Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 493
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 43(9): 1690-1721, 2024 May.
Article in English | MEDLINE | ID: mdl-38378891

ABSTRACT

Mosquitoes transmit many disease-relevant flaviviruses. Efficient viral transmission to mammalian hosts requires mosquito salivary factors. However, the specific salivary components facilitating viral transmission and their mechanisms of action remain largely unknown. Here, we show that a female mosquito salivary gland-specific protein, here named A. aegypti Neutrophil Recruitment Protein (AaNRP), facilitates the transmission of Zika and dengue viruses. AaNRP promotes a rapid influx of neutrophils, followed by virus-susceptible myeloid cells toward mosquito bite sites, which facilitates establishment of local infection and systemic dissemination. Mechanistically, AaNRP engages TLR1 and TLR4 of skin-resident macrophages and activates MyD88-dependent NF-κB signaling to induce the expression of neutrophil chemoattractants. Inhibition of MyD88-NF-κB signaling with the dietary phytochemical resveratrol reduces AaNRP-mediated enhancement of flavivirus transmission by mosquitoes. These findings exemplify how salivary components can aid viral transmission, and suggest a potential prophylactic target.


Subject(s)
Aedes , Zika Virus , Animals , Aedes/virology , Aedes/metabolism , Female , Zika Virus/physiology , Mice , Dengue Virus/physiology , Salivary Proteins and Peptides/metabolism , Mosquito Vectors/virology , Insect Proteins/metabolism , Myeloid Cells/virology , Myeloid Cells/metabolism , Zika Virus Infection/transmission , Zika Virus Infection/virology , Zika Virus Infection/metabolism , Dengue/transmission , Dengue/virology , Dengue/metabolism , NF-kappa B/metabolism , Signal Transduction , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics
2.
Nano Lett ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39329391

ABSTRACT

Exploring efficient and stable halide perovskite-based photocatalysts is a great challenge due to the balance between the photocatalytic performance, toxicity, and intrinsic chemical instability of the materials. Here, the environmentally friendly lead-free perovskite Cs2AgBiBr6 confined in the mesoporous TiO2 crystal matrix has been designed to enhance the charge carrier extraction and utilization for efficient photocatalytic rifampicin degradation. The as-prepared Cs2AgBiBr6/TiO2 catalyst was stable in air for over 500 days. An S-scheme heterojunction was formed between the (004) plane of Cs2AgBiBr6 and the (101) plane of TiO2 through the Bi-O-Br bonds. The built-in electric field at the interface efficiently promoted the photoinduced charge separation and carrier extraction. The Cs2AgBiBr6/TiO2-200 showed a 92.83% degradation efficiency of rifampicin within 80 min under simulated sunlight illumination (AM 1.5G 100 mW cm-2). This work offers an effective way for the construction of halide perovskite-based photocatalysts with high photocatalytic performance, good stability, and low toxicity simultaneously.

3.
J Cell Physiol ; : e31372, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014935

ABSTRACT

Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.

4.
J Am Chem Soc ; 146(5): 3545-3552, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38277257

ABSTRACT

Atom-precise metal nanoclusters (NCs) with large bulk (nuclearity >60) are important species for insight into the embryonic phase of metal nanoparticles and their top-down etching synthesis. Herein, we report a metastable rod-shaped 70-nuclei copper-hydride NC, [Cl@Cu70H22(PhC≡C)29(CF3COO)16]2+ (Cu70), with Cl- as the template, in which the Cl@Cu59 kernel adopts a distinctive metal packing mode along the bipolar direction, and the protective ligand shell exhibits corresponding site differentiation. In terms of metal nuclearity, Cu70 is the largest alkynyl-stabilized Cu-hydride cluster to date. As a typical highly active intermediate, Cu70 could undergo a transformation into a series of robust modularly assembled Cu clusters (B-type Cu8, A-A-type Cu22, A-B-type Cu23, and A-B-A-type Cu38) upon etching by p-tert-butylthiacalix[4]arene (H4TC4A), which could not be achieved by "one-pot" synthetic methods. Notably, the patterns of A and B blocks in the Cu NCs could be effectively modulated by employing appropriate counterions and blockers, and the modular assembly mechanism was illustrated through comprehensive solution chemistry analysis using HR-ESI-MS. Furthermore, catalytic investigations reveal that Cu38 could serve as a highly efficient catalyst for the cycloaddition of propargylic amines with CO2 under mild conditions. This work not only enriched the family of high-nuclear copper-hydride NCs but also provided new insights into the growth mechanism of metal NCs.

5.
Small ; : e2402575, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860359

ABSTRACT

Effective and rapid heat transfer is critical to improving electronic components' performance and operational stability, particularly for highly integrated and miniaturized devices in complex scenarios. However, current thermal manipulation approaches, including the recent advancement in thermal metamaterials, cannot realize fast and unidirectional heat flow control. In addition, any defects in thermal conductive materials cause a significant decrease in thermal conductivity, severely degrading heat transfer performance. Here, the utilization of silicon-based valley photonic crystals (VPCs) is proposed and numerically demonstrated to facilitate ultrafast, unidirectional heat transfer through thermal radiation on a microscale. Utilizing the infrared wavelength region, the approach achieves a significant thermal rectification effect, ensuring continuous heat flow along designed paths with high transmission efficiency. Remarkably, the process is unaffected by temperature gradients due to the unidirectional property, maintaining transmission directionality. Furthermore, the VPCs' inherent robustness affords defect-immune heat transfer, overcoming the limitations of traditional conduction methods that inevitably cause device heating, performance degradation, and energy waste. The design is fully CMOS compatible, thus will find broad applications, particularly for integrated optoelectronic devices.

6.
Plant Physiol ; 191(1): 352-368, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36179100

ABSTRACT

The degradation products of glucosinolates (GSLs) greatly lower the nutritional value of rapeseed (Brassica napus) meal; thus, reduction of seed GSL content (SGC) has become an important objective of rapeseed breeding. In our previous study, we finely mapped a major QTL (qGSL-C2) for SGC to a 49-kb collinear region on B. rapa chromosome A2. Here, we experimentally validated that BnaC2.MYB28, encoding an R2R3-MYB transcription factor, is the causal gene of qGSL-C2. BnaC2.MYB28 is a nucleus-localized protein mainly expressed in vegetative tissues. Knockout of BnaC2.MYB28 in the high-SGC parent G120 reduced SGC to a value lower than that in the low-SGC parent ZY50, while overexpression of BnaC2.MYB28 in both parental lines (G120 and ZY50) led to extremely high SGC, indicating that BnaC2.MYB28 acts as a positive regulator of SGC in both parents. Molecular characterization revealed that BnaC2.MYB28 forms a homodimer and specifically interacts with BnaMYC3. Moreover, BnaC2.MYB28 can directly activate the expression of GSL biosynthesis genes. Differential expression abundance resulting from the polymorphic promoter sequences, in combination with the different capability in activating downstream genes involved in aliphatic GSL biosynthesis, caused the functional divergence of BnaC2.MYB28 in SGC regulation between the parents. Natural variation of BnaC2.MYB28 was highly associated with SGC in natural germplasm and has undergone artificial selection in modern low-GSL breeding. This study provides important insights into the core function of BnaC2.MYB28 in regulating SGC and a promising strategy for manipulating SGC in rapeseed.


Subject(s)
Brassica napus , Brassica rapa , Brassica napus/genetics , Brassica napus/metabolism , Glucosinolates/metabolism , Plant Breeding , Brassica rapa/genetics , Seeds/genetics , Seeds/metabolism
7.
Plant Cell Environ ; 47(4): 1023-1040, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37984059

ABSTRACT

Drought stress poses a persistent threat to field crops and significantly limits global agricultural productivity. Plants employ ubiquitin-dependent degradation as a crucial post-translational regulatory mechanism to swiftly adapt to changing environmental conditions. JUL1 is a RING-type E3 ligase related to drought stress in Arabidopsis. In this study, we explored the function of BnaJUL1 (a homologous gene of JUL1 in Brassica napus) and discovered a novel gene BnaTBCC1 participating in drought tolerance. First, we utilised BnaJUL1-cri materials through the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 system. Second, we confirmed that BnaJUL1 regulated drought tolerance through the drought tolerance assay and transcriptome analysis. Then, we identified a series of proteins interacting with BnaJUL1 through yeast library screening, including BnaTBCC1 (a tubulin binding cofactor C domain-containing protein); whose homologous gene TBCC1 knockdown mutants (tbcc1-1) exhibited ABA-sensitive germination in Arabidopsis, we then confirmed the involvement of BnaTBCC1 in drought tolerance in both Arabidopsis and Brassica. Finally, we established that BnaJUL1 could ubiquitinate and degrade BnaTBCC1 to regulate drought tolerance. Consequently, our study unveils BnaJUL1 as a novel regulator that ubiquitinates and degrades BnaTBCC1 to modulate drought tolerance and provided desirable germplasm for further breeding of drought tolerance in rapeseed.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassica napus , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/metabolism , Brassica napus/genetics , Brassica napus/metabolism , Drought Resistance , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Droughts , Ubiquitin/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Abscisic Acid/metabolism
8.
Exp Eye Res ; 246: 110007, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39029552

ABSTRACT

We investigate the ocular dimensions and shape by using Lenstar900 (LS900), A-scan ultrasonography, and Magnetic Resonance Imaging (MRI) in highly myopic Macaca fascicularis. The ocular dimensions data of LS900, A-scan ultrasonography and MRI was assessed from 8 eyes (4 adult male cynomolgus macaque) with extremely high myopia (≤-1000DS) and compared by means of coefficients of concordance and 95% limits of agreement. Multiple regression analysis was performed to explore the associations between ocular biometry, volume, refraction and inter-instrument discrepancies. Test-retest reliability of three measurements of ocular parameters at two time points was almost equal (intraclass correlation = 0.831 to 1.000). The parallel-forms reliability of three measurements was strong for vitreous chamber depth (VCD) (coefficient of concordance = 0.919 to 0.981), moderate for axial length (AL) (coefficient of concordance = 0.486 to 0.981), and weak for anterior chamber depth (ACD) (coefficient of concordance = 0.267 to 0.621) and lens thickness (LT) (coefficient of concordance = 0.035 to 0.631). The LS900 and MRI systematically underestimated the ACD and LT comparing to A-scan ultrasonography (P < 0.05). Notably, the average AL on LS900 displayed a significant correlation with those on MRI (r = 0.978, P < 0.001) and A-scan ultrasonography (r = 0.990, P < 0.001). Almost 4/5 eyeballs were prolate. The mean eyeball volume positively correlated with AL (r = 0.782, P = 0.022), the width (r = 0.945, P = 0.000), and the length (r = 0.782, P = 0.022) of eyeball, while negatively correlated with SER (r = -0.901, P = 0.000). In conclusion, there was a high inter-instrument concordance for VCD with LS900, A-scan ultrasonography and MRI, while ACD and LT were underestimated with LS900 compared to A-scan ultrasonography, and the LS900 and A-scan ultrasonography could reliably measure the AL. MRI further revealed an equatorial globe shape in extremely myopic non-human primates.


Subject(s)
Axial Length, Eye , Biometry , Macaca fascicularis , Magnetic Resonance Imaging , Ultrasonography , Animals , Male , Magnetic Resonance Imaging/methods , Ultrasonography/methods , Axial Length, Eye/diagnostic imaging , Axial Length, Eye/pathology , Reproducibility of Results , Imaging, Three-Dimensional , Refraction, Ocular/physiology , Disease Models, Animal , Myopia, Degenerative/diagnostic imaging , Anterior Chamber/diagnostic imaging , Anterior Chamber/pathology , Myopia/diagnostic imaging , Myopia/physiopathology , Eye/diagnostic imaging
9.
Anal Biochem ; 691: 115553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38697592

ABSTRACT

We describe a microwave-assisted, methanol and acetic acid-free, inexpensive method for rapid staining of SDS-PAGE proteins. Only citric acid, benzoic acid, and Coomassie brilliant blue G-250 (CBG) were used. Microwave irradiation reduced the detection duration, and proteins in a clear background were visualized within 30 min of destaining, after 2 min of fixing and 12 min of staining. By using this protocol, comparable band intensities were obtained to the conventional methanol/acetic acid method.


Subject(s)
Acetic Acid , Electrophoresis, Polyacrylamide Gel , Methanol , Microwaves , Proteins , Electrophoresis, Polyacrylamide Gel/methods , Methanol/chemistry , Proteins/analysis , Acetic Acid/chemistry , Staining and Labeling/methods , Rosaniline Dyes/chemistry
10.
Anal Biochem ; 690: 115509, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38508332

ABSTRACT

DNA methylation aberrations have a strong correlation with cancer in early detection, diagnosis, and prognosis, which make them possible candidate biomarkers. Electrochemical biosensors offer rapid protocols for detecting DNA methylation status with minimal pretreatment of samples. However, the inevitable presence of background current in the time domain, including electrochemical noise and variations, limits the detection performance of these biosensors, especially for low concentration analytes. Here, we propose an ultrasensitive frequency-domain electrochemical analysis strategy to effectively separate the weak signals from background current. To achieve this, we employed periodic magnetic field modulation of magnetic beads (MBs) on and off the electrode surface to generate a periodic electrochemical signal for subsequent frequency-domain analysis. By capturing labeled MBs with as low as 0.5 pg of DNA, we successfully demonstrated a highly sensitive electrochemical method for determination of genome-wide DNA methylation levels. We also validated the effectiveness of this methodology using DNA samples extracted from three types of hepatocellular carcinoma (HCC) cell lines. The results revealed varying genomic methylation levels among different HCC cell lines, indicating the potential application of this approach for early-stage cancer detection in terms of DNA methylation status.

11.
Br J Dermatol ; 191(1): 107-116, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38489583

ABSTRACT

BACKGROUND: Inherited hyperpigmented skin disorders comprise a group of entities with considerable clinical and genetic heterogenicity. The genetic basis of a majority of these disorders remains to be elucidated. OBJECTIVES: This study aimed to identify the underlying gene for an unclarified disorder of autosomal-dominant generalized skin hyperpigmentation with or without glomuvenous malformation. METHODS: Whole-exome sequencing was performed in five unrelated families with autosomal-dominant generalized skin hyperpigmentation. Variants were confirmed using Sanger sequencing and a minigene assay was employed to evaluate the splicing alteration. Immunofluorescence and transmission electron microscopy (TEM) were used to determine the quantity of melanocytes and melanosomes in hyperpigmented skin lesions. GLMN knockdown by small interfering RNA assays was performed in human MNT-1 cells to examine melanin concentration and the underlying molecular mechanism. RESULTS: We identified five variants in GLMN in five unrelated families, including c.995_996insAACA(p.Ser333Thrfs*11), c.632 + 4delA, c.1470_1473dup(p.Thr492fs*12), c.1319G > A(p.Trp440*) and c.1613_1614insTA(Thr540*). The minigene assay confirmed that the c.632 + 4delA mutant resulted in abolishment of the canonical donor splice site. Although the number of melanocytes remained unchanged in skin lesions, as demonstrated by immunofluorescent staining of tyrosinase and premelanosome protein, TEM revealed an increased number of melanosomes in the skin lesion of a patient. The GLMN knockdown MNT-1 cells demonstrated a higher melanin concentration, a higher proportion of stage III and IV melanosomes, upregulation of microphthalmia-associated transcription factor and tyrosinase, and downregulation of phosphorylated p70S6 K vs. mock-transfected cells. CONCLUSIONS: We found that loss-of-function variants in GLMN are associated with generalized skin hyperpigmentation with or without glomuvenous malformation. Our study implicates a potential role of glomulin in human skin melanogenesis, in addition to vascular morphogenesis.


A group of skin conditions known as 'inherited hyperpigmented skin disorders' includes some diseases with different clinical and genetic traits. The genetic basis of the majority of these diseases is not understood. To identify the gene responsible for a disease that causes darker patches of skin (hyperpigmentation) with or without the abnormal growth of blood vessels and the presence of cells named glomus cells (a glomuvenous malformation), we used genetic techniques called whole-exome sequencing and Sanger sequencing in five unrelated families with this disease. We also used a technique called a 'minigene assay' to evaluate genetic alterations in a gene called GLMN, which encodes a protein called glomulin. Immunofluorescence and transmission electron microscopy (TEM) were used to determine the number of pigment-producing cells (called melanocytes) and melanosomes (where the pigment melanin is synthesized, stored and transported) in hyperpigmented skin lesions. We identified five different variants of the GLMN gene in five unrelated families. Although the number of melanocytes remained unchanged in skin lesions, TEM revealed an increased number of melanosomes. By 'switching off' the GLMN gene, we found that skin cells produced more pigment, as well as the proteins MITF and tyrosinase; they also showed a decrease in the phosphorylated protein p-p70S6 K. Overall, we found that loss-of-function mutations in GLMN caused skin hyperpigmentation with or without abnormal blood vessels. The results suggest there could be a potential role of the protein glomulin in human skin colour and blood vessel changes.


Subject(s)
Exome Sequencing , Hyperpigmentation , Melanocytes , Pedigree , Humans , Hyperpigmentation/genetics , Hyperpigmentation/pathology , Female , Male , Melanocytes/metabolism , Adult , Loss of Function Mutation , Glomus Tumor/genetics , Glomus Tumor/pathology , Melanosomes/genetics , Child , Melanins/metabolism , Adolescent , Skin/pathology , Skin/blood supply , Middle Aged , Paraganglioma, Extra-Adrenal , Adaptor Proteins, Signal Transducing
12.
Br J Dermatol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005171

ABSTRACT

BACKGROUND: Lipid metabolism plays essential roles in skin barrier formation and the regulation of skin inflammation. Moreover, lipid homeostasis regulates skin melanogenesis, although the underlying mechanism remains largely unknown. Sterol regulatory element binding protein 1 (SREBP-1) is a key transcription factor essential for cellular lipid metabolism. Loss-of-function variants in SREBF1 are responsible for autosomal-dominant ichthyosis follicularis, alopecia, and photophobia syndrome, emphasizing the significance of lipid homeostasis in skin keratinization. OBJECTIVES: To identify the genetic basis of a new entity featuring diffuse skin hyperpigmentation with congenital cataracts, and to unravel the underlying mechanism for the pathogenesis of the SREBF1 variant. METHODS: Whole-exome sequencing was performed to identify the underlying genetic variants. Quantitative PCR, western blot, and immunofluorescent staining were employed to assess the expression and the subcellular localization of the SREBF1 variant. The transcriptional activity of the mutant SREBP-1 was determined by luciferase reporter assay. A transgenic zebrafish model was constructed. RESULTS: Two patients of different ethnicities presented with generalized skin hyperpigmentation with skin xerosis, congenital cataracts, and extracutaneous symptoms. We identified a de novo nonsense variant c.1289C>A (p.Ser430*) in the SREBF1 gene in both patients. The variant encoded a truncated protein which showed preferential nucleus localization, in contrast to wild-type SREBP-1 which is mainly localized in cytoplasm in sterol-sufficient conditions. Luciferase reporter assay revealed that the Ser430* mutant exhibited an enhanced transcriptional activity. The primary cultured melanocytes from the patient showed increased melanin synthesis compared to those from normal controls. The Ser430* transgenic zebrafish model exhibited more black spots, along with upregulated expression of melanogenic genes at 35 days post-fertilization. CONCLUSIONS: We demonstrated that a gain-of-function variant in SREBF1 caused a previously undescribed disorder characterized by generalized skin hyperpigmentation and congenital cataracts. Our study reveals the involvement of SREBP-1 in melanogenesis and lens development and paves the way for developing novel therapeutic targets for skin dyspigmentation or cataracts.

13.
EMBO Rep ; 23(11): e55671, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36197120

ABSTRACT

Frequent turnover of dengue virus (DENV) clades is one of the major forces driving DENV persistence and prevalence. In this study, we assess the fitness advantage of nine stable substitutions within the envelope (E) protein of DENV serotypes. Two tandem neighboring substitutions, threonine to lysine at the 226th (T226K) and glycine to glutamic acid at the 228th (G228E) residues in the DENV2 Asian I genotype, enhance virus infectivity in either mosquitoes or mammalian hosts, thereby promoting clades turnover and dengue epidemics. Mechanistic studies indicate that the substitution-mediated polarity changes in these two residues increase the binding affinity of E for host C-type lectins. Accordingly, we predict that a G228E substitution could potentially result in a forthcoming epidemic of the DENV2 Cosmopolitan genotype. Investigations into the substitutions associated with DENV fitness in hosts may offer mechanistic insights into dengue prevalence, thus providing a warning of potential epidemics in the future.


Subject(s)
Dengue Virus , Dengue , Animals , Dengue Virus/genetics , Dengue/epidemiology , Phylogeny , Serogroup , Genotype , Mutation , Mammals
14.
J Pineal Res ; 76(6): e13008, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39300782

ABSTRACT

Diabetic retinopathy (DR) is characterized as a microvascular disease. Nonproliferative diabetic retinopathy (NPDR) presents with alterations in retinal blood flow and vascular permeability, thickening of the basement membrane, loss of pericytes, and formation of acellular capillaries. Endothelial-mesenchymal transition (EndMT) of retinal microvessels may play a critical role in advancing NPDR. Melatonin, a hormone primarily secreted by the pineal gland, is a promising therapeutic for DR. This study explored the EndMT in retinal microvessels of NPDR and its related mechanisms. The effect of melatonin on the retina of diabetic rats was evaluated by electroretinogram (ERG) and histopathologic slide staining. Furthermore, the effect of melatonin on human retinal microvascular endothelial cells (HRMECs) was detected by EdU incorporation assay, scratch assay, transwell assay, and tube formation test. Techniques such as RNA-sequencing, overexpression or knockdown of target genes, extraction of cytoplasmic and nuclear protein, co-immunoprecipitation (co-IP), and multiplex immunofluorescence facilitated the exploration of the mechanisms involved. Our findings reveal, for the first time, that melatonin attenuates diabetic retinopathy by regulating EndMT of retinal vascular endothelial cells via inhibiting the HDAC7/FOXO1/ZEB1 axis. Collectively, these results suggest that melatonin holds potential as a therapeutic strategy to reduce retinal vascular damage and protect vision in NPDR.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Retinopathy , Endothelial Cells , Histone Deacetylases , Melatonin , Zinc Finger E-box-Binding Homeobox 1 , Melatonin/pharmacology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/pathology , Animals , Rats , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Histone Deacetylases/metabolism , Zinc Finger E-box-Binding Homeobox 1/metabolism , Zinc Finger E-box-Binding Homeobox 1/genetics , Humans , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Forkhead Box Protein O1/metabolism , Retinal Vessels/drug effects , Retinal Vessels/metabolism , Retinal Vessels/pathology , Rats, Sprague-Dawley , Epithelial-Mesenchymal Transition/drug effects , Retina/metabolism , Retina/drug effects , Retina/pathology , Endothelial-Mesenchymal Transition
15.
Immunol Invest ; : 1-17, 2024 Oct 03.
Article in English | MEDLINE | ID: mdl-39360672

ABSTRACT

BACKGROUND: The incidence of osteoarthritis (OA) is increasing, yet its pathogenesis remains largely unknown. Recent studies suggest that abnormal subchondral bone remodeling plays a crucial role in OA development, highlighting a gap in clinical treatments targeting this aspect. Soybean Isoflavone (SI) has shown potential in treating OA, although its mechanisms are not fully understood. METHODS: This research investigated the effects of SI on subchondral bone remodeling in an OA rat model, assessing joint damage, OARSI scores, and type H vessel formation (CD31hiEmcnhi expression). Additionally, the expression of ALP, OCN, BMP, and TSC1 was evaluated to determine involvement of the mTORC1 pathway. In vitro studies on IL-1ß-induced osteoblasts further examined the impact of SI on TSC1/mTORC1 signaling and related markers. RESULTS: SI treatment reduced joint damage and OARSI scores in the rat OA model, significantly decreasing CD31hiEmcnhi expression, indicating a reduction in type H vessel formation. SI also downregulated ALP, OCN, and BMP expression while upregulating TSC1, suggesting inhibition of the mTORC1 signaling pathway and VEGF release. In vitro, SI increased TSC1 expression and decreased mTORC1 signaling, VEGF, ALP, OCN, and BMP levels in IL-1ß-induced osteoblasts. CONCLUSION: SI targets the TSC1/mTORC1 signaling pathway to suppress osteoblast activation and VEGF release, inhibiting type H vessel formation and slowing abnormal subchondral bone remodeling. These findings provide a novel therapeutic approach for OA by focusing on subchondral bone remodeling mechanisms.

16.
Bioorg Chem ; 148: 107467, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772290

ABSTRACT

KRAS-G12C inhibitors has been made significant progress in the treatment of KRAS-G12C mutant cancers, but their clinical application is limited due to the adaptive resistance, motivating development of novel structural inhibitors. Herein, series of coumarin derivatives as KRAS-G12C inhibitors were found through virtual screening and rational structural optimization. Especially, K45 exhibited strong antiproliferative potency on NCI-H23 and NCI-H358 cancer cells harboring KRAS-G12C with the IC50 values of 0.77 µM and 1.50 µM, which was 15 and 11 times as potent as positive drug ARS1620, respectively. Furthermore, K45 reduced the phosphorylation of KRAS downstream effectors ERK and AKT by reducing the active form of KRAS (KRAS GTP) in NCI-H23 cells. In addition, K45 induced cell apoptosis by increasing the expression of anti-apoptotic protein BAD and BAX in NCI-H23 cells. Docking studies displayed that the 3-naphthylmethoxy moiety of K45 extended into the cryptic pocket formed by the residues Gln99 and Val9, which enhanced the interaction with the KRAS-G12C protein. These results indicated that K45 was a potent KRAS-G12C inhibitor worthy of further study.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Coumarins , Drug Screening Assays, Antitumor , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Coumarins/chemistry , Coumarins/pharmacology , Coumarins/chemical synthesis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Molecular Structure , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Discovery , Apoptosis/drug effects , Molecular Docking Simulation , Drug Evaluation, Preclinical
17.
Clin Rehabil ; 38(8): 1091-1100, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38693881

ABSTRACT

OBJECTIVE: Depth camera-based measurement has demonstrated efficacy in automated assessment of upper limb Fugl-Meyer Assessment for paralysis rehabilitation. However, there is a lack of adequately sized studies to provide clinical support. Thus, we developed an automated system utilizing depth camera and machine learning, and assessed its feasibility and validity in a clinical setting. DESIGN: Validation and feasibility study of a measurement instrument based on single cross-sectional data. SETTING: Rehabilitation unit in a general hospital. PARTICIPANTS: Ninety-five patients with hemiparesis admitted for inpatient rehabilitation unit (2021-2023). MAIN MEASURES: Scores for each item, excluding those related to reflexes, were computed utilizing machine learning models trained on participant videos and readouts from force test devices, while the remaining reflex scores were derived through regression algorithms. Concurrent criterion validity was evaluated using sensitivity, specificity, percent agreement and Cohen's Kappa coefficient for ordinal scores of individual items, as well as correlations and intraclass correlation coefficients for total scores. Video-based manual assessment was also conducted and compared to the automated tools. RESULT: The majority of patients completed the assessment without therapist intervention. The automated scoring models demonstrated superior validity compared to video-based manual assessment across most items. The total scores derived from the automated assessment exhibited a high coefficient of 0.960. However, the validity of force test items utilizing force sensing resistors was relatively low. CONCLUSION: The integration of depth camera technology and machine learning models for automated Fugl-Meyer Assessment demonstrated acceptable validity and feasibility, suggesting its potential as a valuable tool in rehabilitation assessment.


Subject(s)
Feasibility Studies , Stroke Rehabilitation , Upper Extremity , Humans , Female , Male , Middle Aged , Upper Extremity/physiopathology , Cross-Sectional Studies , Aged , Stroke Rehabilitation/methods , Stroke Rehabilitation/instrumentation , Machine Learning , Adult , Reproducibility of Results , Paresis/rehabilitation , Paresis/physiopathology , Paresis/etiology , Disability Evaluation , Video Recording , Stroke/physiopathology , Stroke/complications
18.
Sensors (Basel) ; 24(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38794100

ABSTRACT

The field of computer vision has been focusing on achieving accurate three-dimensional (3D) object representations from a single two-dimensional (2D) image through deep artificial neural networks. Recent advancements in 3D shape reconstruction techniques that combine structured light and deep learning show promise in acquiring high-quality geometric information about object surfaces. This paper introduces a new single-shot 3D shape reconstruction method that uses a nonlinear fringe transformation approach through both supervised and unsupervised learning networks. In this method, a deep learning network learns to convert a grayscale fringe input into multiple phase-shifted fringe outputs with different frequencies, which act as an intermediate result for the subsequent 3D reconstruction process using the structured-light fringe projection profilometry technique. Experiments have been conducted to validate the practicality and robustness of the proposed technique. The experimental results demonstrate that the unsupervised learning approach using a deep convolutional generative adversarial network (DCGAN) is superior to the supervised learning approach using UNet in image-to-image generation. The proposed technique's ability to accurately reconstruct 3D shapes of objects using only a single fringe image opens up vast opportunities for its application across diverse real-world scenarios.

19.
Sensors (Basel) ; 24(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38475077

ABSTRACT

Accurate extraction of crop acreage is an important element of digital agriculture. This study uses Sentinel-2A, Sentinel-1, and DEM as data sources to construct a multidimensional feature dataset encompassing spectral features, vegetation index, texture features, terrain features, and radar features. The Relief-F algorithm is applied for feature selection to identify the optimal feature dataset. And the combination of deep learning and the random forest (RF) classification method is utilized to identify lilies in Qilihe District and Yuzhong County of Lanzhou City, obtain their planting structure, and analyze their spatial distribution characteristics in Gansu Province. The findings indicate that terrain features significantly contribute to ground object classification, with the highest classification accuracy when the number of features in the feature dataset is 36. The precision of the deep learning classification method exceeds that of RF, with an overall classification accuracy and kappa coefficient of 95.9% and 0.934, respectively. The Lanzhou lily planting area is 137.24 km2, and it primarily presents a concentrated and contiguous distribution feature. The study's findings can serve as a solid scientific foundation for Lanzhou City's lily planting structure adjustment and optimization and a basis of data for local lily yield forecasting, development, and application.

20.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891991

ABSTRACT

The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.


Subject(s)
Spermatogenesis , Testis , Humans , Male , Testis/metabolism , Testis/growth & development , Animals , Follicle Stimulating Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Androgens/metabolism , Testosterone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL