Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cancer Immunol Immunother ; 73(9): 182, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967817

ABSTRACT

BACKGROUND: The long-term survival benefit of immune checkpoint inhibitors (ICIs) in neoadjuvant and adjuvant settings is unclear for colorectal cancers (CRC) and gastric cancers (GC) with deficiency of mismatch repair (dMMR) or microsatellite instability-high (MSI-H). METHODS: This retrospective study enrolled patients with dMMR/MSI-H CRC and GC who received at least one dose of neoadjuvant ICIs (neoadjuvant cohort, NAC) or adjuvant ICIs (adjuvant cohort, AC) at 17 centers in China. Patients with stage IV disease were also eligible if all tumor lesions were radically resectable. RESULTS: In NAC (n = 124), objective response rates were 75.7% and 55.4%, respectively, in CRC and GC, and pathological complete response rates were 73.4% and 47.7%, respectively. The 3-year disease-free survival (DFS) and overall survival (OS) rates were 96% (95%CI 90-100%) and 100% for CRC (median follow-up [mFU] 29.4 months), respectively, and were 84% (72-96%) and 93% (85-100%) for GC (mFU 33.0 months), respectively. In AC (n = 48), the 3-year DFS and OS rates were 94% (84-100%) and 100% for CRC (mFU 35.5 months), respectively, and were 92% (82-100%) and 96% (88-100%) for GC (mFU 40.4 months), respectively. Among the seven patients with distant relapse, four received dual blockade of PD1 and CTLA4 combined with or without chemo- and targeted drugs, with three partial response and one progressive disease. CONCLUSION: With a relatively long follow-up, this study demonstrated that neoadjuvant and adjuvant ICIs might be both associated with promising DFS and OS in dMMR/MSI-H CRC and GC, which should be confirmed in further randomized clinical trials.


Subject(s)
Colorectal Neoplasms , Immune Checkpoint Inhibitors , Microsatellite Instability , Neoadjuvant Therapy , Stomach Neoplasms , Humans , Stomach Neoplasms/drug therapy , Stomach Neoplasms/mortality , Stomach Neoplasms/pathology , Female , Immune Checkpoint Inhibitors/therapeutic use , Male , Neoadjuvant Therapy/methods , Middle Aged , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Retrospective Studies , Aged , Adult , DNA Mismatch Repair , Chemotherapy, Adjuvant/methods , Follow-Up Studies
2.
IUBMB Life ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822625

ABSTRACT

Colorectal cancer (CRC), a pervasive and lethal malignancy of gastrointestinal cancer, imposes significant challenges due to the occurrence of distant metastasis in advanced stages. Understanding the intricate regulatory mechanisms driving CRC distant metastasis is of paramount importance. CRISPR-Cas9 screening has emerged as a powerful tool for investigating tumor initiation and progression. However, its application in studying CRC distant metastasis remains largely unexplored. To establish a model that faithfully recapitulates CRC liver metastasis in patients, we developed an in vivo genome-wide CRISPR-Cas9 screening approach using a spleen-injected liver metastasis mouse model. Through comprehensive screening of a whole-genome sgRNA library, we identified ANKRD42 as a pivotal regulatory gene facilitating CRC liver metastasis. Analysis of the TCGA database and our clinical cohorts unveiled heightened ANKRD42 expression in metastases. At the cellular level, the attenuation of ANKRD42 impaired the migration and invasion processes of tumor cells. In vivo experiments further validated these observations, highlighting the diminished liver metastatic capacity of tumor cells upon ANKRD42 knockdown. To unravel the specific mechanisms by which ANKRD42 regulates CRC distant metastasis, we leveraged patient-derived organoid (PDO) models. Depleting ANKRD42 in PDOs sourced from liver metastases precipitated the downregulation of pivotal genes linked to epithelial-mesenchymal transition (EMT), including CDH2 and SNAI2, thereby effectively suppressing tumor metastasis. This study not only establishes a conceptual framework but also identifies potential therapeutic avenues for advanced-stage distant metastasis in CRC patients.

3.
Cancer Cell Int ; 24(1): 103, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38462626

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) is a malignancy of remarkable heterogeneity and heightened morbidity. Cancer associated fibroblasts (CAFs) are abundant in CRC tissues and are essential for CRC growth. Here, we aimed to develop a CAF-related classifier for predicting the prognosis of CRC and identify critical pro-tumorigenic genes in CAFs. METHOD: The mRNA expression and clinical information of CRC samples were sourced from two comprehensive databases, The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Using a weighted gene co-expression network analysis (WGCNA) approach, CAF-related genes were identified and a CAF risk signature was developed through the application of univariate analysis and the least absolute shrinkage and selection operator (LASSO) Cox regression model. EdU cell proliferation assay, and transwell assay were performed to detect the oncogenic role of KCNE4 in CAFs. RESULTS: We constructed a prognostic CAF model consisting of two genes (SFRP2 and KCNE4). CRC patients were classified into low- and high-CAF-risk groups using the median CAF risk score, and patients in the high-CAF-risk group had worse prognosis. Meanwhile, a higher risk score for CAFs was associated with greater stromal and CAF infiltrations, as well as higher expression of CAF markers. Furthermore, TIDE analysis indicated that patients with a high CAF risk score are less responsive to immunotherapy. Our further experiments had confirmed the strong correlation between KCNE4 and the malignant phenotypes of CAFs. Moreover, we had shown that KCNE4 could actively promote tumor-promoting phenotypes in CAFs, indicating its critical role in cancer progression. CONCLUSION: The two-gene prognostic CAF signature was constructed and could be reliable for predicting prognosis for CRC patients. Moreover, KCNE4 may be a promising strategy for the development of novel anti-cancer therapeutics specifically directed against CAFs.

4.
Inorg Chem ; 63(29): 13738-13747, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38967097

ABSTRACT

Cr4+-activated phosphors are important candidate materials for NIR-II light sources, but providing a suitable lattice coordination environment for Cr4+ and achieving long wavelength broadband emission remains a challenge. In this work, a series of Cr4+-activated ABO2 (A = Li, Na; B = Al, Ga) phosphors were successfully prepared. Due to the presence of only tetrahedral coordination structures available for Cr4+ to occupy in the matrix crystal ABO2, the valence state and luminescence stability of Cr4+ are effectively guaranteed. Through the cation substitution design of A-site (Na → Li) and B-site (Ga → Al), the [BO4] tetrahedron is distorted and expanded, which degrades the symmetry of the Cr4+ coordination crystal field. Consequently, the central wavelength of the Cr4+ emission peak is tuned from 1280 to 1430 nm, and the fwhm is significantly extended from 257 to 355 nm. Thebroadband NIR-II light sources constructed with LiAlO2: 0.03Cr4+ and NaGaO2: 0.03Cr4+ phosphors verify their important potential applications in nondestructive testing and biological imaging.

5.
Plant Sci ; 341: 112013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309474

ABSTRACT

Initiation of plant vascular tissue is regulated by transcriptional networks during development and in response to environmental stimuli. The WALL-ASSOCIATED KINASES (WAKs) and WAK-likes (WAKLs) are cell surface receptors involved in cell expansion and defence in cells with primary walls, yet their roles in regulation of vascular tissue development that contain secondary walls remains unclear. In this study, we showed tomato (Solanum lycopersicum) SlWAKL2 and the orthologous gene in Arabidopsis thaliana, AtWAKL14, were specifically expressed in vascular tissues. SlWAKL2-RNAi tomato plants displayed smaller fruit size with fewer seeds and vascular bundles compared to wild-type (WT) and over-expression (OE) lines. RNA-seq data showed that SlWAKL2-RNAi fruits down-regulated transcript levels of genes related to vascular tissue development compared to WT. Histological analysis showed T-DNA insertion mutant wakl14-1 had reduced plant stem length with fewer number of xylem vessels and interfascicular fibres compared to WT, with no significant differences in cellulose and lignin content. Mutant wakl14-1 also showed reduced number of vascular bundles in fruit. A proWAKL14::mCherry-WAKL14 fusion protein was able to complement wakl14-1 phenotypes and showed mCherry-WAKL14 associated with the plasma membrane. In vitro binding assays showed both SlWAKL2 and AtWAKL14 can interact with pectin and oligogalacturonides. Our results reveal novel roles of WAKLs in regulating vascular tissue development.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolism , Solanum lycopersicum/genetics , Cell Wall/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Lignin/metabolism , Gene Expression Regulation, Plant
6.
Innovation (Camb) ; 5(2): 100561, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38379784

ABSTRACT

Helicobacter pylori infection is associated with the risk of gastrointestinal (GI) cancers; however, its impact on immunotherapy for GI cancers remains uncertain. In this study, we included 10,122 patients who underwent 13C-urea breath tests. Among 636 patients with Epstein-Barr virus-negative microsatellite-stable gastric cancer (GC) who were treated with anti-PD-1/PD-L1 therapy, H. pylori-positive patients exhibited significantly longer immune-related progression-free survival (irPFS) compared with H. pylori-negative patients (6.97 months versus 5.03 months, p < 0.001, hazard ratio [HR] 0.76, 95% confidence interval [CI] 0.62-0.95, p = 0.015). Moreover, the H. pylori-positive group demonstrated a trend of 4 months longer median immune-related overall survival (irOS) than the H. pylori-negative group. H. pylori-positive GC displayed higher densities of PD-L1+ cells and nonexhausted CD8+ T cells, indicative of a "hot" tumor microenvironment. Transcriptomic analysis revealed that H. pylori-positive GC shared molecular characteristics similar to those of immunotherapy-sensitive GC. However, H. pylori-positive patients with DNA mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal adenocarcinoma and esophageal squamous cell carcinoma (ESCC) had shorter irPFS compared with H. pylori-negative patients (16.13 months versus not reached, p = 0.042, HR 2.26, 95% CI 1.13-4.50, p = 0.021 and 5.57 months versus 6.97 months, p = 0.029, HR 1.59, 95% CI 1.14-2.23, p = 0.006, respectively). The difference in irOS between H. pylori-positive and -negative patients had the same trend as that between dMMR/MSI-H colorectal adenocarcinoma and ESCC patients. We also identified a trend of shorter irPFS and irOS in H. pylori-positive liver cancer and pancreatic cancer patients. In summary, our findings supported that H. pylori infection is a beneficial factor for GC immunotherapy by shaping hot tumor microenvironments. However, in dMMR/MSI-H colorectal adenocarcinoma and ESCC patients, H. pylori adversely affects the efficacy of immunotherapy.

7.
J Hematol Oncol ; 17(1): 65, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123202

ABSTRACT

The past few decades have witnessed the rise of immunotherapy for Gastrointestinal (GI) tract cancers. The role of immune checkpoint inhibitors (ICIs), particularly programmed death protein 1 (PD-1) and PD ligand-1 antibodies, has become increasingly pivotal in the treatment of advanced and perioperative GI tract cancers. Currently, anti-PD-1 plus chemotherapy is considered as first-line regimen for unselected advanced gastric/gastroesophageal junction adenocarcinoma (G/GEJC), mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) colorectal cancer (CRC), and advanced esophageal cancer (EC). In addition, the encouraging performance of claudin18.2-redirected chimeric antigen receptor T-cell (CAR-T) therapy in later-line GI tract cancers brings new hope for cell therapy in solid tumour treatment. Nevertheless, immunotherapy for GI tumour remains yet precise, and researchers are dedicated to further maximising and optimising the efficacy. This review summarises the important research, latest progress, and future directions of immunotherapy for GI tract cancers including EC, G/GEJC, and CRC.


Subject(s)
Gastrointestinal Neoplasms , Immune Checkpoint Inhibitors , Immunotherapy , Humans , Gastrointestinal Neoplasms/therapy , Gastrointestinal Neoplasms/immunology , Immunotherapy/methods , Immune Checkpoint Inhibitors/therapeutic use
8.
Nat Med ; 30(8): 2224-2234, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38830992

ABSTRACT

Claudin18.2 (CLDN18.2) is highly expressed with the development of various malignant tumors, especially gastrointestinal cancers, and is emerging as a new target for cancer treatment. Satricabtagene autoleucel (satri-cel)/CT041 is an autologous chimeric antigen receptor (CAR) T cell targeting CLDN18.2, and the interim results of the CT041-CG4006 trial were reported in June 2022. Here we present the final results of this single-arm, open-label, phase 1 trial, which evaluated the safety and efficacy of satri-cel in patients with CLDN18.2-positive advanced gastrointestinal cancers. This trial included a dose-escalation stage (n = 15) and a dose-expansion stage in four different cohorts (total n = 83): cohort 1, satri-cel monotherapy in 61 patients with standard chemotherapy-refractory gastrointestinal cancers; cohort 2, satri-cel plus anti-PD-1 therapy in 15 patients with standard chemotherapy-refractory gastrointestinal cancers; cohort 3, satri-cel as sequential treatment after first-line therapy in five patients with gastrointestinal cancers; and cohort 4, satri-cel monotherapy in two patients with anti-CLDN18.2 monoclonal antibody-refractory gastric cancer. The primary endpoint was safety; secondary endpoints included efficacy, pharmacokinetics and immunogenicity. A total of 98 patients received satri-cel infusion, among whom 89 were dosed with 2.5 × 108, six with 3.75 × 108 and three with 5.0 × 108 CAR T cells. Median follow-up was 32.4 months (95% confidence interval (CI): 27.3, 36.5) since apheresis. No dose-limiting toxicities, treatment-related deaths or immune effector cell-associated neurotoxicity syndrome were reported. Cytokine release syndrome occurred in 96.9% of patients, all classified as grade 1-2. Gastric mucosal injuries were identified in eight (8.2%) patients. The overall response rate and disease control rate in all 98 patients were 38.8% and 91.8%, respectively, and the median progression-free survival and overall survival were 4.4 months (95% CI: 3.7, 6.6) and 8.8 months (95% CI: 7.1, 10.2), respectively. Satri-cel demonstrates therapeutic potential with a manageable safety profile in patients with CLDN18.2-positive advanced gastrointestinal cancer. ClinicalTrials.gov identifier: NCT03874897 .


Subject(s)
Claudins , Gastrointestinal Neoplasms , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Humans , Male , Gastrointestinal Neoplasms/immunology , Gastrointestinal Neoplasms/therapy , Gastrointestinal Neoplasms/pathology , Female , Middle Aged , Aged , Adult , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Claudins/immunology , Treatment Outcome , T-Lymphocytes/immunology , T-Lymphocytes/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL