Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
Add more filters

Publication year range
1.
Nat Rev Mol Cell Biol ; 19(9): 563-578, 2018 09.
Article in English | MEDLINE | ID: mdl-29930302

ABSTRACT

Metabolism and gene expression, which are two fundamental biological processes that are essential to all living organisms, reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival and differentiation. Metabolism feeds into the regulation of gene expression via metabolic enzymes and metabolites, which can modulate chromatin directly or indirectly - through regulation of the activity of chromatin trans-acting proteins, including histone-modifying enzymes, chromatin-remodelling complexes and transcription regulators. Deregulation of these metabolic activities has been implicated in human diseases, prominently including cancer.


Subject(s)
Chromatin/physiology , Gene Expression Regulation/physiology , Transcription Factors/metabolism , Animals , Histone Code/physiology , Histones/metabolism , Humans
2.
Mol Cell ; 70(2): 197-210.e7, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29677490

ABSTRACT

EGFR activates phosphatidylinositide 3-kinase (PI3K), but the mechanism underlying this activation is not completely understood. We demonstrated here that EGFR activation resulted in lysine acetyltransferase 5 (KAT5)-mediated K395 acetylation of the platelet isoform of phosphofructokinase 1 (PFKP) and subsequent translocation of PFKP to the plasma membrane, where the PFKP was phosphorylated at Y64 by EGFR. Phosphorylated PFKP binds to the N-terminal SH2 domain of p85α, which is distinct from binding of Gab1 to the C-terminal SH2 domain of p85α, and recruited p85α to the plasma membrane resulting in PI3K activation. PI3K-dependent AKT activation results in enhanced phosphofructokinase 2 (PFK2) phosphorylation and production of fructose-2,6-bisphosphate, which in turn promotes PFK1 activation. PFKP Y64 phosphorylation-enhanced PI3K/AKT-dependent PFK1 activation and GLUT1 expression promoted the Warburg effect, tumor cell proliferation, and brain tumorigenesis. These findings underscore the instrumental role of PFKP in PI3K activation and enhanced glycolysis through PI3K/AKT-dependent positive-feedback regulation.


Subject(s)
Brain Neoplasms/enzymology , Glioblastoma/enzymology , Glycolysis , Phosphatidylinositol 3-Kinases/metabolism , Phosphofructokinase-1, Type C/metabolism , Acetylation , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Class Ia Phosphatidylinositol 3-Kinase , Enzyme Activation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Feedback, Physiological , Fructosediphosphates/metabolism , Glioblastoma/genetics , Glioblastoma/pathology , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Humans , Lysine Acetyltransferase 5/genetics , Lysine Acetyltransferase 5/metabolism , Male , Mice, Inbred BALB C , Mice, Nude , Phosphatidylinositol 3-Kinases/genetics , Phosphofructokinase-1, Type C/genetics , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , src Homology Domains
3.
J Biol Chem ; 300(3): 105721, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38311175

ABSTRACT

Histone H3 tyrosine-99 sulfation (H3Y99sulf) is a recently identified histone mark that can cross-talk with H4R3me2a to regulate gene transcription, but its role in cancer biology is less studied. Here, we report that H3Y99sulf is a cancer-associated histone mark that can mediate hepatocellular carcinoma (HCC) cells responding to hypoxia. Hypoxia-stimulated SNAIL pathway elevates the expression of PAPSS2, which serves as a source of adenosine 3'-phosphate 5'-phos-phosulfate for histone sulfation and results in upregulation of H3Y99sulf. The transcription factor TDRD3 is the downstream effector of H3Y99sulf-H4R3me2a axis in HCC. It reads and co-localizes with the H3Y99sulf-H4R3me2a dual mark in the promoter regions of HIF1A and PDK1 to regulate gene transcription. Depletion of SULT1B1 can effectively reduce the occurrence of H3Y99sulf-H4R3me2a-TDRD3 axis in gene promoter regions and lead to downregulation of targeted gene transcription. Hypoxia-inducible factor 1-alpha and PDK1 are master regulators for hypoxic responses and cancer metabolism. Disruption of the H3Y99sulf-H4R3me2a-TDRD3 axis can inhibit the expression and functions of hypoxia-inducible factor 1-alpha and PDK1, resulting in suppressed proliferation, tumor growth, and survival of HCC cells suffering hypoxia stress. The present study extends the regulatory and functional mechanisms of H3Y99sulf and improves our understanding of its role in cancer biology.


Subject(s)
Carcinoma, Hepatocellular , Histones , Liver Neoplasms , Tyrosine , Humans , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Histones/metabolism , Hypoxia/genetics , Hypoxia-Inducible Factor 1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver Neoplasms/metabolism , Tyrosine/metabolism
4.
Nat Chem Biol ; 19(7): 855-864, 2023 07.
Article in English | MEDLINE | ID: mdl-36805701

ABSTRACT

Tyrosine sulfation is a common posttranslational modification in mammals. To date, it has been thought to be limited to secreted and transmembrane proteins, but little is known about tyrosine sulfation on nuclear proteins. Here we report that SULT1B1 is a histone sulfotransferase that can sulfate the tyrosine 99 residue of nascent histone H3 in cytosol. The sulfated histone H3 can be transported into the nucleus and majorly deposited in the promoter regions of genes in chromatin. While the H3Y99 residue is buried inside octameric nucleosome, dynamically regulated subnucleosomal structures provide chromatin-H3Y99sulf the opportunity of being recognized and bound by PRMT1, which deposits H4R3me2a in chromatin. Disruption of H3Y99sulf reduces PRMT1 binding to chromatin, H4R3me2a level and gene transcription. These findings reveal the mechanisms underlying H3Y99 sulfation and its cross-talk with H4R3me2a to regulate gene transcription. This study extends the spectrum of tyrosine sulfation on nuclear proteins and the repertoire of histone modifications regulating chromatin functions.


Subject(s)
Histones , Tyrosine , Animals , Histones/metabolism , Tyrosine/genetics , Chromatin , Nuclear Proteins/metabolism , Transcription, Genetic , Mammals/genetics
5.
Mol Cell ; 65(5): 917-931.e6, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28238651

ABSTRACT

Autophagy is crucial for maintaining cell homeostasis. However, the precise mechanism underlying autophagy initiation remains to be defined. Here, we demonstrate that glutamine deprivation and hypoxia result in inhibition of mTOR-mediated acetyl-transferase ARD1 S228 phosphorylation, leading to ARD1-dependent phosphoglycerate kinase 1 (PGK1) K388 acetylation and subsequent PGK1-mediated Beclin1 S30 phosphorylation. This phosphorylation enhances ATG14L-associated class III phosphatidylinositol 3-kinase VPS34 activity by increasing the binding of phosphatidylinositol to VPS34. ARD1-dependent PGK1 acetylation and PGK1-mediated Beclin1 S30 phosphorylation are required for glutamine deprivation- and hypoxia-induced autophagy and brain tumorigenesis. Furthermore, PGK1 K388 acetylation levels correlate with Beclin1 S30 phosphorylation levels and poor prognosis in glioblastoma patients. Our study unearths an important mechanism underlying cellular-stress-induced autophagy initiation in which the protein kinase activity of the metabolic enzyme PGK1 plays an instrumental role and reveals the significance of the mutual regulation of autophagy and cell metabolism in maintaining cell homeostasis.


Subject(s)
Autophagosomes/enzymology , Autophagy , Beclin-1/metabolism , Brain Neoplasms/enzymology , Glioblastoma/enzymology , Phosphoglycerate Kinase/metabolism , Acetylation , Animals , Autophagosomes/pathology , Beclin-1/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Female , Glioblastoma/genetics , Glioblastoma/pathology , Glutamine/deficiency , HEK293 Cells , Humans , Mice, Nude , N-Terminal Acetyltransferase A/genetics , N-Terminal Acetyltransferase A/metabolism , N-Terminal Acetyltransferase E/genetics , N-Terminal Acetyltransferase E/metabolism , Phosphoglycerate Kinase/genetics , Phosphorylation , Protein Binding , RNA Interference , Signal Transduction , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Time Factors , Transfection , Tumor Burden , Tumor Hypoxia
6.
J Neurosci ; 43(13): 2381-2397, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36813576

ABSTRACT

The mechanisms of many diseases, including central nervous system disorders, are regulated by circadian rhythms. The development of brain disorders such as depression, autism, and stroke is strongly associated with circadian cycles. Previous studies have shown that cerebral infarct volume is smaller at night (active phase) than during the day (inactive phase) in ischemic stroke rodent models. However, the underlying mechanisms remain unclear. Increasing evidence suggests that glutamate systems and autophagy play important roles in the pathogenesis of stroke. Here, we report that GluA1 expression was decreased and autophagic activity was increased in active-phase male mouse models of stroke compared with the inactive-phase models. In the active-phase model, induction of autophagy decreased the infarct volume, whereas inhibition of autophagy increased the infarct volume. Meanwhile, GluA1 expression was decreased following activation of autophagy and increased following inhibition of autophagy. We used Tat-GluA1 to uncouple p62, an autophagic adapter, from GluA1 and found that this blocked the degradation of GluA1, an effect similar to that of inhibition of autophagy in the active-phase model. We also demonstrated that knock-out of the circadian rhythm gene Per1 abolished the circadian rhythmicity of the volume of infarction and also abolished GluA1 expression and autophagic activity in wild-type (WT) mice. Our results suggest an underlying mechanism by which the circadian rhythm participates in the autophagy-dependent regulation of GluA1 expression, which influences the volume of infarction in stroke.SIGNIFICANCE STATEMENT Circadian rhythms affect the pathophysiological mechanisms of disease. Previous studies suggested that circadian rhythms affect the infarct volume in stroke, but the underlying mechanisms remain largely unknown. Here, we demonstrate that the smaller infarct volume after middle cerebral artery occlusion/reperfusion (MCAO/R) during the active phase is related to lower GluA1 expression and activation of autophagy. The decrease in GluA1 expression during the active phase is mediated by the p62-GluA1 interaction, followed by direct autophagic degradation. In short, GluA1 is the substrate of autophagic degradation, which mainly occurs after MCAO/R during the active phase but not the inactive phase.


Subject(s)
Brain Ischemia , Reperfusion Injury , Stroke , Male , Mice , Animals , Reperfusion Injury/metabolism , Brain Ischemia/metabolism , Stroke/pathology , Infarction, Middle Cerebral Artery/pathology , Circadian Rhythm , Autophagy/physiology
7.
Anticancer Drugs ; 35(6): 584-596, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38518088

ABSTRACT

Human epidermal growth factor receptor 2-tyrosine kinase inhibitors (HER2-TKIs) have been extensively utilized for treating HER2-positive metastatic breast cancer (MBC), with numerous clinical trial reports available. We aim to systematically perform a comprehensive clinical evaluation on HER2-TKIs, provide a reference for the clinical rational use of drugs, and serve for the decision-making of the national drug policy. We performed comprehensive clinical evaluation in six dimensions including safety, effectiveness, economy, suitability, accessibility, and innovation through meta-analysis, literature review, drug administration websites, and other relevant medication data to analyze HER2-TKIs in treating HER2-positive MBC. For safety, the risk of ≥ grade 3 adverse events among pyrotinib, lapatinib, and neratinib is not significantly different. Furthermore, pyrotinib and neratinib were found to be higher in the risk of ≥ grade 3 diarrhea than lapatinib, however the risk could be reversed and prevented with loperamide. Regarding effectiveness and economy, pyrotinib was confirmed to have the best efficacy and cost-utility value, neratinib the second, and lapatinib the third. As regards innovation and suitability, pyrotinib showed better than other HER2-TKIs. In addition, pyrotinib received a higher recommendation than other HER2-TKIs in patients with HER2-positive MBC. The accessibility of pyrotinib was found to be the best with better urban, rural, and national affordability and lower annual treatment costs. Pyrotinib is more valuable in clinics with better safety, effectiveness, economy, suitability, accessibility, and innovation in HER2-positive MBC. This study could provide references for the clinical application of HER2-TKIs in treating HER2-positive MBC.


Subject(s)
Breast Neoplasms , Protein Kinase Inhibitors , Receptor, ErbB-2 , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Receptor, ErbB-2/metabolism , Female , Protein Kinase Inhibitors/therapeutic use , Lapatinib/therapeutic use , Antineoplastic Agents/therapeutic use , Quinolines/therapeutic use , Quinolines/adverse effects , Acrylamides , Aminoquinolines
8.
Theor Appl Genet ; 136(1): 11, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36658295

ABSTRACT

KEY MESSAGE: A novel BrSCC1 gene for seed coat color was fine mapped within a 41.1-kb interval on chromosome A03 in Brassica rapa and functionally validated by ectopic expression analysis. Yellow seed is a valuable breeding trait that can be potentiality applied for improving seed quality and oil productivity in oilseed Brassica crops. However, only few genes for yellow seed have been identified in B. rapa. We previously identified a minor quantitative trait locus (QTL), qSC3.1, for seed coat color on chromosome A03 in B. rapa. In order to isolate the seed coat color gene, a brown-seeded chromosome segment substitution line, CSSL-38, harboring the qSC3.1, was selected and crossed with the yellow-seeded recurrent parent, a rapid cycling inbred line of B. rapa (RcBr), to construct the secondary F2 population. Metabolite identification suggested that seed coat coloration in CSSL-38 was independent of proanthocyanidins (PAs) accumulation. Genetic analysis revealed that yellow seed was controlled by a single recessive gene, Seed Coat Color 1 (BrSCC1). Utilizing bulked segregant analysis (BSA)-seq and secondary F2 and F2:3 recombinants analysis, BrSCC1 was fine mapped within a 41.1-kb interval. By integrating gene expression profiling, genome sequence comparison, metabolite analysis, and functional validation through ectopic expression in Arabidopsis, the BraA03g040800.3C gene was confirmed to be BrSCC1, which positively correlated with the seed coat coloration. Our study provides a novel gene resource for the genetic improvement of yellow seeds in oilseed B. rapa.


Subject(s)
Brassica rapa , Brassica rapa/genetics , Chromosome Mapping , Genes, Plant , Cloning, Molecular , Seeds/genetics
9.
BMC Neurol ; 23(1): 56, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36732686

ABSTRACT

OBJECTIVE: This study aimed to assess the clinical characteristics of cerebral venous sinus thrombosis (CVT) patients with new-onset headache and to identify the risk factors for headache in this population. METHODS: We retrospectively reviewed the demographic and clinical data of 69 CVT patients recruited between September 2017 and September 2019. Patients were classified into two groups, the headache group and the non-headache group, according to the presence or absence of new-onset headache symptoms at admission. The following characteristics and parameters were measured and analyzed, including gender, age, amount of thromboembolic cerebral venous sinus(ATCVS), and other relevant indicators. RESULTS: The incidence of headache was 75% in this cohort. The proportion of female patients in the headache group was higher than that in the non-headache group. Patients in the headache group were younger than those without headache. CVT patients of headache group showed higher lymphocyte ratio (LR), blood urea nitrogen (BUN), and intracranial pressure (ICP) compared to the non-headache group, whereas mean corpuscular volume (MCV) and levels of protein (cerebrospinal fluid, CSF) and lactic dehydrogenase (LDH) in CSF were lower in headache patients. The data also revealed younger age and the increased level of chloride ion CI-(CSF) were the risk factors for the occurrence of headache in CVT patients. CONCLUSION: Age, LR, MCV, BUN levels, ICP, protein (CSF), and LDH (CSF) in patients with headache were significantly different from those in the non-headache group at admission. Younger age and a level of CI- (CSF) were risk factors for headache in CVT patients. These findings may provide guidance for clinical diagnosis and treatment of CVT.


Subject(s)
Cerebral Veins , Intracranial Thrombosis , Sinus Thrombosis, Intracranial , Venous Thrombosis , Humans , Female , Retrospective Studies , Venous Thrombosis/diagnosis , Headache/etiology , Sinus Thrombosis, Intracranial/complications , Sinus Thrombosis, Intracranial/epidemiology , Intracranial Thrombosis/complications
10.
J Immunol ; 206(10): 2376-2385, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33893171

ABSTRACT

NLRP3 inflammasome plays an important role in innate immune system through recognizing pathogenic microorganisms and danger-associated molecules. Deubiquitination of NLRP3 has been shown to be essential for its activation, yet the functions of Ubc13, the K63-linked specific ubiquitin-conjugating enzyme E2, in NLRP3 inflammasome activation are not known. In this study, we found that in mouse macrophages, Ubc13 knockdown or knockout dramatically impaired NLRP3 inflammasome activation. Catalytic activity is required for Ubc13 to control NLRP3 activation, and Ubc13 pharmacological inhibitor significantly attenuates NLRP3 inflammasome activation. Mechanistically, Ubc13 associates with NLRP3 and promotes its K63-linked polyubiquitination. Through mass spectrum and biochemical analysis, we identified lysine 565 and lysine 687 as theK63-linked polyubiquitination sites of NLRP3. Collectively, our data suggest that Ubc13 potentiates NLRP3 inflammasome activation via promoting site-specific K63-linked ubiquitination of NLRP3. Our study sheds light on mechanisms of NLRP3 inflammasome activation and identifies that targeting Ubc13 could be an effective therapeutic strategy for treating aberrant NLRP3 inflammasome activation-induced pathogenesis.


Subject(s)
Inflammasomes/metabolism , Lysine/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polyubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/deficiency , Ubiquitination/genetics , Animals , HEK293 Cells , Humans , Inflammasomes/immunology , Macrophages/immunology , Mice , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Protein Binding , Transfection , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination/drug effects
11.
Nature ; 552(7684): 273-277, 2017 12 14.
Article in English | MEDLINE | ID: mdl-29211711

ABSTRACT

Histone modifications, such as the frequently occurring lysine succinylation, are central to the regulation of chromatin-based processes. However, the mechanism and functional consequences of histone succinylation are unknown. Here we show that the α-ketoglutarate dehydrogenase (α-KGDH) complex is localized in the nucleus in human cell lines and binds to lysine acetyltransferase 2A (KAT2A, also known as GCN5) in the promoter regions of genes. We show that succinyl-coenzyme A (succinyl-CoA) binds to KAT2A. The crystal structure of the catalytic domain of KAT2A in complex with succinyl-CoA at 2.3 Å resolution shows that succinyl-CoA binds to a deep cleft of KAT2A with the succinyl moiety pointing towards the end of a flexible loop 3, which adopts different structural conformations in succinyl-CoA-bound and acetyl-CoA-bound forms. Site-directed mutagenesis indicates that tyrosine 645 in this loop has an important role in the selective binding of succinyl-CoA over acetyl-CoA. KAT2A acts as a succinyltransferase and succinylates histone H3 on lysine 79, with a maximum frequency around the transcription start sites of genes. Preventing the α-KGDH complex from entering the nucleus, or expression of KAT2A(Tyr645Ala), reduces gene expression and inhibits tumour cell proliferation and tumour growth. These findings reveal an important mechanism of histone modification and demonstrate that local generation of succinyl-CoA by the nuclear α-KGDH complex coupled with the succinyltransferase activity of KAT2A is instrumental in histone succinylation, tumour cell proliferation, and tumour development.


Subject(s)
Histone Acetyltransferases/metabolism , Histones/metabolism , Ketoglutarate Dehydrogenase Complex/metabolism , Acetyl Coenzyme A/metabolism , Acyl Coenzyme A/metabolism , Animals , Cell Line, Tumor , Cell Nucleus/metabolism , Cell Proliferation , Crystallography, X-Ray , Female , Gene Expression Regulation , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Histones/chemistry , Humans , Lysine/metabolism , Mice , Models, Molecular , Mutagenesis, Site-Directed , Neoplasms/enzymology , Neoplasms/metabolism , Neoplasms/pathology , Protein Binding , Protein Domains , Transcription Initiation Site , Tyrosine/genetics , Tyrosine/metabolism
12.
Nutr Neurosci ; 26(12): 1183-1193, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36342063

ABSTRACT

OBJECTIVE: Consumption of a modern Western-type high-fat low-fiber diet increases the risk of obesity. However, how a host responds to such a diet, especially during the early period of dietary transition from a previous low-fat and fiber-rich diet, remains poorly explored. METHODS: Wild-type C57BL/6 mice were fed a normal chow diet or a high-fat diet. Enteric glial cell (EGC) activation was detected through quantitative real-time PCR (qRT-PCR), immunoblotting and immunohistology analysis. Fluorocitrate or genetic deletion of glial fibrillary acidic protein (GFAP)-positive glial-intrinsic myeloid differentiation factor 88 (Myd88) was used to inhibit EGC activation, and the effect of a high-fat diet on obesity was further investigated. The role of MYD88-dependent sensing of commensal products in adipocyte was observed to analyze the effect of obesity. RESULTS: A dietary shift from a normal chow diet to a high-fat diet in mice induced a transient early-phase emergence of a GFAP-positive EGC network in the lamina propria of the ileum, accompanied with an increase in glial-derived neurotrophic factor production. Inhibition of glial cell activity blocked this response. GFAP-positive glial Myd88 knockout mice gained less body weight after high-fat diet (HFD) feeding than littermate controls. In contrast, adipocyte deletion of Myd88 in mice had no effect on weight gain but instead exacerbated glucose intolerance. Furthermore, short-term fluorocitrate intervention during HFD feeding attenuated body weight gain. CONCLUSIONS: Our findings indicate that EGCs are early responders to intestinal ecosystem changes and the GFAP-positive glial Myd88 signaling participates in regulating obesity.


Subject(s)
Ecosystem , Myeloid Differentiation Factor 88 , Animals , Mice , Body Weight , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Mucous Membrane/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Neuroglia/metabolism , Obesity/metabolism , Weight Gain
13.
Acta Microbiol Immunol Hung ; 70(4): 288-294, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38063919

ABSTRACT

Aim of this study was to explore molecular characteristics and resistance mechanisms of carbapenem-resistant Raoultella ornithinolytica (CR-ROR) isolated from patients in a hospital in China. Three CR-ROR strains were collected and bacterial identification was done by Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) Vitek-MS and by digital DDH analysis. VITEK 2 compact system and Kirby-Bauer (K-B) disk diffusion were used for antimicrobial susceptibility testing. Whole genome sequencing was carried out using the Illumina platform NovaSeq sequencer. Abricate software was used for the prediction of antibiotic resistance genes of three CR-ROR strains. The phylogenetic tree was constructed through genome SNPs to investigate the genetic relationship of three CR-ROR strains. Three CR-ROR (WF1357, WF2441, and WF3367) strains were collected in this study. Two strains were isolated from neurosurgery (WF1357 and WF2441), and one was isolated from pulmonology department (WF3367). All strains harboured multiple antibiotic resistance genes. Two strains (WF1357, WF2441) carried the blaNDM-1 gene, one of the strains (WF3367) carried the blaKPC-2 gene. Three CR-RORs were resistant to different antimicrobial agents including carbapenems. The three CR-ROR strains collected in this study and 51 CR-ROR strain genomes downloaded from NCBI, were divided into six evolutionary groups (A-F). In this study, three CR-ROR strains were found to have a higher level of resistance to antibacterial agents and carried multiple antibiotic resistance genes. The CR-ROR strains carrying multiple antibacterial resistant genes require the stringent monitoring to avoid the spread of multidrug-resistant bacterial strains.


Subject(s)
Carbapenems , beta-Lactamases , Humans , Carbapenems/pharmacology , Phylogeny , beta-Lactamases/genetics , Enterobacteriaceae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Klebsiella pneumoniae/genetics
14.
J Environ Manage ; 344: 118421, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37384986

ABSTRACT

Soil organic carbon (SOC), as a crucial measure of soil quality, is typically low in arid regions due to salinization, which is a global issue. How soil organic carbon changes with salinization is not a simple concept, as high salinity simultaneously affects plant inputs and microbial decomposition, which exert opposite effects on SOC accumulation. Meanwhile, salinization could affect SOC by altering soil Ca2+ (a salt component), which stabilizes organic matter via cation bridging, but this process is often overlooked. Here, we aimed to explore i) how soil organic carbon changes with salinization induced by saline-water irrigation and ii) which process drives soil organic carbon content with salinization, plant inputs, microbial decomposition, or soil Ca2+ level. To this end, we assessed SOC content, plant inputs represented by aboveground biomass, microbial decomposition revealed by extracellular enzyme activity, and soil Ca2+ along a salinity gradient (0.60-31.09 g kg-1) in the Taklamakan Desert. We found that, in contrast to our prediction, SOC in the topsoil (0-20 cm) increased with soil salinity, but it did not change with the aboveground biomass of the dominant species (Haloxylon ammodendron) or the activity of three carbon-cycling relevant enzymes (ß-glucosidase, cellulosidase, and N-acetyl-beta-glucosaminidase) along the salinity gradient. Instead, SOC changed positively with soil exchangeable Ca2+, which increased linearly with salinity. These results suggest that soil organic carbon accumulation could be driven by increases in soil exchangeable Ca2+ under salinization in salt-adapted ecosystems. Our study provides empirical evidence for the beneficial impact of soil Ca2+ on organic carbon accumulation in the field under salinization, which is apparent and should not be disregarded. In addition, the management of soil carbon sequestration in salt-affected areas should be taken into account by adjusting the soil exchangeable Ca2+ level.


Subject(s)
Carbon , Soil , Ecosystem , Calcium , Water , Sodium Chloride , Plants
15.
Glia ; 70(11): 2079-2092, 2022 11.
Article in English | MEDLINE | ID: mdl-35778934

ABSTRACT

The pro-inflammatory cytokine interleukin 17 (IL-17), that is mainly produced by Th17 cells, has been recognized as a key regulator in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). Reactive astrocytes stimulated by proinflammatory cytokines including IL-17 are involved in blood brain barrier destruction, inflammatory cells infiltration and spinal cord injury. However, the role of long non-coding RNAs (lncRNAs) induced by IL-17 in the pathogenesis of MS and EAE remains unknown. Herein, we found that an IL-17-induced lncRNA AK018453 promoted TGF-ß receptor-associated protein 1 (TRAP1) expression and Smad-dependent signaling in mouse primary astrocytes. Knockdown of AK018453 significantly suppressed astrocytosis, attenuated the phosphorylation of Smad2/3, reduced NF-κB p65 and CBP/P300 binding to the TRAP1 promoter, and diminished pro-inflammatory cytokine production in the IL-17-treated astrocytes. AK018453 knockdown in astrocytes by a lentiviral vector in vivo dramatically inhibited inflammation and prevented the mice from demyelination in the spinal cord during the progression of EAE. Together, these results suggest that AK018453 regulates IL-17-dependent inflammatory response in reactive astrocytes and potentially promotes the pathogenesis of EAE via the TRAP1/Smad pathway. Targeting this pathway may have a therapeutic potential for intervening inflammatory demyelinating diseases.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , RNA, Long Noncoding , Animals , Astrocytes/metabolism , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Interleukin-17 , Mice , Mice, Inbred C57BL , RNA, Long Noncoding/genetics , Receptors, Transforming Growth Factor beta/metabolism , Smad Proteins/metabolism , Spinal Cord/metabolism
16.
Small ; 18(34): e2203396, 2022 08.
Article in English | MEDLINE | ID: mdl-35906891

ABSTRACT

Biological ion channels exhibit excellent ion selectivity, but it has been challenging to design their artificial counterparts, especially for highly efficient separation of similar ions. Here, a new strategy to achieve high selectivity between alkali metal ions with artificial nanostructures is reported. Molecular dynamics (MD) simulations and experiments are combined to study the transportation of monovalent cations through graphene oxide (GO) nanoslits by applying pressure or/and electric fields. It is found that the ionic transport selectivity under the pressure driving reverses compared with that under the electric field driving. Moreover, MD simulations show that different monovalent cations can be separated with unprecedentedly high selectivity by applying opposite-oriented pressure and electric fields. This highly efficient separation originates from two distinctive ionic transporting modes, that is, hydration shells drive ions under pressure, but drag ions under the electric field. Hence, ions with different hydration strengths can be efficiently separated by tuning the net mobility induced by the two types of driving forces when the selected ions are kept moving while the other ones are immobilized. And nanoconfinement is confirmed to enhance the separation efficacy. This discovery paves a new avenue for separating similar ions without elaborately designing biomimetic nanostructures.


Subject(s)
Ion Channels , Molecular Dynamics Simulation , Cations, Monovalent , Electricity , Ions/chemistry
17.
Appl Environ Microbiol ; 88(6): e0241321, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35080909

ABSTRACT

Recent progress indicates that the gut microbiota plays important role in regulating the host's glucose homeostasis. However, the mechanisms remain unclear. Here, we reported that one integral member of the murine gut microbiota, the protozoan Tritrichomonas musculis could drive the host's glucose metabolic imbalance. Using metabolomics analysis and in vivo assays, we found that mechanistically this protozoan influences the host glucose metabolism by facilitating the production of a significant amount of free choline. Free choline could be converted sequentially by choline-utilizing bacteria and then the host to a final product trimethylamine N-oxide, which promoted hepatic gluconeogenesis. Together, our data reveal a previously underappreciated gut eukaryotic microorganism by working together with other members of microbiota to influence the host's metabolism. Our study underscores the importance and prevalence of metabolic interactions between the gut microbiota and the host in modulating the host's metabolic health. IMPORTANCE Blood glucose levels are important for human health and can be influenced by gut microbes. However, its mechanism of action was previously unknown. In this study, researchers identify a unique member of the gut microbes in mice that can influence glucose metabolism by promoting the host's ability to synthesis glucose by using nonglucose materials. This is because of its ability to generate the essential nutrient choline, and choline, aided by other gut bacteria and the host, is converted to trimethylamine N-oxide, which promotes glucose production. These studies show how gut microbes promote metabolic dysfunction and suggest novel approaches for treating patients with blood glucose abnormality.


Subject(s)
Choline , Gastrointestinal Microbiome , Animals , Choline/metabolism , Gastrointestinal Microbiome/physiology , Glucose , Homeostasis , Humans , Methylamines/metabolism , Mice , Mice, Inbred C57BL
18.
Theor Appl Genet ; 135(7): 2233-2246, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35532733

ABSTRACT

KEY MESSAGE: qFT7.1, a major QTL for flowering time in Brassica rapa was fine-mapped to chromosome A07 in a 56.4-kb interval, in which the most likely candidate gene is BraA07g018240.3C. In Brassica rapa, flowering time (FT) is an important agronomic trait that affects the yield, quality, and adaption. FT is a complicated trait that is regulated by many genes and is affected greatly by the environment. In this study, a chromosome segment substitution line (CSSL), CSSL16, was selected that showed later flowering than the recurrent parent, a rapid-cycling inbred line of B. rapa (RcBr). Using Bulked Segregant RNA sequencing, we identified a late flowering quantitative trait locus (QTL), designated as qFT7.1, on chromosome A07, based on a secondary-F2 population derived from the cross between CSSL16 and RcBr. qFT7.1 was further validated by conventional QTL mapping. This QTL explained 39.9% (logarithm of odds = 32.2) of the phenotypic variations and was fine mapped to a 56.4-kb interval using recombinant analysis. Expression analysis suggested that BraA07g018240.3C, which is homologous to ATC (encoding Arabidopsis thaliana CENTRORADIALIS homologue), a gene for delayed flowering in Arabidopsis, as the most promising candidate gene. Sequence analysis demonstrated that two synonymous mutations existed in the coding region and numerous bases replacements existed in promoter region between BraA07g018240.3C from CSSL16 and RcBr. The results will increase our knowledge related to the molecular mechanism of late flowering in B. rapa and lays a solid foundation for the breeding of late bolting B. rapa.


Subject(s)
Arabidopsis , Brassica rapa , Arabidopsis/genetics , Brassica rapa/genetics , Chromosome Mapping , Flowers/genetics , Plant Breeding , Quantitative Trait Loci
19.
Phys Chem Chem Phys ; 24(16): 9345-9359, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35383785

ABSTRACT

Here, we present new models to fit small angle X-ray scattering (SAXS) data for the characterization of ion tracks in polymers. Ion tracks in polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI) and polymethyl methacrylate (PMMA) were created by swift heavy ion irradiation using 197Au and 238U with energies between 185 MeV and 2.0 GeV. Transmission SAXS measurements were performed at the Australian Synchrotron. SAXS data were analysed using two new models that describe the tracks by a cylindrical structure composed of a highly damaged core with a gradual transition to the undamaged material. First, we investigate the 'Soft Cylinder Model', which assumes a smooth function to describe the transition region by a gradual change in density from a core to a matrix. As a simplified and computational less expensive version of the 'Soft Cylinder Model', the 'Core Transition Model' was developed to enable fast fitting. This model assumes a linear increase in density from the core to the matrix. Both models yield superior fits to the experimental SAXS data compared with the often-used simple 'Hard Cylinder Model' assuming a constant density with an abrupt transition.

20.
Mol Ther ; 29(3): 1258-1278, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33068778

ABSTRACT

Long non-coding RNAs (lncRNAs) are under active investigation in the development of cancers, including gastric cancer (GC). Oncogenic autophagy is required for cancer cell survival. The present study aimed to investigate the regulatory role of lncRNA small nucleolar host gene 11 (SNHG11) in GC. We show that SNHG11 is upregulated in GC, and that its upregulation correlated with dismal patient outcomes. Functionally, SNHG11 aggravated oncogenic autophagy to facilitate cell proliferation, stemness, migration, invasion, and epithelial-to-mesenchymal transition (EMT) in GC. Mechanistically, SNHG11 post-transcriptionally upregulated catenin beta 1 (CTNNB1) and autophagy related 12 (ATG12) through miR-483-3p/miR-1276, while the processing of precursor (pre-)miR-483/pre-miR-1276 was hindered by SNHG11. SNHG11 induced GSK-3ß ubiquitination through interacting with Cullin 4A (CUL4A) to further activate the Wnt/ß-catenin pathway. Intriguingly, SNHG11 regulated autophagy in a manner dependent on ATG12 rather than the Wnt/ß-catenin pathway, whereas SNHG11 contributed to the malignant behaviors of GC cells via both pathways. Finally, SNHG11 upregulation in GC cells was shown to be transcriptionally induced by TCF7L2. In conclusion, we reveal that SNHG11 is an onco-lncRNA in GC and might be a promising prognostic and therapeutic target for GC.


Subject(s)
Autophagy , Carcinogenesis , Epithelial-Mesenchymal Transition , RNA, Long Noncoding/genetics , Stomach Neoplasms/pathology , Wnt1 Protein/metabolism , beta Catenin/metabolism , Animals , Apoptosis , Autophagy-Related Protein 12/genetics , Autophagy-Related Protein 12/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Cullin Proteins/genetics , Cullin Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Prognosis , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Survival Rate , Tumor Cells, Cultured , Wnt1 Protein/genetics , Xenograft Model Antitumor Assays , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL