temperature electrolyte involve defect adsorption, interlayer co-intercalation, and nanopore filling. Notably, these unique potassiation processes exhibited low interfacial resistances and small reaction activation energies, enabling an excellent cycling performance of HC with a capacity of 175 mAh g-1 at -40 °C (68 % of its room-temperature capacity). Consequently, the HC-based full cells demonstrated impressive rechargeability and high energy density above 100 Wh kg-1 cathode at -40 °C, representing a significant advancement in the development of PIBs.

16.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G461-G476, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36165507

ABSTRACT

Hepatorenal syndrome (HRS) is a complication of cirrhosis with high morbidity and mortality. Nevertheless, the underlying mechanism involving how kidney injury aggravates the progression of cirrhosis remains unclear. This study aims to explore the role of the Toll-like receptor 4 (TLR4) signaling pathway in mediating liver and kidney injuries in HRS mice induced by unilateral ureteral obstruction (UUO) and/or bile duct ligation (BDL). Two weeks after UUO, there were no obvious pathological changes in mouse liver and the unligated side of kidney. Nevertheless, impaired liver and kidney functions, inflammatory response, and fibrosis were examined in mice after 2 wk of BDL. Compared with those of other groups, mice in the BDL + UUO group presented severer liver and kidney injuries, higher levels of inflammatory factors, and faster deposition of collagens, suggesting that kidney injuries accelerated the aggravation of HRS. Correlation analysis identified a positive correlation between expression levels of inflammatory factors and fibrotic levels. Meanwhile, TLR4 and its ligand MyD88 were upregulated during the process of liver and kidney injuries in HRS mice. Further animal experiments in transgenic TLR4-/- mice or in those treated with TAK242, a small molecule inhibitor of TLR4, showed that blocking the TLR4 signaling pathway significantly improved survival quality and survival rate in HRS mice by alleviating liver fibrosis and kidney injury. It is concluded that kidney dysfunction plays an important role in the aggravation of cirrhosis, which may be attributed to the TLR4 signaling pathway. Targeting TLR4 could be a promising therapeutic strategy for protecting both liver and kidneys in patients with HRS.NEW & NOTEWORTHY Our study established BDL, UUO, and BDL + UUO models, providing a novel idea for analyzing liver and kidney diseases. It is highlighted that the kidney injury accelerated the aggravation of HRS via inflammatory response, which could be protected by inhibiting the TLR4 signaling pathway. We believed that targeting TLR4 was a promising therapeutic strategy for protecting both liver and kidney functions in patients with HRS.


Subject(s)
Cholestasis , Hepatorenal Syndrome , Ureteral Obstruction , Mice , Animals , Toll-Like Receptor 4/metabolism , Hepatorenal Syndrome/etiology , Hepatorenal Syndrome/metabolism , Mice, Hairless , Kidney/metabolism , Signal Transduction , Fibrosis , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Cholestasis/metabolism , Liver Cirrhosis/metabolism
17.
Small ; 18(26): e2202214, 2022 07.
Article in English | MEDLINE | ID: mdl-35623998

ABSTRACT

Zn anode is confronted with serious Zn dendrite growth and water-induced parasitic reactions, which severely hinders the rapid development and practical application of aqueous zinc metal batteries (AZMBs). Herein, inspired by sodium hyaluronate (SH) biomolecules in living organisms featured with the functions of water retention, ion-transport regulation, and film-formation, the SH working as a dynamic and self-adaptive "mask" is proposed to stabilize Zn anode. Benefiting from the abundant functional groups with high hydrophilicity and zincophilicity, SH molecule can constrain active water molecules on the Zn-electrolyte interface and participate in Zn2+ solvation structure to suppress parasitic reactions. Furthermore, the dynamical adsorption of SH with high-density negative charge on the Zn surface could serve as Zn2+ reservoirs to guide uniform Zn deposition. Consequently, stable Zn plating and an ultrahigh cumulative plating capacity (CPC) of 4.8 Ah cm-2 are achieved even at 20 mA cm-2 (20 mAh cm-2 ) in a Zn||Zn symmetric battery, reaching a record level in AZMBs. In addition, the Zn||ß-MnO2 full battery exhibits a substantially improved cycle stability. This work presents a route to realize a highly reversible and stable Zn metal anode by learning from nature.


Subject(s)
Manganese Compounds , Oxides , Electrodes , Zinc
18.
Mikrochim Acta ; 189(9): 315, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927374

ABSTRACT

The synthesis of manganese cobaltate (MnCo2O4) with the hybrid three-dimensional architecture has been developed as an electrocatalyst for the electrochemical sensing of paraoxon-ethyl (PEL). The detailed physicochemical and structural characterization of MnCo2O4 is meticulously examined. The MnCo2O4-modified screen-printed carbon electrode (SPCE) exhibits good electrocatalytic activity for the reduction of PEL compared with the bare SPCE due to numerous unique properties. By profiting from these advantages, the proposed MnCo2O4/SPCE shows superior sensing performance toward the determination of PEL, including low cathodic peak potential (- 0.64 V), wide detection range (0.015-435 µM), low limit of detection (0.002 µM), high detection sensitivity (2.30 µA µM-1 cm-2), excellent selectivity, and good reproducibility. Notably, the electrochemical performance of the MnCo2O4-based electrocatalyst is superior to those previously reported in the literatures. The practical application of the MnCo2O4/SPCE is effectively assessed in the analysis of food and water samples with satisfied recoveries of 96.00-99.35%. The superior performance of the proposed MnCo2O4 electrocatalyst holds considerable potential for future development of electrochemical sensing platforms.


Subject(s)
Manganese , Paraoxon , Carbon/chemistry , Electrochemistry , Limit of Detection , Reproducibility of Results
19.
Nano Lett ; 21(16): 6990-6997, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34387505

ABSTRACT

We here demonstrate the multifunctional properties of atomically thin heterojunctions that are enabled by their strong interfacial interactions and their application toward self-powered sensors with unprecedented performance. Bonding between tin diselenide and graphene produces thermoelectric and mechanoelectric properties beyond the ability of either component. A record-breaking ZT of 2.43 originated from the synergistic combination of graphene's high carrier conductivity and SnSe2-mediated thermal conductivity lowering. Moreover, spatially varying interaction at the SnSe2/graphene interface produces stress localization that results in a novel 2D-crack-assisted strain sensing mechanism whose sensitivity (GF = 450) is superior to all other 2D materials. Finally, a graphene-assisted growth process permits the formation of high-quality heterojunctions directly on polymeric substrates for flexible and transparent sensors that achieve self-powered strain sensing from a small temperature gradient. Our work enhances the fundamental understanding of multifunctionality at the atomic scale and provides a route toward structural health monitoring through ubiquitous and smart devices.


Subject(s)
Graphite , Wearable Electronic Devices , Electric Conductivity , Polymers , Temperature
20.
Int J Mol Sci ; 23(22)2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36430929

ABSTRACT

Trueperella pyogenes is an opportunistic pathogen that causes suppurative infections in animals. The development of new anti-biofilm drugs will improve the current treatment status for controlling T. pyogenes infections in the animal husbandry industry. Luteolin is a naturally derived flavonoid compound with antibacterial properties. In this study, the effects and the mechanism of luteolin on T. pyogenes biofilm were analyzed and explored. The MBIC and MBEC of luteolin on T. pyogenes were 156 µg/mL and 312 µg/mL, respectively. The anti-biofilm effects of luteolin were also observed by a confocal laser microscope and scanning electron microscope. The results indicated that 312 µg/mL of luteolin could disperse large pieces of biofilm into small clusters after 8 h of treatment. According to the real-time quantitative PCR detection results, luteolin could significantly inhibit the relative expression of the biofilm-associated genes luxS, plo, rbsB and lsrB. In addition, the in vivo anti-biofilm activity of luteolin against T. pyogenes was studied using a rat endometritis model established by glacial acetic acid stimulation and T. pyogenes intrauterine infusion. Our study showed that luteolin could significantly reduce the symptoms of rat endometritis. These data may provide new opinions on the clinical treatment of luteolin and other flavonoid compounds on T. pyogenes biofilm-associated infections.


Subject(s)
Endometritis , Luteolin , Female , Humans , Rats , Animals , Luteolin/pharmacology , Luteolin/therapeutic use , Endometritis/drug therapy , Biofilms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL