Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 180
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Sleep Res ; : e14168, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38380761

ABSTRACT

Perioperative sleep disturbance may increase delirium risk. However, the role of perioperative sleep disturbance in delirium following total joint arthroplasty remains unclear. This prospective cohort study aimed to observe the delirium risk in patients with sleep disturbances. After excluding pre-existing sleep disturbances, older patients scheduled for total joint arthroplasty from July 17, 2022, to January 12, 2023, were recruited. Preoperative sleep disturbance or postoperative sleep disturbance was defined as a Chinese version of the Richards-Campbell Sleep Questionnaire (RCSQ) score of <50 during hospitalisation. A cut-off score of 25 was used to classify the severity of sleep disturbance. The primary outcome was the incidence of postoperative delirium. In all, 11.6% of cohort patients (34/294) developed delirium. After multivariate analysis, a preoperative Day 1 RCSQ score of ≤25 (odds ratio [OR] 3.62, 95% confidence interval [CI] 1.19-10.92; p = 0.02), occurrence of sleep disturbances (OR 2.76, 95% CI 1.19-6.38; p = 0.02) and RCSQ score of ≤25(OR 2.91, 95% CI 1.33-6.37; p = 0.007) postoperatively were strong independent predictors of delirium. After sensitivity analysis for daily delirium, a postoperative Day 1 RCSQ score of ≤25 (OR 9.27, 95% CI 2.72-36.15; p < 0.001) was associated with a greater risk of delirium on postoperative Day 1, with a reasonable discriminative area under the curve of 0.730. We concluded that postoperative but not preoperative sleep disturbances may be an independent factor for delirium risk. Sleep disturbance on the first night after surgery was a good predictor of subsequent delirium, no matter the nature of self-reported sleep disturbance.

2.
J Transl Med ; 21(1): 754, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37884960

ABSTRACT

BACKGROUND: Recent research shows that tumor-associated macrophages (TAMs) are the primary consumers of glucose in tumor tissue, surpassing that of tumor cells. Our previous studies revealed that inhibiting glucose uptake impairs the survival and tumor-promoting function of hypoxic TAMs, suggesting that glucose reduction by energy restriction (calorie restriction or short-term fasting) may has a significant impact on TAMs. The purpose of this study is to verify the effect of fasting-mimicking diet (FMD) on TAMs, and to determine whether FMD synergizes with anti-angiogenic drug apatinib via TAMs. METHODS: The effect of FMD on TAMs and its synergistic effects with apatinib were observed using an orthotopic mouse breast cancer model. An in vitro cell model, utilizing M2 macrophages derived from THP-1 cell line, was intended to assess the effects of low glucose on TAMs under hypoxic and normoxic conditions. Bioinformatics was used to screen for potential mechanisms of action, which were then validated both in vivo and in vitro. RESULTS: FMD significantly inhibit the pro-tumor function of TAMs in vivo and in vitro, with the inhibitory effect being more pronounced under hypoxic conditions. Additionally, the combination of FMD-mediated TAMs inhibition with apatinib results in synergistic anti-tumor activity. This effect is partially mediated by the downregulation of CCL8 expression and secretion by the mTOR-HIF-1α signaling pathway. CONCLUSIONS: These results support further clinical combination studies of FMD and anti-angiogenic therapy as potential anti-tumor strategies.


Subject(s)
Angiogenesis Inhibitors , Tumor-Associated Macrophages , Animals , Mice , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Hypoxia , Fasting , Diet , Glucose , Tumor Microenvironment , Cell Line, Tumor
3.
Inorg Chem ; 62(12): 4990-4998, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36921355

ABSTRACT

Photochromic viologen-based materials have emerged as one of the most promising candidates for the development of X-ray light detection applications, including medical diagnosis and treatment, environmental radiation inspection, and industrial crack detection. However, the design and construction of low-dose X-ray-sensitive complexes remains an immense challenge, especially for the in-depth dissection of their response mechanisms. Herein, by using N,N'-4,4'-bipyridiniodipropionate (CV) as functional sensitive structural units and cadmium as heavy atoms, two cadmium-viologen complexes with one-dimensional chained structures, namely, [Cd2Cl4(CV)(H2O)2]n (1) and [CdBr2(CV)]n (2), have been constructed, which exhibit a remarkable and selective photochromic response to low-dose X-ray radiation detection. Compound 1 is visually sensitive to both X-ray and UV light due to the more accessible photoinduced electron transfer (ET) pathways, while compound 2 only shows a slight color-changing process in response to UV light, in conformity with UV-vis absorbance analyses and kinetic studies. Surprisingly, compound 2 has longer ET pathways than 1, but not in response to high-energy X-ray light, seeming to contradict the previous phenomena. On further analysis, the key point in achieving X-ray-sensitive behavior should be a good balance among the electron donor-acceptor distance, intermolecular interaction, and X-ray absorbing capacity, as verified by density functional theory (DFT) and X-ray absorption strength calculations, X-ray photoelectron spectra, electron paramagnetic resonance measurements, and independent gradient model analysis. In particular, compound 1 is unprecedentedly sensitive to soft X-ray radiation, accompanied by an X-ray detection limit of as low as 2.91 Gy. These findings push forward the further development of low-dose X-ray sensing materials.

4.
Bioorg Chem ; 140: 106781, 2023 11.
Article in English | MEDLINE | ID: mdl-37597440

ABSTRACT

The abnormal activation of the mTOR pathway is closely related to the occurrence and progression of cancer, especially colorectal cancer. In this study, a rational virtual screening strategy has been established and MT-5, a novel mTOR inhibitor with a quinoline scaffold, was obtained from the ChemDiv database. MT-5 showed potent kinase inhibitory activity (IC50: 8.90 µM) and antiproliferative effects against various cancer cell lines, especially HCT-116 cells (IC50: 4.61 µM), and this was 2.2-fold more potent than that of the cisplatin control (IC50: 9.99 µM). Western blot, cell migration, cycle arrest, and apoptosis assays were performed with HCT-116 cells to investigate the potential anticancer mechanism of MT-5. Metabolic stability results in vitro indicated that MT-5 exhibited good stability profiles in artificial gastrointestinal fluids, rat plasma, and liver microsomes. In addition, the key contribution of the residues around the binding pocket of MT-5 in binding to the mTOR protein was also investigated from a computational perspective.


Subject(s)
Colorectal Neoplasms , Early Detection of Cancer , Humans , Animals , Rats , MTOR Inhibitors , TOR Serine-Threonine Kinases , HCT116 Cells , Colorectal Neoplasms/drug therapy
5.
BMC Public Health ; 23(1): 1819, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726699

ABSTRACT

BACKGROUND: Schools play an organizational role in managing myopia-related behavioral habits among students. We evaluated the effects of school myopia management measures on myopia onset and progression in a school-based prospective 1-year observational study. METHODS: In total, 8319 children from 26 elementary schools were included. Online questionnaire completed by a parent, in which school myopia management experience including outdoor activities in recess or physical education class, teachers' supervision, and teaching facilities. Variables were defined as implemented well or poorly, according to the Comprehensive Plan to Prevent Myopia among Children and Teenagers. Children underwent ophthalmic examinations, and the incidence and progression of myopia from 2019 to 2020 were estimated. Multilevel logistic regression models were constructed to analyze the association between school management measures and myopia development in 8,9 years and 10,11 years students. RESULTS: From 2019 to 2020, the incidence of myopia among primary school students was 36.49%; the mean difference of spherical equivalent in myopic children was - 0.29 ± 1.22 diopters. The risk of incident myopia was reduced by 20% in 8,9 years participants with well-implemented class recess compared with those with poorly implemented class recess (adjusted odds ratio [aOR]: 0.80, p = 0.032). PE outdoor time was significantly associated with myopia incidence in 10,11 years students (aOR: 0.76, p = 0.043). Compared with poorly implemented reading and writing posture, desk and chair height, 10,11 participants with well-implemented desk and chair height were less likely to have rapid myopic progression (p = 0.029, p = 0.022). CONCLUSION: In Shanghai, children's myopia is associated with better implementation of school myopia management measures. The present findings suggest that outdoor activities during class recess or PE class, providing suitable desks and chairs, and adequate instruction in reading and writing postures might protect against pathological eye growth. An age-specific myopia prevention and control programs in school is of primary importance.


Subject(s)
East Asian People , Myopia , Child , Humans , China/epidemiology , Myopia/epidemiology , Myopia/prevention & control , Prospective Studies , Students
6.
Angew Chem Int Ed Engl ; 62(6): e202216592, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36478491

ABSTRACT

We explored a co-dissolved strategy to embed mono-dispersed Pt center into V2 O5 support via dissolving [PtV9 O28 ]7- into [V10 O28 ]6- aqueous solution. The uniform dispersion of [PtV9 O28 ]7- in [V10 O28 ]6- solution allows [PtV9 O28 ]7- to be surrounded by [V10 O28 ]6- clusters via a freeze-drying process. The V centers in both [PtV9 O28 ]7- and [V10 O28 ]6- were converted into V2 O5 via a calcination process to stabilize Pt center. These double separations can effectively prevent the Pt center agglomeration during the high-temperature conversion process, and achieve 100 % utilization of Pt in [PtV9 O28 ]7- . The resulting Pt-V2 O5 single-atom-site catalysts exhibit a CH4 yield of 247.6 µmol g-1 h-1 , 25 times higher than that of Pt nanoparticle on the V2 O5 support, which was accompanied by the lactic acid photooxidation to form pyruvic acid. Systematical investigations on this unambiguous structure demonstrate an important role of Pt-O atomic pair synergy for highly efficient CO2 photoreduction.

7.
Environ Microbiol ; 24(4): 2047-2058, 2022 04.
Article in English | MEDLINE | ID: mdl-35172392

ABSTRACT

Light is the crucial environmental signal for desiccation-tolerant cyanobacteria to activate photosynthesis and prepare for desiccation at dawn. However, the photobiological characteristics of desert cyanobacteria adaptation to one of the harshest habitats on Earth remain unresolved. In this study, we surveyed the genome of a subaerial desert cyanobacterium Nostoc flagelliforme and identified two phytochromes and seven cyanobacteriochromes (CBCRs) with one or more bilin-binding GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA) domains. Biochemical and spectroscopic analyses of 69 purified GAF-containing proteins from recombinant phycocyanobilin (PCB), biliverdin or phycoerythrobilin-producing Escherichia coli indicated that nine of these proteins bind chromophores. Further investigation revealed that 11 GAFs form covalent adducts responsive to near-UV and visible light: eight GAFs contained PCB chromophores, three GAFs contained biliverdin chromophores and one contained the PCB isomer, phycoviolobilin. Interestingly, COO91_03972 is the first-ever reported GAF-only CBCR capable of sensing five wavelengths of light. Bioinformatics and biochemical analyses revealed that residue P132 of COO91_03972 is essential for chromophore binding to dual-cysteine CBCRs. Furthermore, the complement of N. flagelliforme CBCRs is enriched in red light sensors. We hypothesize that these sensors are critical for the acclimatization of N. flagelliforme to weak light environments at dawn.


Subject(s)
Bile Pigments , Nostoc , Bacterial Proteins/metabolism , Bile Pigments/metabolism , Biliverdine/metabolism , Light , Nostoc/genetics , Nostoc/metabolism
8.
Inorg Chem ; 61(33): 13058-13066, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35838661

ABSTRACT

It is a great challenging task for selectivity control of both CO2 photoreduction and water splitting to produce syngas via precise microenvironment regulation. Herein, a series of UiO-type Eu-MOFs (Eu-bpdc, Eu-bpydc, Rux-Eu-bpdc, and Rux-Eu-bpydc) with different surrounding confined spaces were designed and synthesized. These photosensitizing Rux-Eu-MOFs were used as the molecular platform to encapsulate the [CoII4(dpy{OH}O)4(OAc)2(H2O)2]2+ (Co4) cubane cluster for constructing Co4@Rux-Eu-MOF (x = 0.1, 0.2, and 0.4) heterogeneous photocatalysts for efficient CO2 photoreduction and water splitting. The H2 and CO yields can reach 446.6 and 459.8 µmol·g-1, respectively, in 10 h with Co4@Ru0.1-Eu-bpdc as the catalyst, and their total yield can be dramatically improved to 2500 µmol·g-1 with the ratio of CO/H2 ranging from 1:1 to 1:2 via changing the photosensitizer content in the confined space. By increasing the N content around the cubane, the photocatalytic performance drops sharply in Co4@Ru0.1-Eu-bpydc, but with an enhanced proportion of CO in the final products. In the homogeneous system, the Co4 cubane was surrounding with Ru photosensitizers via week interactions, which can drive water splitting into H2 with >99% selectivity. Comprehensive structure-function analysis highlights the important role of microenvironment regulation in the selectivity control via constructing homogeneous and heterogeneous photocatalytic systems. This work provides a new insight for engineering a catalytic microenvironment of the cubane cluster for selectivity control of CO2 photoreduction and water splitting.


Subject(s)
Carbon Dioxide , Photosynthesis , Catalysis , Photosensitizing Agents , Water
9.
Prep Biochem Biotechnol ; 52(3): 344-350, 2022.
Article in English | MEDLINE | ID: mdl-34289781

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) infections are a major global health problem, and novel and effective antimicrobial drugs are urgently required to combat this life-threatening pathogen. Prodigiosin (PG) is a bacterial secondary metabolite with excellent anticancer and antibacterial properties. However, little is known about the antibacterial function of PG against MRSA. Therefore, the antibacterial efficacy of PG alone and PG in combination with different metal ions against clinic isolates of MRSA and methicillin-sensitive S. aureus (MSSA) strain was evaluated in the present study. The minimum inhibitory concentration of PG against both MRSA and MSSA was 0.25 µg/mL. However, 0.1 µg/mL PG showed a stronger inhibitory effect on MSSA cell growth (47.12%) than on MRSA cell growth (35.87%). Surprisingly, we observed a significant difference (p < 0.01) in membrane integrity between PG-treated MRSA and MSSA using the propidium iodide staining assay. Further, we found that in combination with PG, Zn2+, Al3+, and Cu2+ showed synergistic antibacterial effects against MRSA and MSSA. Our results could increase the current knowledge regarding the efficacy of PG in inhibiting the growth of different types of S. aureus clinical isolates and also offer a novel strategy for developing efficient antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metals/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Prodigiosin/pharmacology , Serratia marcescens/chemistry , Drug Synergism , Microbial Sensitivity Tests
10.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6164-6174, 2022 Nov.
Article in Zh | MEDLINE | ID: mdl-36471941

ABSTRACT

This paper aims to explore the activity of Codonopsis canescens extract against rheumatoid arthritis(RA) based on the Toll-like receptors(TLRs)/mitogen-activated protein kinases(MAPKs)/nuclear factor kappa B(NF-κB) signaling pathways and its mechanism. The ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) was used to identify the components of C. canescens extract. Forty-eight male SD rats were randomly divided into six groups, namely the normal group, the model group, the methotrexate(MTX) tablet group, and the low, medium, and high-dose C. canescens extract(ZDS-L, ZDS-M, and ZDS-H) groups, with 8 rats in each group. The model of collagen-induced arthritis in rats was induced by injection of bovine type Ⅱ collagen emulsion. MTX(2.5 mg·kg~(-1)), ZDS-L, ZDS-M, and ZDS-H(0.3 g·kg~(-1), 0.6 g·kg~(-1), and 1.2 g·kg~(-1)) were administrated by gavage. Rats in the normal group and the model group received distilled water. MTX was given once every three days for 28 days, and the rest medicines were given once daily for 28 days. Body weight, degree of foot swelling, arthritis index, immune organ index, synovial histopathological changes, and serum levels of tumor necrosis factor-α(TNF-α), interleukin-1ß(IL-1ß), and interleukin-6(IL-6) were observed. Protein expressions of TLR2, TLR4, NF-κB p65, p38 MAPK, and p-p38 MAPK in rats were determined by Western blot. Thirty-four main components were identified by UPLC-Q-TOF-MS, including 15 flavonoids, 7 phenylpropanoids, 4 terpenoids, 4 organic acids, 2 esters, and 2 polyalkynes. As compared with the normal group, the body weight of the model group was significantly decreased(P<0.01), and foot swelling(P<0.05, P<0.01), arthritis index(P<0.01), and the immune organ index(P<0.01) were significantly increased. The synovial histopathological injury was obviously observed in the model group. The serum levels of inflammatory factors TNF-α, IL-1ß, and IL-6 were significantly increased(P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK in the synovial tissue were significantly increased(P<0.01) in the model group. As compared with the model group, the body weights of the ZDS dose groups were increased(P<0.01), and the degree of foot swelling(P<0.01) and the arthritis index were decreased(P<0.05, P<0.01). The immune organ index was decreased(P<0.01) in the ZDS dose groups, and the synovial tissue hyperplasia and inflammatory cell infiltration were alleviated. The serum levels of TNF-α, IL-1ß, and IL-6 were significantly decreased(P<0.05, P<0.01), and the protein expression levels of TLR2, TLR4, NF-κB p65, p-p38 MAPK/p38 MAPK were decreased(P<0.05, P<0.01) in the ZDS dose groups. C. canescens extract containing apigenin, tricin, chlorogenic acid, aesculin, ferulic acid, caffeic acid, and oleanolic acid has a good anti-RA effect, and the mechanism may be related to the inhibition of TLRs/MAPKs/NF-κB signaling pathways.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Codonopsis , Plant Extracts , Animals , Cattle , Male , Rats , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Body Weight , Codonopsis/chemistry , Interleukin-6/blood , NF-kappa B/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Plant Extracts/therapeutic use , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/pharmacology
11.
Small ; 17(44): e2103558, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34605183

ABSTRACT

Solar-driven CO2 reaction with water oxidation into alcohols represents a promising approach to achieve real artificial photosynthesis. However, rapid recombination of photogenerated carriers seriously restricts the development of artificial photosynthesis. Herein, a facile method is explored to construct low-cost Z-Scheme heterostructure Cu2 O/polymeric carbon nitride (PCN) by in situ growth of Cu2 O hollow nanocrystal on PCN. The protective PCN layer and Z-schematic charge flow can make robust Cu2 O/PCN photocatalysts, and the spatial separation of electrons and holes with high redox potentials of ECB (-1.15 eV) and EVB (1.65 eV) versus NHE can efficiently drive CO2 photoreduction to methanol in pure water, which is further confirmed by DFT calculation. The Z-scheme heterostructure Cu2 O/PCN exhibits a high methanol yield of 276 µmol g-1 in 8 h with ca. 100% selectivity, much superior to that of isolated Cu2 O and PCN, and all the reported Cu2 O-based heterostructures. This work provides a unique strategy to efficiently and selectively promote the conversion of CO2 and H2 O into high-value chemicals by constructing a low-cost Z-scheme heterostructure.

12.
Med Mycol ; 60(1)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34791431

ABSTRACT

Immunophenotyping of inflammatory dermal infiltrates in Malassezia folliculitis (MF) and pityriasis versicolor (PV) lesions is less reported. Immunohistochemistry was performed on 21 MF lesions, 10 PV lesions, and 10 control skin. CD3+, CD4+, CD8+, CD20+, CD68+, and CD117+ cells were increased in MF compared with PV and normal skin (P < 0.01-0.05), while CD3+, CD4+, and CD20+ cells were higher in PV than in normal skin (P < 0.05). Dermal CD1a+ cells were higher only in PV (P < 0.05). Although both cellular and humoral immune responses are involved in pathogenesis of MF and PV, their difference may contribute to clinicopathological discrepancy between two disorders. LAY SUMMARY: Malassezia folliculitis and pityriasis versicolor are common Malassezia-induced superficial mycoses. Their clinicopathological discrepancy may be due to the difference of cellular and humoral immune responses.


Subject(s)
Dermatomycoses , Folliculitis , Malassezia , Tinea Versicolor , Dermatomycoses/immunology , Folliculitis/immunology , Humans , Immunophenotyping , Tinea Versicolor/immunology
13.
J Adv Nurs ; 77(4): 1716-1730, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33270269

ABSTRACT

AIM: To summarize evidence regarding the effects of oral nutritional supplement on muscle fitness of patients undergoing dialysis. DESIGN: A systematic review and meta-analysis. REVIEW SOURCES: Five English databases (CENTRAL, PubMed, EMBASE, CINHAL, and Web of Science) and four Chinese databases (CNKI, WanFang, SinoMed, and VIP) were searched from inception to 31 July 2019 and only randomized controlled trials were included. REVIEW METHODS: Two reviewers independently searched these databases, selected trials, conducted bias assessment, extracted the data. Random-effects meta-analysis was conducted to assess the effect size. The predetermined subgroup included type of oral nutritional supplement (a mixture of macronutrients, whey protein, essential amino-acids, and other nutrients) and intervention duration (over and less than 48 weeks). The subgroup analyses and sensitivity analyses were conducted to explore source of heterogeneity and robustness of results. RESULTS: Sixteen studies (910 participants) meeting the inclusion criteria were identified and included in this systematic review. Subgroup analysis showed that supplying a mixture of macronutrients (MD [MD] = 2.36 kg, 95% CI [0.45, 4.26], I2  = 0.00%), an intervention duration of 48 weeks (MD = 4.05 kg, 95% CI [1.43, 6.67], I2  = 0.00%) had some effects on increasing lean body mass. No effects of oral nutritional supplement were found on improving muscle strength or physical performance. CONCLUSION: A mixture of macronutrients and an intervention duration as long as 48 weeks had some significant effects on improving lean body mass of patients undergoing dialysis. No effect of oral nutritional supplement on muscle strength or physical performance were found but with limited evidence. IMPACT: No existing reviews have ever focused on improving muscle fitness of patients undergoing dialysis. This systematic review and meta-analysis provided evidence of oral nutritional supplement on keeping muscle fitness of these patients and suggested possible type of oral nutritional supplement and intervention duration for clinical practice.


Subject(s)
Exercise , Renal Dialysis , Humans , Muscles
14.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(2): 194-201, 2021 Mar.
Article in Zh | MEDLINE | ID: mdl-33829691

ABSTRACT

OBJECTIVE: To construct eukaryotic and prokaryotic recombinant vectors containing Pepck- Gp63 and to achieve protein expression by selecting the dominant epitope genes of Pepck and Gp63 of Leishmania infantum. METHODS: The secondary structure and HLA epitopes of phosphoenolpyruvate carboxylase (PEPCK) were predicted by in silico analysis, and the dominant epitopes were picked out. According to the analysis results of glycoprotein of 63×10 3(GP63) epitopes identified by the same method in our laboratory, the dominant epitope genes of Pepck and Gp63 were used to construct pET32a- Pepck- Gp63 and pVAX1- Pepck- Gp63 by overlapping PCR and enzyme reaction. Then, for protein expression, the prokaryotic vectors were transfected into E.coil while the eukaryotic vectors were transfected into NIH3T3 cells by liposome transfection. RESULTS: There were multiple dominant epitopes in Pepckand there were Pepck-Gp63 sequences in the polyclonal site of expression vector. The expression of Pepck-Gp63 in E.coil appeared in inclusion form and led to 74 kDa band in SDS-PAGE. The immunofluorescence results of NIH3T3 cells transfected by pVAX1- Pepck-Gp63 were positive. CONCLUSION: The recombinant prokaryotic expression plasmids pET32a- Pepck-Gp63 and eukaryotic expression plasmids pVAX1- P epck -Gp63 were successfully constructed, and it was shown that the recombinant plasmids were able to express the corresponding target proteins in E. coli and NIH3T3 cells, respectively, providing a preliminary experimental basis for the subsequent study of immunization strategies.


Subject(s)
Leishmania infantum , Animals , Epitopes/genetics , Escherichia coli/genetics , Eukaryota , Genetic Vectors/genetics , Leishmania infantum/genetics , Mice , NIH 3T3 Cells , Phosphoenolpyruvate Carboxylase , Plasmids
15.
Arch Pharm (Weinheim) ; 353(7): e1900376, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32342558

ABSTRACT

Lenalidomide is a cereblon modulator known for its antitumor, anti-inflammatory, and immunomodulatory properties in clinical applications. Recently, some reported lenalidomide analogs could exhibit a significant bioactivity through various modifications in the isoindolinone ring. In this study, we designed and synthesized a series of novel lenalidomide analogs on the basis of the installation of a methylene chain at the C-4 position of isoindolinone via the Suzuki cross-coupling reaction. These new compounds were further evaluated for their in vitro antiproliferative activities against two tumor cell lines (MM.1S and Mino). Specifically, compound 4c displayed the strongest antiproliferative activity against the MM.1S (IC50 = 0.27 ± 0.03 µM) and Mino (IC50 = 5.65 ± 0.58 µM) tumor cell lines. In summary, we have developed a new synthetic strategy for C-4 derivatization of lenalidomide, providing a bioactive scaffold that could be used to discover further potential antitumor lead compounds in pharmaceutical research.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Lenalidomide/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lenalidomide/chemical synthesis , Lenalidomide/chemistry , Molecular Structure , Structure-Activity Relationship
16.
J Environ Manage ; 270: 110824, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32721299

ABSTRACT

Lignocellulosic biomass has been widely introduced into the liquefaction process of sewage sludge (SS) to improve the yield/quality of liquefaction products (bio-oil/biochar). This study explores the effect of adding rice straw (RS) and wood sawdust (WS) on the transport/conversion behaviors of heavy metals (HMs) during the liquefaction of SS. The introduction of lignocellulosic biomass, especially for RS, substantially lowers the total content of HMs in biochar. Most HMs (except Cd) still remain in biochar, although the introduction of RS/WS enhances the transport of HMs into bio-oils. The addition of RS/WS raises the percentage of HMs in active form, but the contents of bioavailable/leachable HMs are not considerably increased and even decreased in some cases, especially when RS is introduced. The overall pollution degree and environmental risk of HMs in biochars are lowered to a certain extent with the addition of RS/WS. Considering that the pollution degree and environmental risk of HMs present in biochars are still at a considerable level, appropriate pollution management measures should be undertaken when using such biochars for agricultural use.


Subject(s)
Metals, Heavy , Oryza , Biomass , Charcoal , Sewage , Wood
17.
J Sci Food Agric ; 100(10): 3803-3811, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32201954

ABSTRACT

BACKGROUND: The quality of fresh tea leaves after harvest determines, to some extent, the quality and price of commercial tea. A fast and accurate method to evaluate the quality of fresh tea leaves is required. RESULTS: In this study, the potential of hyperspectral imaging in the range of 328-1115 nm for the rapid prediction of moisture, total nitrogen, crude fiber contents, and quality index value was investigated. Ninety samples of eight tea-leaf varieties and two picking standards were tested. Quantitative partial least squares regression (PLSR) models were established using a full spectrum, whereas multiple linear regression (MLR) models were developed using characteristic wavelengths selected by a successive projections algorithm (SPA) and competitive adaptive reweighted sampling. The results showed that the optimal SPA-MLR models for moisture, total nitrogen, crude fiber contents, and quality index value yielded optimal performance with coefficients of determination for prediction (R2 p) of 0.9357, 0.8543, 0.8188, 0.9168; root mean square error of 0.3437, 0.1097, 0.3795, 1.0358; and residual prediction deviation of 4.00, 2.56, 2.31, and 3.51, respectively. CONCLUSION: The results suggested that the hyperspectral imaging technique coupled with chemometrics was a promising tool for the rapid and nondestructive measurement of tea-leaf quality, and had the potential to develop multispectral imaging systems for future online detection of tea-leaf quality. © 2020 Society of Chemical Industry.


Subject(s)
Camellia sinensis/chemistry , Hyperspectral Imaging/methods , Plant Leaves/chemistry , Camellia sinensis/classification , Nitrogen/analysis , Plant Leaves/classification , Quality Control
18.
J Sci Food Agric ; 100(1): 161-167, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31471904

ABSTRACT

BACKGROUND: Rapid and accurate diagnosis of nitrogen (N) status in field crops is of great significance for site-specific N fertilizer management. This study aimed to evaluate the potential of hyperspectral imaging coupled with chemometrics for the qualitative and quantitative diagnosis of N status in tea plants under field conditions. RESULTS: Hyperspectral data from mature leaves of tea plants with different N application rates were preprocessed by standard normal variate (SNV). Partial least squares discriminative analysis (PLS-DA) and least squares-support vector machines (LS-SVM) were used for the classification of different N status. Furthermore, partial least squares regression (PLSR) was used for the prediction of N content. The results showed that the LS-SVM model yielded better performance with correct classification rates of 82% and 92% in prediction sets for the diagnosis of different N application rates and N status, respectively. The PLSR model for leaf N content (LNC) showed excellent performance, with correlation coefficients of 0.924, root mean square error of 0.209, and residual predictive deviation of 2.686 in the prediction set. In addition, the important wavebands of the PLSR model were interpreted based on regression coefficients. CONCLUSION: Overall, our results suggest that the hyperspectral imaging technique can be an effective and accurate tool for qualitative and quantitative diagnosis of N status in tea plants. © 2019 Society of Chemical Industry.


Subject(s)
Camellia sinensis/chemistry , Nitrogen/analysis , Spectrum Analysis/methods , Camellia sinensis/metabolism , Fertilizers/analysis , Least-Squares Analysis , Nitrogen/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Support Vector Machine
19.
Analyst ; 144(8): 2584-2593, 2019 Apr 08.
Article in English | MEDLINE | ID: mdl-30830127

ABSTRACT

The fast and precise detection of potential allergen-specific immunoglobulin E (sIgE) is imperative for the diagnosis and appropriate treatment of allergic diseases. In this study, we have successfully fabricated a novel paper-based immunoassay device for the detection of sIgE in allergic diseases. We used Can f 1, one of the main dog allergens, as a model allergen to detect sIgE in human sera. To achieve excellent performance, the experimental parameters were optimized. Further, we extended this device for potential applications in the clinical diagnosis of allergic diseases: worthwhile clinical performance in the detection of allergens was achieved as compared to that achieved by commercial enzyme-linked immunosorbent assay (ELISA) kit. Therefore, it was proven that this strategy has the advantages of high-throughput, rapid, sensitive, and highly accurate detection of trace amounts of sIgEs. Furthermore, by simply changing the antigen and antibody, this device could be used for the high-throughput detection of other allergens, so as to achieve multiallergen detection and appropriate desensitization therapy, thereby making it promising in the determination of allergic diseases in clinics.


Subject(s)
Allergens/immunology , Enzyme-Linked Immunosorbent Assay/methods , Hypersensitivity/immunology , Immunoglobulin E/blood , Luminescent Measurements/methods , Paper , Allergens/genetics , Allergens/isolation & purification , Animals , Armoracia/enzymology , Cattle , Enzyme-Linked Immunosorbent Assay/instrumentation , Escherichia coli/genetics , Horseradish Peroxidase/chemistry , Humans , Hydrogen-Ion Concentration , Immunoglobulin E/immunology , Luminescence , Luminol/chemistry , Oxidation-Reduction , Reproducibility of Results , Serum Albumin, Bovine/chemistry , Temperature
20.
Yi Chuan ; 41(10): 905-918, 2019 Oct 20.
Article in Zh | MEDLINE | ID: mdl-31624053

ABSTRACT

Brain development diseases refer to a group of diseases that affect the development of the brain or the central nervous system. Autosomal recessive primary microcephaly (MCPH) is a typical neurodevelopmental disorder characterized by a decreased brain size, mental retardation and abnormal behaviors. To date, at least 25 genes have been discovered to cause MCPH when mutated. These genes were named MCPH1-25 according to the discovery order. MCPH proteins play important roles in regulating brain developmental signaling pathways. Here, we provide a timely review of the expression patterns, cellular localization, molecular functions, phenotypes, as well as animal models of these 25 MCPH proteins that will expedite our understanding of the pathogenesis of brain disorders at both molecular and cellular levels.


Subject(s)
Cell Cycle Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Microcephaly/genetics , Nerve Tissue Proteins/genetics , Animals , Brain , Cytoskeletal Proteins , Humans , Microcephaly/pathology , Mutation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL