Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 299(12): 105391, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37898402

ABSTRACT

Ether-a-go-go (EAG) channels are key regulators of neuronal excitability and tumorigenesis. EAG channels contain an N-terminal Per-Arnt-Sim (PAS) domain that can regulate currents from EAG channels by binding small molecules. The molecular mechanism of this regulation is not clear. Using surface plasmon resonance and electrophysiology we show that a small molecule ligand imipramine can bind to the PAS domain of EAG1 channels and inhibit EAG1 currents via this binding. We further used a combination of molecular dynamics (MD) simulations, electrophysiology, and mutagenesis to investigate the molecular mechanism of EAG1 current inhibition by imipramine binding to the PAS domain. We found that Tyr71, located at the entrance to the PAS domain cavity, serves as a "gatekeeper" limiting access of imipramine to the cavity. MD simulations indicate that the hydrophobic electrostatic profile of the cavity facilitates imipramine binding and in silico mutations of hydrophobic cavity-lining residues to negatively charged glutamates decreased imipramine binding. Probing the PAS domain cavity-lining residues with site-directed mutagenesis, guided by MD simulations, identified D39 and R84 as residues essential for the EAG1 channel inhibition by imipramine binding to the PAS domain. Taken together, our study identified specific residues in the PAS domain that could increase or decrease EAG1 current inhibition by imipramine binding to the PAS domain. These findings should further the understanding of molecular mechanisms of EAG1 channel regulation by ligands and facilitate the development of therapeutic agents targeting these channels.


Subject(s)
Ether-A-Go-Go Potassium Channels , Imipramine , Electrophysiological Phenomena , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/genetics , Imipramine/chemistry , Imipramine/pharmacology , Protein Binding , Animals , Protein Domains , Mice , Xenopus
2.
Neuroimage ; 297: 120653, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795798

ABSTRACT

Perivascular cerebrospinal fluid (pCSF) flow is a key component of the glymphatic system. Arterial pulsation has been proposed as the main driving force of pCSF influx along the superficial and penetrating arteries; however, evidence of this mechanism in humans is limited. We proposed an experimental framework of dynamic diffusion tensor imaging with low b-values and ultra-long echo time (dynDTIlow-b) to capture pCSF flow properties during the cardiac cycle in human brains. Healthy adult volunteers (aged 17-28 years; seven men, one woman) underwent dynDTIlow-b using a 3T scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) with simultaneously recorded cardiac output. The results showed that diffusion tensors reconstructed from pCSF were mainly oriented in the direction of the neighboring arterial flow. When switching from vasoconstriction to vasodilation, the axial and radial diffusivities of the pCSF increased by 5.7 % and 4.94 %, respectively, suggesting that arterial pulsation alters the pCSF flow both parallel and perpendicular to the arterial wall. DynDTIlow-b signal intensity at b=0 s/mm2 (i.e., T2-weighted, [S(b=0 s/mm2)]) decreased in systole, but this change was ∼7.5 % of a cardiac cycle slower than the changes in apparent diffusivity, suggesting that changes in S(b=0 s/mm2) and apparent diffusivity arise from distinct physiological processes and potential biomarkers associated with perivascular space volume and pCSF flow, respectively. Additionally, the mean diffusivities of white matter showed cardiac-cycle dependencies similar to pCSF, although a delay relative to the peak time of apparent diffusivity in pCSF was present, suggesting that dynDTIlow-b could potentially reveal the dynamics of magnetic resonance imaging-invisible pCSF surrounding small arteries and arterioles in white matter; this delay may result from pulse wave propagation along penetrating arteries. In conclusion, the vasodilation-induced increases in axial and radial diffusivities of pCSF and mean diffusivities of white matter are consistent with the notion that arterial pulsation can accelerate pCSF flow in human brain. Furthermore, the proposed dynDTIlow-b technique can capture various pCSF dynamics in artery pulsation.

3.
Ecotoxicol Environ Saf ; 280: 116507, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38838465

ABSTRACT

Triclosan (TCS) is a broad-spectrum antibiotic widely used in various personal care products. Research has found that exposure to TCS can cause toxic effects on organisms including neurotoxicity, cardiotoxicity, disorders of lipid metabolism, and abnormal vascular development, and the corresponding toxic mechanisms are gradually delving into the level of abnormal expression of miRNA regulating gene expression. Although the downstream mechanism of TCS targeting miRNA abnormal expression to induce toxicity is gradually improving, its upstream mechanism is still in a fog. Starting from the abnormal expression data of circRNA in zebrafish larvae induced by TCS, this study conducted a hierarchical analysis of the expression levels of all circRNAs, differential circRNAs, and trend circRNAs, and identified 29 key circRNA events regulating miRNA abnormal expression. In combination with GO and KEGG, the effects of TCS exposure were analyzed from the function and signaling pathway of the corresponding circRNA host gene. Furthermore, based on existing literature evidence about the biological toxicity induced by TCS targeting miRNA as data support, a competing endogenous RNAs (ceRNA) network characterizing the regulatory relationship between circRNA and miRNA was constructed and optimized. Finally, a comprehensive Adverse Outcome Pathway (AOP) framework of multiple levels of events including circRNA, miRNA, mRNA, pathway, and toxicity endpoints was established to systematically elucidate the toxic mechanism of TCS. Moreover, the rationality of the AOP framework was verified from the expression level of miRNA and adverse outcomes such as neurotoxicity, cardiotoxicity, oxidative stress, and inflammatory response by knockdown of circRNA48. This paper not only provides the key circRNA events for exploring the upstream mechanism of miRNA regulating gene expression but also provides an AOP framework for comprehensively demonstrating the toxicity mechanism of TCS on zebrafish, which is a theoretical basis for subsequent hazard assessment and prevention and control of TCS.


Subject(s)
MicroRNAs , RNA, Circular , Triclosan , Zebrafish , Animals , Zebrafish/genetics , RNA, Circular/genetics , MicroRNAs/genetics , Triclosan/toxicity , Adverse Outcome Pathways , Water Pollutants, Chemical/toxicity , RNA, Messenger/genetics , RNA, Messenger/metabolism , Larva/drug effects , Larva/genetics
4.
Neuroimage ; 270: 119951, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36805091

ABSTRACT

Blood-brain barrier (BBB) impairment is an important pathophysiological process in Alzheimer's disease (AD) and a potential biomarker for early diagnosis of AD. However, most current neuroimaging methods assessing BBB function need the injection of exogenous contrast agents (or tracers), which limits the application of these methods in a large population. In this study, we aim to explore the feasibility of vascular water exchange MRI (VEXI), a diffusion-MRI-based method proposed to assess the BBB permeability to water molecules without using a contrast agent, in the detection of the BBB breakdown in AD. We tested VEXI on a 3T MRI scanner on three groups: AD patients (AD group), mild cognitive impairment (MCI) patients due to AD (MCI group), and the age-matched normal cognition subjects (NC group). Interestingly, we find that the apparent water exchange across the BBB (AXRBBB) measured by VEXI shows higher values in MCI compared with NC, and this higher AXRBBB happens specifically in the hippocampus. This increase in AXRBBB value gets larger and extends to more brain regions (medial orbital frontal cortex and thalamus) from MCI group to the AD group. Furthermore, we find that the AXRBBB values of these three regions is correlated significantly with the impairment of respective cognitive domains independent of age, sex and education. These results suggest VEXI is a promising method to assess the BBB breakdown in AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Blood-Brain Barrier/diagnostic imaging , Contrast Media , Water , Magnetic Resonance Imaging/methods , Cognitive Dysfunction/diagnostic imaging
5.
Anal Chem ; 95(4): 2523-2531, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36657481

ABSTRACT

Exosomes are recognized as noteworthy biomarkers playing unprecedented roles in intercellular communication and disease diagnosis and treatment. It is a prerequisite to obtain high-purity exosomes for the comprehension of exosome biochemistry and further illustration of their functionality/mechanisms. However, the isolation of nanoscale exosomes from endogenous proteins is particularly challenging for small-volume biological samples. Herein, a Dean-flow-coupled elasto-inertial microfluidic chip (DEIC) was developed. It consists of a spiral microchannel with dimensional confined concave structures and facilitates elasto-inertial separation of exosomes with lower protein contaminants from cell culture medium and human serum. The presence of 0.15% (w/v) poly-(oxyethylene) controls the elastic lift force acting on suspended nanoscale particles and makes it feasible for field-free purification of integrity exosomes with a 70.6% recovery and a 91.4% removal rate for proteins. As a proof of concept, the technique demonstrated the individual-vesicle-level biomarker (EpCAM and PD-L1) profiling in combination with simultaneous aptamer-mediated analysis to disclose the sensibility for immune response. Overall, DEIC enables the collection of high-purity exosomes and exhibits potential in integration with downstream analyses of exosomes.


Subject(s)
Exosomes , Humans , Exosomes/chemistry , Microfluidics/methods , Cell Culture Techniques , Proteins/analysis
6.
J Virol ; 96(8): e0016922, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35343762

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV-1) and SARS-CoV-2 are highly pathogenic to humans and have caused pandemics in 2003 and 2019, respectively. Genetically diverse SARS-related coronaviruses (SARSr-CoVs) have been detected or isolated from bats, and some of these viruses have been demonstrated to utilize human angiotensin-converting enzyme 2 (ACE2) as a receptor and to have the potential to spill over to humans. A pan-sarbecovirus vaccine that provides protection against SARSr-CoV infection is urgently needed. In this study, we evaluated the protective efficacy of an inactivated SARS-CoV-2 vaccine against recombinant SARSr-CoVs carrying two different spike proteins (named rWIV1 and rRsSHC014S, respectively). Although serum neutralizing assays showed limited cross-reactivity between the three viruses, the inactivated SARS-CoV-2 vaccine provided full protection against SARS-CoV-2 and rWIV1 and partial protection against rRsSHC014S infection in human ACE2 transgenic mice. Passive transfer of SARS-CoV-2-vaccinated mouse sera provided low protection for rWIV1 but not for rRsSHC014S infection in human ACE2 mice. A specific cellular immune response induced by WIV1 membrane protein peptides was detected in the vaccinated animals, which may explain the cross-protection of the inactivated vaccine. This study shows the possibility of developing a pan-sarbecovirus vaccine against SARSr-CoVs for future preparedness. IMPORTANCE The genetic diversity of SARSr-CoVs in wildlife and their potential risk of cross-species infection highlight the necessity of developing wide-spectrum vaccines against infection of various SARSr-CoVs. In this study, we tested the protective efficacy of the SARS-CoV-2 inactivated vaccine (IAV) against two SARSr-CoVs with different spike proteins in human ACE2 transgenic mice. We demonstrate that the SARS-CoV-2 IAV provides full protection against rWIV1 and partial protection against rRsSHC014S. The T-cell response stimulated by the M protein may account for the cross protection against heterogeneous SARSr-CoVs. Our findings suggest the feasibility of the development of pan-sarbecovirus vaccines, which can be a strategy of preparedness for future outbreaks caused by novel SARSr-CoVs from wildlife.


Subject(s)
COVID-19 Vaccines , Coronavirus Infections , Cross Protection , Spike Glycoprotein, Coronavirus , Vaccines, Inactivated , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chiroptera , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Cross Protection/immunology , Humans , Mice , Mice, Transgenic , Severe acute respiratory syndrome-related coronavirus/genetics , Severe acute respiratory syndrome-related coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Vaccines, Inactivated/immunology , Viral Zoonoses/prevention & control
7.
J Magn Reson Imaging ; 58(6): 1850-1860, 2023 12.
Article in English | MEDLINE | ID: mdl-37021659

ABSTRACT

BACKGROUND: Water exchange across blood-brain barrier (BBB) (WEXBBB ) is an emerging biomarker of BBB dysfunction with potential applications in many brain diseases. Several MRI methods have been proposed to measure WEXBBB , but evidence remains scarce whether different methods can produce comparable WEXBBB . PURPOSE: To explore whether dynamic contrast-enhanced (DCE)-MRI and vascular water exchange imaging (VEXI) could produce comparable WEXBBB in high-grade glioma (HGG) patients. STUDY TYPE: Prospective cross-sectional. SUBJECTS: 13 HGG patients (58.4 ± 9.4 years, 9 females, 4 WHO III and 9 WHO IV). FIELD STRENGTH/SEQUENCE: A 3 T, spoiled gradient-recalled-echo DCE-MRI and VEXI containing two pulsed-gradient spin-echo blocks separated by a mixing block. ASSESSMENTS: The enhanced tumor and contralateral normal-appearing white matter (cNAWM) volume-of-interests (VOIs) were drew by two neuroradiologists. And whole-brain NAWM and normal-appearing gray matter (NAGM) without tumor-affected regions were segmented by automated segmentation algorithm in FSL. STATISTICAL TESTS: Student's t-test was used to evaluate parameters difference between cNAWM and tumor, NAGM and NAWM, respectively. The correlation between vascular water efflux rate constant (kbo ) from DCE-MRI and apparent exchange rate across BBB (AXRBBB ) from VEXI was evaluated by Pearson correlation. P < 0.05 was considered statistically significant. RESULTS: Compared with cNAWM, both kbo and AXRBBB were significantly reduced in tumor (kbo = 3.50 ± 1.18 sec-1 vs. 1.03 ± 0.75 sec-1 ; AXRBBB = 3.54 ± 1.11 sec-1 vs. 1.94 ± 1.04 sec-1 ). Both kbo and AXRBBB showed significantly higher values in NAWM than NAGM (kbo = 3.50 ± 0.59 sec-1 vs. 2.10 ± 0.56 sec-1 ; AXRBBB = 3.35 ± 0.77 sec-1 vs. 2.07 ± 0.52 sec-1 ). The VOI-averaged kbo and AXRBBB were also linearly correlated in tumor, NAWM, and NAGM (r = 0.59). DATA CONCLUSION: DCE-MRI and VEXI showed comparable and correlated WEXBBB in HGG patients, suggesting that the consistence and reliability of these two MRI methods in measuring WEXBBB . EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 1.


Subject(s)
Brain Neoplasms , Glioma , Female , Humans , Blood-Brain Barrier/diagnostic imaging , Blood-Brain Barrier/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Reproducibility of Results , Cross-Sectional Studies , Prospective Studies , Magnetic Resonance Imaging/methods , Glioma/diagnostic imaging , Glioma/pathology , Contrast Media
8.
Cryobiology ; 113: 104563, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37532122

ABSTRACT

Acute extreme cold exposure impairs human health and even causes hypothermia which threatens human life. Liver, as a hub in metabolism and thermogenesis, is vital for cold acclimatization. Although accumulating evidence has suggested that cold exposure can cause liver damage, the underlying mechanisms remain poorly understood. This study investigated the role and underlying mechanisms of ferroptosis in cold stress-induced liver damage. To evaluate the role of ferroptosis in cold stress-induced liver damage, rats were pretreated with ferroptosis inhibitor liproxstatin-1 (Lip-1) before exposed to -10 °C for 8 h. Core body temperature was recorded. The levels of ferroptosis-related indicators were examined with the corresponding assay kits or by western blotting. Hepatic pathological changes were analyzed by hematoxylin-eosin staining and ultrastructural observation. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured to assess liver function. Rats were also pretreated with p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 or Dynamin-related protein 1 (Drp1) inhibitor Mdivi-1 to determine the underlying mechanisms. We found that Lip-1 inhibited ferroptosis, attenuated hepatic pathological damages and blocked the increased ALT and AST levels in cold-exposed rats. Moreover, Mdivi-1 inhibited mitochondrial fission and suppressed ferroptosis. Furthermore, SB203580 and Mdivi-1 administration alleviated cold stress-induced liver injury. Our results suggested that cold stress caused liver damage partially by inducing ferroptosis through the p38 MAPK/Drp1 pathway. These findings might provide an effective preventive and therapeutic target for cold stress-induced liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Ferroptosis , Rats , Humans , Animals , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Cold-Shock Response , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Cryopreservation/methods , Dynamins/genetics , Dynamins/metabolism , Liver/metabolism
9.
Proc Natl Acad Sci U S A ; 117(7): 3687-3692, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32029590

ABSTRACT

Despite the promise of immune checkpoint blockade (ICB) therapy against cancer, challenges associated with low objective response rates and severe systemic side effects still remain and limit its clinical applications. Here, we described a cold atmospheric plasma (CAP)-mediated ICB therapy integrated with microneedles (MN) for the transdermal delivery of ICB. We found that a hollow-structured MN (hMN) patch facilitates the transportation of CAP through the skin, causing tumor cell death. The release of tumor-associated antigens then promotes the maturation of dendritic cells in the tumor-draining lymph nodes, subsequently initiating T cell-mediated immune response. Anti-programmed death-ligand 1 antibody (aPDL1), an immune checkpoint inhibitor, released from the MN patch further augments the antitumor immunity. Our findings indicate that the proposed transdermal combined CAP and ICB therapy can inhibit the tumor growth of both primary tumors and distant tumors, prolonging the survival of tumor-bearing mice.


Subject(s)
Immunotherapy , Neoplasms/therapy , Plasma Gases/administration & dosage , Antibodies/administration & dosage , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , B7-H1 Antigen/immunology , Cell Line, Tumor , Cell Proliferation , Dendritic Cells/immunology , Humans , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/physiopathology , T-Lymphocytes/immunology
10.
Proc Natl Acad Sci U S A ; 117(47): 29512-29517, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33177238

ABSTRACT

Reduced ß-cell function and insulin deficiency are hallmarks of diabetes mellitus, which is often accompanied by the malfunction of glucagon-secreting α-cells. While insulin therapy has been developed to treat insulin deficiency, the on-demand supplementation of glucagon for acute hypoglycemia treatment remains inadequate. Here, we describe a transdermal patch that mimics the inherent counterregulatory effects of ß-cells and α-cells for blood glucose management by dynamically releasing insulin or glucagon. The two modules share a copolymerized matrix but comprise different ratios of the key monomers to be "dually responsive" to both hyper- and hypoglycemic conditions. In a type 1 diabetic mouse model, the hybrid patch effectively controls hyperglycemia while minimizing the occurrence of hypoglycemia in the setting of insulin therapy with simulated delayed meal or insulin overdose.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Drug Delivery Systems/methods , Glucagon/administration & dosage , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Animals , Blood Glucose/analysis , Blood Glucose/drug effects , Blood Glucose/metabolism , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/diagnosis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/diagnosis , Drug Combinations , Drug Compounding/methods , Drug Liberation , Drug Overdose/prevention & control , Glucagon/chemistry , Glucagon/pharmacokinetics , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Insulin/chemistry , Insulin/pharmacokinetics , Male , Mice , Polymerization , Solubility , Streptozocin , Transdermal Patch
11.
Proc Natl Acad Sci U S A ; 117(17): 9490-9496, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32253318

ABSTRACT

Currently, there are no approved specific antiviral agents for novel coronavirus disease 2019 (COVID-19). In this study, 10 severe patients confirmed by real-time viral RNA test were enrolled prospectively. One dose of 200 mL of convalescent plasma (CP) derived from recently recovered donors with the neutralizing antibody titers above 1:640 was transfused to the patients as an addition to maximal supportive care and antiviral agents. The primary endpoint was the safety of CP transfusion. The second endpoints were the improvement of clinical symptoms and laboratory parameters within 3 d after CP transfusion. The median time from onset of illness to CP transfusion was 16.5 d. After CP transfusion, the level of neutralizing antibody increased rapidly up to 1:640 in five cases, while that of the other four cases maintained at a high level (1:640). The clinical symptoms were significantly improved along with increase of oxyhemoglobin saturation within 3 d. Several parameters tended to improve as compared to pretransfusion, including increased lymphocyte counts (0.65 × 109/L vs. 0.76 × 109/L) and decreased C-reactive protein (55.98 mg/L vs. 18.13 mg/L). Radiological examinations showed varying degrees of absorption of lung lesions within 7 d. The viral load was undetectable after transfusion in seven patients who had previous viremia. No severe adverse effects were observed. This study showed CP therapy was well tolerated and could potentially improve the clinical outcomes through neutralizing viremia in severe COVID-19 cases. The optimal dose and time point, as well as the clinical benefit of CP therapy, needs further investigation in larger well-controlled trials.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/physiopathology , Female , Humans , Immunization, Passive , Male , Middle Aged , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/physiopathology , RNA, Viral , SARS-CoV-2 , Viral Load , COVID-19 Serotherapy
12.
Sheng Li Xue Bao ; 75(3): 351-359, 2023 Jun 25.
Article in Zh | MEDLINE | ID: mdl-37340644

ABSTRACT

To explore the changes of cold sensitivity after exposure to acute hypoxia and its mechanisms, Sprague-Dawley rats were divided into normoxia control group (21% O2, 25 °C), 10% O2 hypoxia group (10% O2, 25 °C), 7% O2 hypoxia group (7% O2, 25 °C), normoxia cold group (21% O2, 10 °C) and hypoxia cold group (7% O2, 10 °C). Cold foot withdrawal latency and preference temperature of each group were measured, skin temperatures were estimated using an infrared thermographic imaging camera, body core temperature was recorded by wireless telemetry system, immunohistochemical staining was used to detect the expression of c-Fos in the lateral parabrachial nucleus (LPB). The results showed that acute hypoxia significantly prolonged the latency of cold foot withdrawal and significantly enhanced the intensity of cold stimulation for foot withdrawal, and the rats under hypoxia preferred cold temperature. Cold exposure (10 °C) for 1 h significantly enhanced the expression of c-Fos in LPB of rats in normoxia, while hypoxia inhibited cold-induced c-Fos expression. Acute hypoxia significantly increased the skin temperature of feet and tails, decreased the skin temperature of interscapular region, and decreased the body core temperature of rats. These results indicate that acute hypoxia can significantly blunt cold sensitivity through the inhibition of LPB, suggesting actively keeping warm measures should be taken at the early stage after ascent to high altitude to prevent the upper respiratory infection and acute mountain sickness.


Subject(s)
Parabrachial Nucleus , Rats , Animals , Rats, Sprague-Dawley , Parabrachial Nucleus/physiology , Temperature , Cold Temperature , Hypoxia , Proto-Oncogene Proteins c-fos
13.
J Cell Mol Med ; 26(5): 1515-1529, 2022 03.
Article in English | MEDLINE | ID: mdl-35068055

ABSTRACT

Small molecule drug intervention for chondrocytes is a valuable method for the treatment of osteoarthritis (OA). The 4-octyl itaconate (OI) is a cellular derivative of itaconate with sound cell permeability and transformation rate. We attempted to confirm the protective role of OI in chondrocytes and its regulatory mechanism. We used lipopolysaccharide (LPS) to induce chondrocyte inflammation injury. After the OI treatment, the secretion and mRNA expression of Il-6, Il-10, Mcp-1 and Tnf-α were detected by ELISA and qPCR. The protective effect of OI on articular cartilage was further verified in surgical destabilization of the medial meniscus model of OA. Cell death and apoptosis were evaluated based on CCK8, LDH, Typan blue staining, Annexin V and TUNEL analyses. The small interfering RNAs were used to knockout the Nrf2 gene of chondrocytes to verify the OI-mediated Nrf2 signalling pathway. The results revealed that OI protects cells from LPS-induced inflammatory injury and attenuates cell death and apoptosis induced by LPS. Similar protective effects were also observed on articular cartilage in mice. The OI activated Nrf2 signalling pathway and promoted the stable expression and translocation of Nrf2 into the nucleus. When the Nrf2 signalling pathway was blocked, the protective effect of OI was significantly counteracted in chondrocytes and a mouse arthritis model. Both itaconate and its derivative (i.e., OI) showed important medical effects in the treatment of OA.


Subject(s)
NF-E2-Related Factor 2 , Osteoarthritis , Animals , Apoptosis , Chondrocytes/metabolism , Lipopolysaccharides/pharmacology , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Osteoarthritis/chemically induced , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Signal Transduction , Succinates
14.
J Virol ; 95(6)2021 02 24.
Article in English | MEDLINE | ID: mdl-33408178

ABSTRACT

Coxsackievirus A5 (CV-A5) has recently emerged as a main hand, foot, and mouth disease (HFMD) pathogen. Following a large-scale vaccination campaign against enterovirus 71 (EV-71) in China, the number of HFMD-associated cases with EV-71 was reduced, especially severe and fatal cases. However, the total number of HFMD cases remains high, as HFMD is also caused by other enterovirus serotypes. A multivalent HFMD vaccine containing 4 or 6 antigens of enterovirus serotypes is urgently needed. A formaldehyde-inactivated CV-A5 vaccine derived from Vero cells was used to inoculate newborn Kunming mice on days 3 and 10. The mice were challenged on day 14 with a mouse-adapted CV-A5 strain at a dose that was lethal for 14-day-old suckling mice. Within 14 days postchallenge, groups of mice immunized with three formulations, empty particles (EPs), full particles (FPs), and a mixture of the EP and FP vaccine candidates, all survived, while 100% of the mock-immunized mice died. Neutralizing antibodies (NtAbs) were detected in the sera of immunized mice, and the NtAb levels were correlated with the survival rate of the challenged mice. The virus loads in organs were reduced, and pathological changes and viral protein expression were weak or not observed in the immunized mice compared with those in alum-inoculated control mice. Another interesting finding was the identification of CV-A5 dense particles (DPs), facilitating morphogenesis study. These results demonstrated that the Vero cell-adapted CV-A5 strain is a promising vaccine candidate and could be used as a multivalent HFMD vaccine component in the future.IMPORTANCE The vaccine candidate strain CV-A5 was produced with a high infectivity titer and a high viral particle yield. Three particle forms, empty particles (EPs), full particles (FPs), and dense particles (DPs), were obtained and characterized after purification. The immunogenicities of EP, FP, and the EP and FP mixture were evaluated in mice. Mouse-adapted CV-A5 was generated as a challenge strain to infect 14-day-old mice. An active immunization challenge mouse model was established to evaluate the efficacy of the inactivated vaccine candidate. This animal model mimics vaccination, similar to immune responses of the vaccinated. The animal model also tests protective efficacy in response to the vaccine against the disease. This work is important for the preparation of multivalent vaccines against HFMD caused by different emerging strains.


Subject(s)
Enterovirus A, Human/immunology , Hand, Foot and Mouth Disease/prevention & control , Vaccination/methods , Viral Vaccines/administration & dosage , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Chlorocebus aethiops , Disease Models, Animal , Hand, Foot and Mouth Disease/virology , Mice , Serogroup , Vaccines, Combined/administration & dosage , Vaccines, Combined/immunology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Vero Cells , Viral Load , Viral Vaccines/immunology , Virion/immunology
15.
Environ Sci Technol ; 56(16): 11343-11353, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35904865

ABSTRACT

In situ chemical oxidation (ISCO) has proven successful in the remediation of aquifers contaminated with dense nonaqueous phase liquids (DNAPLs). However, the treatment efficiency can often be hampered by the formation of solids or gas, reducing the contact between remediation agents and residual DNAPLs. To further improve the efficiency of ISCO, fundamental knowledge is needed about the complex multiphase flow and reactive transport processes as new solid and fluid phases emerge at the microscale. Here, via microfluidic experiments, we study the pore-scale dynamics of trichloroethylene degradation by permanganate. We visualize how the remediation evolves under the influence of solid phase emergence and explore the roles of injection rate, oxidant concentration, and stabilization supplement. Combining image processing, pressure analysis, and stoichiometry calculations, we provide comprehensive descriptions of the oxidant concentration-dependent growth patterns of the solid phase and their impact on the remediation efficiency. We further corroborate the stabilization mechanism provided by phosphate supplement, which is effective in inhibiting solid phase generation and thus highly beneficial for the oxidation remediation. This work elucidates the pore-scale mechanisms during remediation of chlorinated solvents with a particular context in the solid phase production and the associated effects, which is of general significance to understanding various processes in natural and engineered systems involving solid phase emergence or aggregation phenomena, such as groundwater and soil remediation.


Subject(s)
Environmental Restoration and Remediation , Groundwater , Trichloroethylene , Water Pollutants, Chemical , Groundwater/analysis , Oxidants , Oxidation-Reduction , Water Pollutants, Chemical/analysis
16.
Proc Natl Acad Sci U S A ; 116(22): 10744-10748, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31097579

ABSTRACT

Insulin therapy in the setting of type 1 and advanced type 2 diabetes is complicated by increased risk of hypoglycemia. This potentially fatal complication could be mitigated by a glucose-responsive insulin analog. We report an insulin-facilitated glucose transporter (Glut) inhibitor conjugate, in which the insulin molecule is rendered glucose-responsive via conjugation to an inhibitor of Glut. The binding affinity of this insulin analog to endogenous Glut is modulated by plasma and tissue glucose levels. In hyperglycemic conditions (e.g., uncontrolled diabetes or the postprandial state), the in situ-generated insulin analog-Glut complex is driven to dissociate, freeing the insulin analog and glucose-accessible Glut to restore normoglycemia. Upon overdose, enhanced binding of insulin analog to Glut suppresses the glucose transport activity of Glut to attenuate further uptake of glucose. We demonstrate the ability of this insulin conjugate to regulate blood glucose levels within a normal range while mitigating the risk of hypoglycemia in a type 1 diabetic mouse model.


Subject(s)
Blood Glucose/drug effects , Glucose Transport Proteins, Facilitative/antagonists & inhibitors , Hypoglycemia/prevention & control , Hypoglycemic Agents , Insulin , Animals , Blood Glucose/analysis , Diabetes Mellitus, Experimental , Drug Delivery Systems/methods , Hyperglycemia/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Insulin/analogs & derivatives , Insulin/chemistry , Insulin/pharmacology , Mice
17.
Angew Chem Int Ed Engl ; 61(10): e202113653, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34978127

ABSTRACT

It is very challenging to prepare stable radicals as they are usually thermodynamically or kinetically unstable in air. Herein, a series of star-shaped aromatic nitric acid radicals were prepared via facile demethylation and consequent oxidation. As phenol radicals without steric hindrance group protection, they exhibit high electrochemical and thermal stability due to their rich resonance structures including closed-shell nitro-like and open-shell nitroxide structure with unpaired electrons delocalized in conjugated backbones. Among them, TPA-TPA-O6 powder exhibited extremely wide absorption from 300 to 2000 nm covering the whole solar spectral irradiance, high photothermal conversion efficiency, and negligible photobleaching effect in seawater desalination. Under the irradiation of one sunlight, the water evaporation efficiency of TPA-TPA-O6 is recorded to be as high as 89.41 % and the water evaporation rate is 1.293 kg m-2 h-1 , which represents the top performance in pure organic small molecule photothermal materials.

18.
J Biol Chem ; 295(24): 8164-8173, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32341127

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are major regulators of synaptic plasticity and rhythmic activity in the heart and brain. Opening of HCN channels requires membrane hyperpolarization and is further facilitated by intracellular cyclic nucleotides (cNMPs). In HCN channels, membrane hyperpolarization is sensed by the membrane-spanning voltage sensor domain (VSD), and the cNMP-dependent gating is mediated by the intracellular cyclic nucleotide-binding domain (CNBD) connected to the pore-forming S6 transmembrane segment via the C-linker. Previous functional analysis of HCN channels has suggested a direct or allosteric coupling between the voltage- and cNMP-dependent activation mechanisms. However, the specifics of this coupling remain unclear. The first cryo-EM structure of an HCN1 channel revealed that a novel structural element, dubbed the HCN domain (HCND), forms a direct structural link between the VSD and C-linker-CNBD. In this study, we investigated the functional significance of the HCND. Deletion of the HCND prevented surface expression of HCN2 channels. Based on the HCN1 structure analysis, we identified Arg237 and Gly239 residues on the S2 of the VSD that form direct interactions with Ile135 on the HCND. Disrupting these interactions abolished HCN2 currents. We also identified three residues on the C-linker-CNBD (Glu478, Gln482, and His559) that form direct interactions with residues Arg154 and Ser158 on the HCND. Disrupting these interactions affected both voltage- and cAMP-dependent gating of HCN2 channels. These findings indicate that the HCND is necessary for the cell-surface expression of HCN channels and provides a functional link between voltage- and cAMP-dependent mechanisms of HCN channel gating.


Subject(s)
Cell Membrane/metabolism , Cyclic AMP/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Ion Channel Gating , Amino Acid Sequence , Animals , HEK293 Cells , Humans , Mice , Protein Binding , Protein Domains , Sequence Deletion , Structure-Activity Relationship , Xenopus laevis
19.
J Biol Chem ; 295(13): 4114-4123, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32047112

ABSTRACT

Ether-a-go-go (EAG) potassium selective channels are major regulators of neuronal excitability and cancer progression. EAG channels contain a Per-Arnt-Sim (PAS) domain in their intracellular N-terminal region. The PAS domain is structurally similar to the PAS domains in non-ion channel proteins, where these domains frequently function as ligand-binding domains. Despite the structural similarity, it is not known whether the PAS domain can regulate EAG channel function via ligand binding. Here, using surface plasmon resonance, tryptophan fluorescence, and analysis of EAG currents recorded in Xenopus laevis oocytes, we show that a small molecule chlorpromazine (CH), widely used as an antipsychotic medication, binds to the isolated PAS domain of EAG channels and inhibits currents from these channels. Mutant EAG channels that lack the PAS domain show significantly lower inhibition by CH, suggesting that CH affects currents from EAG channels directly through the binding to the PAS domain. Our study lends support to the hypothesis that there are previously unaccounted steps in EAG channel gating that could be activated by ligand binding to the PAS domain. This has broad implications for understanding gating mechanisms of EAG and related ERG and ELK K+ channels and places the PAS domain as a new target for drug discovery in EAG and related channels. Up-regulation of EAG channel activity is linked to cancer and neurological disorders. Our study raises the possibility of repurposing the antipsychotic drug chlorpromazine for treatment of neurological disorders and cancer.


Subject(s)
Chlorpromazine/pharmacology , ERG1 Potassium Channel/genetics , Ether-A-Go-Go Potassium Channels/genetics , Neurons/drug effects , Amino Acid Sequence/genetics , Animals , Antigens, Neoplasm/chemistry , Antigens, Neoplasm/genetics , Antigens, Nuclear/chemistry , Antigens, Nuclear/genetics , Binding Sites/drug effects , Cortical Excitability/drug effects , Cortical Excitability/genetics , ERG1 Potassium Channel/chemistry , Ether-A-Go-Go Potassium Channels/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Ligands , Neurons/metabolism , Oocytes/growth & development , Oocytes/metabolism , Protein Domains/drug effects , Surface Plasmon Resonance , Xenopus laevis/genetics
20.
Microb Pathog ; 150: 104603, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33271234

ABSTRACT

Coxsackievirus A16 (CVA16) is one of the major etiological agents of hand, foot and mouth disease (HFMD), a common acute infectious disease affecting infants and young children. Severe symptoms of the central nervous system may develop and even lead to death. Here, a plaque-purified CVA16 strain, L731-P1 (P1), was serially passaged in Vero cells for six times and passage 6 (P6) stock became highly attenuated in newborn mice. Genomic sequencing of the P1 and P6 revealed seven nucleotide substitutions at positions 1434 (C to U), 2744 (A to G), 2747 (A to G), 3161 (G to A), 3182 (A to G), 4968 (C to U), and 6064 (C to U). Six of these substitutions resulted in amino acid changes at VP2-T161 M, VP1-N102D, VP1-T103A, VP1-E241K, VP1-T248A, and 2C-S297F, respectively. P1-based infectious cDNA was generated to further investigate these virulent determinants. Independent reverse transcription-polymerase chain reaction (RT-PCR) amplifications for mutant constructions and plaque-purification of the P6 for isolation of variants were performed to determine dominant mutations and strains more related to attenuation. The virulent P1, attenuated P6, as well as a plaque purified strain (PP) and other four recombinant mutants, were inoculated into one-day-old BALB/c mice and the 50% lethal dose of each strain was determined. Comparison of virulence among these strains indicated that amino acid changes of VP1-N102D, VP1-E241K and 2C-S297F might be associated more closely with a high level attenuation of CVA16-L731-P6 than other mutations. Identification of novel residues associated with virulence may contribute to understanding of molecular basis of virulence of CVA16 and other enteroviruses.


Subject(s)
Enterovirus A, Human , Enterovirus , Hand, Foot and Mouth Disease , Amino Acid Substitution , Animals , Chlorocebus aethiops , Enterovirus/genetics , Enterovirus A, Human/genetics , Mice , Mice, Inbred BALB C , Phylogeny , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL