Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Genomics ; 25(1): 618, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890562

ABSTRACT

Cyathus olla, belonging to the genus Cyathus within the order Agaricales, is renowned for its bird's nest-like fruiting bodies and has been utilized in folk medicine. However, its genome remains poorly understood. To investigate genomic diversity within the genus Cyathus and elucidate biosynthetic pathways for medicinal compounds, we generated a high-quality genome assembly of C. olla with fourteen chromosomes. The comparative genome analysis revealed variations in both genomes and specific functional genes within the genus Cyathus. Phylogenomic and gene family variation analyses provided insights into evolutionary divergence, as well as genome expansion and contraction in individual Cyathus species and 36 typical Basidiomycota. Furthermore, analysis of LTR-RT and Ka/Ks revealed apparent whole-genome duplication (WGD) events its genome. Through genome mining and metabolite profiling, we identified the biosynthetic gene cluster (BGC) for cyathane diterpenes from C. olla. Furthermore, we predicted 32 BGCs, containing 41 core genes, involved in other bioactive metabolites. These findings represent a valuable genomic resource that will enhance our understanding of Cyathus species genetic diversity. The genome analysis of C. olla provides insights into the biosynthesis of medicinal compounds and establishes a fundamental basis for future investigations into the genetic basis of chemodiversity in this significant medicinal fungus.


Subject(s)
Genome, Fungal , Multigene Family , Phylogeny , Biosynthetic Pathways/genetics , Agaricales/genetics , Agaricales/metabolism , Diterpenes/metabolism , Genomics , Metabolome
2.
Appl Microbiol Biotechnol ; 108(1): 423, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037499

ABSTRACT

The Chinese medicinal fungi "Sanghuang" have been long recognized for their significant and valued medicinal properties, as documented in ancient medical literature. However, in traditional folk medicine, various macrofungi sharing similar appearance, habitat, and therapeutic effects with Sanghuang were erroneously used. These Sanghuang-like fungi mainly belong to the Porodaedalea, Phellinus, and Inonotus genera within the Hymenochaetaceae family. Despite the establishment of the Sanghuangporus genus and the identification of multiple species, the emerging taxonomic references based on morphological, ITS, and mycelial structural features have been inadequate to differentiate Sanghuangporus and Sanghuang-like fungi. To address this limitation, this study presents the first comparative and phylogenetic analysis of Sanghuang-related fungi based on mitogenomes. Our results show that Sanghuangporus species show marked convergence in mitochondrial genomic features and form a distinct monophyletic group based on phylogenetic analyses of five datasets. These results not only deepen our understanding of Sanghuang-like fungi but also offer novel insights into their mitochondrial composition and phylogeny, thereby providing new research tools for distinguishing members of the Sanghuangporus genus. KEY POINTS: • Sanghuangporus, Inonotus, and Porodaedalea are monophyly in sanghuang-like species. • Mitogenome-based analysis exhibits high resolution in sanghuang-like genus. • The mitogenomes provide strong evidence for reclassifying Phellinus gilvus S12 as Sanghuangporus vaninii.


Subject(s)
Phylogeny , Genome, Mitochondrial , Basidiomycota/genetics , Basidiomycota/classification , DNA, Fungal/genetics , Medicine, Chinese Traditional , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL