Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
Add more filters

Publication year range
1.
Cell ; 155(4): 817-29, 2013 Nov 07.
Article in English | MEDLINE | ID: mdl-24209620

ABSTRACT

Nucleosome assembly following DNA replication and gene transcription is important to maintain genome stability and epigenetic information. Newly synthesized histones H3-H4 first bind histone chaperone Asf1 and are then transferred to other chaperones for nucleosome assembly. However, it is unknown how H3-H4 is transferred from the Asf1-H3-H4 complex to other chaperones because Asf1 binds H3-H4 with high affinity. Here, we show that yeast Rtt101(Mms1) E3 ubiquitin ligase preferentially binds and ubiquitylates new histone H3 acetylated at lysine 56. Inactivation of Rtt101 or mutating H3 lysine residues ubiquitylated by the Rtt101(Mms1) ligase impairs nucleosome assembly and promotes Asf1-H3 interactions. Similar phenotypes occur in human cells in which the ortholog of Rtt101(Mms1), Cul4A(DDB1), is depleted. These results indicate that the transfer of H3-H4 from the Asf1-H3-H4 complex to other histone chaperones is regulated by a conserved E3 ligase and provide evidence for crosstalk between histone acetylation and ubiquitylation in nucleosome assembly.


Subject(s)
Cullin Proteins/metabolism , Histones/metabolism , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomycetales/metabolism , Acetylation , Cell Cycle Proteins/metabolism , Cullin Proteins/chemistry , Humans , Models, Molecular , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Ubiquitination
2.
Nucleic Acids Res ; 52(9): 5138-5151, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38554108

ABSTRACT

Recycling of parental histones is an important step in epigenetic inheritance. During DNA replication, DNA polymerase epsilon subunit DPB3/DPB4 and DNA replication helicase subunit MCM2 are involved in the transfer of parental histones to the leading and lagging strands, respectively. Single Dpb3 deletion (dpb3Δ) or Mcm2 mutation (mcm2-3A), which each disrupts one parental histone transfer pathway, leads to the other's predominance. However, the biological impact of the two histone transfer pathways on chromatin structure and DNA repair remains elusive. In this study, we used budding yeast Saccharomyces cerevisiae to determine the genetic and epigenetic outcomes from disruption of parental histone H3-H4 tetramer transfer. We found that a dpb3Δ mcm2-3A double mutant did not exhibit the asymmetric parental histone patterns caused by a single dpb3Δ or mcm2-3A mutation, suggesting that the processes by which parental histones are transferred to the leading and lagging strands are independent. Surprisingly, the frequency of homologous recombination was significantly lower in dpb3Δ, mcm2-3A and dpb3Δ mcm2-3A mutants, likely due to the elevated levels of free histones detected in the mutant cells. Together, these findings indicate that proper transfer of parental histones during DNA replication is essential for maintaining chromatin structure and that lower homologous recombination activity due to parental histone transfer defects is detrimental to cells.


Subject(s)
DNA Replication , Histones , Homologous Recombination , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Histones/metabolism , Histones/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Homologous Recombination/genetics , DNA Replication/genetics , Mutation , Chromatin/metabolism , Chromatin/genetics , DNA Polymerase II/metabolism , DNA Polymerase II/genetics , Epigenesis, Genetic , DNA Repair
3.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: mdl-36575830

ABSTRACT

Creating synthetic lines is the standard mating mode for commercial pig production. Traditional mating performance was evaluated through a strictly designed cross-combination test at the 'breed level' to maximize the benefits of production. The Duroc-Landrace-Yorkshire (DLY) three-way crossbred production system became the most widely used breeding scheme for pigs. Here, we proposed an 'individual level' genomic mating procedure that can be applied to commercial pig production with efficient algorithms for estimating marker effects and for allocating the appropriate boar-sow pairs, which can be freely accessed to public in our developed HIBLUP software at https://www.hiblup.com/tutorials#genomic-mating. A total of 875 Duroc boars, 350 Landrace-Yorkshire sows and 3573 DLY pigs were used to carry out the genomic mating to assess the production benefits theoretically. The results showed that genomic mating significantly improved the performances of progeny across different traits compared with random mating, such as the feed conversion rate, days from 30 to 120 kg and eye muscle area could be improved by -0.12, -4.64 d and 2.65 cm2, respectively, which were consistent with the real experimental validations. Overall, our findings indicated that genomic mating is an effective strategy to improve the performances of progeny by maximizing their total genetic merit with consideration of both additive and dominant effects. Also, a herd of boars from a richer genetic source will increase the effectiveness of genomic mating further.


Subject(s)
Cell Communication , Genomics , Swine/genetics , Animals , Female , Male , Crosses, Genetic , Phenotype
4.
Mol Cell ; 65(2): 272-284, 2017 Jan 19.
Article in English | MEDLINE | ID: mdl-28107649

ABSTRACT

The histone chaperone HIRA is involved in depositing histone variant H3.3 into distinct genic regions, including promoters, enhancers, and gene bodies. However, how HIRA deposits H3.3 to these regions remains elusive. Through a short hairpin RNA (shRNA) screening, we identified single-stranded DNA binding protein replication protein A (RPA) as a regulator of the deposition of newly synthesized H3.3 into chromatin. We show that RPA physically interacts with HIRA to form RPA-HIRA-H3.3 complexes, and it co-localizes with HIRA and H3.3 at gene promoters and enhancers. Depletion of RPA1, the largest subunit of the RPA complex, dramatically reduces both HIRA association with chromatin and the deposition of newly synthesized H3.3 at promoters and enhancers and leads to altered transcription at gene promoters. These results support a model whereby RPA, best known for its role in DNA replication and repair, recruits HIRA to promoters and enhancers and regulates deposition of newly synthesized H3.3 to these regulatory elements for gene regulation.


Subject(s)
Cell Cycle Proteins/metabolism , Chromatin/metabolism , DNA-Binding Proteins/metabolism , DNA/metabolism , Enhancer Elements, Genetic , Histone Chaperones/metabolism , Histones/metabolism , Promoter Regions, Genetic , Replication Protein A/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Binding Sites , Cell Cycle Proteins/genetics , Chromatin/genetics , DNA/genetics , DNA-Binding Proteins/genetics , G1 Phase , HEK293 Cells , HeLa Cells , Histone Chaperones/genetics , Humans , Protein Binding , Protein Interaction Domains and Motifs , RNA Interference , Replication Protein A/genetics , Transcription Factors/genetics , Transfection
5.
J Anim Breed Genet ; 141(5): 507-520, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38389405

ABSTRACT

The genome-wide analysis of runs of homozygosity (ROH) islands can be an effective strategy for identifying shared variants within a population and uncovering important genomic regions related to complex traits. The current study performed ROH analysis to characterize the genome-wide patterns of homozygosity, identify ROH islands and annotated genes within these candidate regions using whole-genome sequencing data from 100 American mink (Neogale vison). After sequence processing, variants were called using GATK and Samtools pipelines. Subsequent to quality control, 8,373,854 bi-allelic variants identified by both pipelines remained for further analysis. A total of 34,652 ROH segments were identified in all individuals, among which shorter segments (0.3-1 Mb) were abundant throughout the genome, approximately accounting for 84.39% of all ROH. Within these segments, we identified 63 ROH islands housing 156 annotated genes. The genes located in ROH islands were associated with fur quality (EDNRA, FGF2, FOXA2 and SLC24A4), body size/weight (MYLK4, PRIM2, FABP2, EYS and PHF3), immune capacity (IL2, IL21, PTP4A1, SEMA4C, JAK2, CCNA2 and TNIP3) and reproduction (ADAD1, KHDRBS2, INSL6, PGRMC2 and HSPA4L). Furthermore, Gene Ontology and KEGG pathway enrichment analyses revealed 56 and 9 significant terms (FDR-corrected p-value < 0.05), respectively, among which cGMP-PKG signalling pathway, regulation of actin cytoskeleton, and calcium signalling pathway were highlighted due to their functional roles in growth and fur characteristics. This is the first study to present ROH islands in American mink. The candidate genes from ROH islands and functional enrichment analysis suggest possible signatures of selection in response to the mink breeding targets, such as increased body length, reproductive performance and fur quality. These findings contribute to our understanding of genetic characteristics, and provide complementary information to assist with implementation of breeding strategies for genetic improvement in American mink.


Subject(s)
Homozygote , Mink , Whole Genome Sequencing , Animals , Mink/genetics , Polymorphism, Single Nucleotide , Animal Fur
6.
Genes Dev ; 30(8): 946-59, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27083998

ABSTRACT

Dynamic regulation of RNF168-mediated ubiquitylation of histone H2A Lys13,15 (H2AK13,15ub) at DNA double-strand breaks (DSBs) is crucial for preventing aberrant DNA repair and maintaining genome stability. However, it remains unclear which deubiquitylating enzyme (DUB) removes H2AK13,15ub. Here we show that USP51, a previously uncharacterized DUB, deubiquitylates H2AK13,15ub and regulates DNA damage response. USP51 depletion results in increased spontaneous DNA damage foci and elevated levels of H2AK15ub and impairs DNA damage response. USP51 overexpression suppresses the formation of ionizing radiation-induced 53BP1 and BRCA1 but not RNF168 foci, suggesting that USP51 functions downstream from RNF168 in DNA damage response. In vitro, USP51 binds to H2A-H2B directly and deubiquitylates H2AK13,15ub. In cells, USP51 is recruited to chromatin after DNA damage and regulates the dynamic assembly/disassembly of 53BP1 and BRCA1 foci. These results show that USP51 is the DUB for H2AK13,15ub and regulates DNA damage response.


Subject(s)
DNA Damage/physiology , DNA Repair/physiology , Histones/metabolism , Ubiquitin-Specific Proteases/metabolism , Adaptor Proteins, Signal Transducing , Cell Cycle Proteins , Cell Line, Tumor , Cell Survival/physiology , DNA/metabolism , DNA/radiation effects , Humans , Nuclear Proteins/metabolism , Protein Binding , Radiation, Ionizing , Trans-Activators/metabolism , Ubiquitin-Specific Proteases/genetics , Ubiquitination
7.
Int J Mol Sci ; 25(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38397108

ABSTRACT

The conifer Taxodium hybrid 'Zhongshanshan' (T. hybrid 'Zhongshanshan') is characterized by rapid growth, strong stress resistance, and high ornamental value and has significant potential for use in afforestation, landscaping, and wood production. The main method of propagating T. hybrid 'Zhongshanshan' is tender branch cutting, but the cutting rooting abilities of different T. hybrid 'Zhongshanshan' clones differ significantly. To explore the causes of rooting ability differences at a molecular level, we analyzed the transcriptome data of cutting base and root tissues of T. hybrid 'Zhongshanshan 149' with a rooting rate of less than 5% and T. hybrid 'Zhongshanshan 118' with rooting rate greater than 60%, at the developmental time points in this study. The results indicated that differentially expressed genes between the two clones were mainly associated with copper ion binding, peroxidase, and oxidoreductase activity, response to oxidative stress, phenylpropanoid and flavonoid biosynthesis, and plant hormone signal transduction, among others. The expression pattern of ThAP2 was different throughout the development of the adventitive roots of the two clone cuttings. Therefore, this gene was selected for further study. It was shown that ThAP2 was a nuclear-localized transcription factor and demonstrated a positive feedback effect on rooting in transgenic Nicotiana benthamiana cuttings. Thus, the results of this study explain the molecular mechanism of cutting rooting and provide candidate gene resources for developing genetic breeding strategies for optimizing superior clones of T. hybrid 'Zhongshanshan'.


Subject(s)
Taxodium , Taxodium/genetics , Plant Breeding , Transcriptome , Plant Growth Regulators/metabolism , Gene Expression Regulation , Plant Roots/metabolism
8.
BMC Cardiovasc Disord ; 23(1): 67, 2023 02 04.
Article in English | MEDLINE | ID: mdl-36739380

ABSTRACT

BACKGROUND: An increased leukocyte count is a sign of inflammation and has been demonstrated to be a predisposing factor and complication of atrial fibrillation. Similarly, albumin, the major protein in the serum, is also considered an acute phase reactant protein that has osmotic and anti-inflammatory properties, and a low albumin level is a known factor associated with severity in many pathologies, including atrial fibrillation. The neutrophil percentage-to-albumin ratio (NPAR) and other emerging leukocyte counts/albumin ratios have been reliable systemic inflammation-based predictors of mortality and complications in various diseases, but they have not yet been used with atrial fibrillation. This study's aim was to explore whether the leukocyte to albumin ratio could also serve as a useful index in estimating atrial fibrillation severity, including the severity of atrial fibrillation secondary to stroke, to provide a new and more objective tool than the conventional and medical history-based CHA2DS2-VASc score. MATERIALS AND METHODS: Data were retrospectively collected from the Wuhan University Zhongnan Hospital database from January 1st to December 31st, 2021. The patients were classified into 2 groups: Group 1-low severity and Group 2- moderate to high severity, and diverse statistical analyses were conducted to evaluate the relationship between the leukocyte-to-albumin ratio and AF severity. RESULTS: Only 2329 test subjects met the inclusion criteria. We had 727 test subjects (381 males and 346 females) categorized into the low severity cohort and 1601 test subjects (932 males and 670 females) in the moderate to high severity group. The difference in mean age between the two groups was significant (95% CI [-2.682 to -0.154] p = 0.028), and the difference in the LAR mean rank between the two groups was significant (p = 0.00). The Chi-square test of association yielded the following results: the relationship between the LAR level and category of severity was statistically significant (p = 0.00), and the Mantel‒Haenszel statistic association odds ratio was OR = 0.657. 95% CI OR [0.549-0.787] p = 0.000. The association between sex and atrial fibrillation severity also reached statistical significance. However, sex and LAR were found to be independent factors in atrial fibrillation (Chi-square p value = 0.564). CONCLUSION: It has been demonstrated throughout this investigation that the leukocyte to albumin ratio could provide key clues in clinical practice and contribute to thromboembolism risk assessment in the setting of atrial fibrillation.


Subject(s)
Atrial Fibrillation , Stroke , Male , Female , Humans , Risk Factors , Retrospective Studies , Stroke/diagnosis , Risk Assessment , Inflammation/complications , Leukocytes , Albumins
9.
BMC Genomics ; 23(1): 649, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36096727

ABSTRACT

BACKGROUND: Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta. RESULTS: A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV regions (CNVR) after merging overlapping CNVs, covering 47.3 Mb (1.9%) of the mink autosomal genome. Gene Ontology and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3). CONCLUSIONS: This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural variations are present.


Subject(s)
DNA Copy Number Variations , Mink , Animals , Chromosome Mapping , Fibroblast Growth Factors/genetics , Genome , Mink/genetics , Whole Genome Sequencing
10.
Hum Mol Genet ; 29(16): 2761-2774, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32744316

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. It has a strong genetic basis, showing a ~ 8-fold increased risk of CLL in first-degree relatives. Genome-wide association studies (GWAS) have identified 41 risk variants across 41 loci. However, for a majority of the loci, the functional variants and the mechanisms underlying their causal roles remain undefined. Here, we examined the genetic and epigenetic features associated with 12 index variants, along with any correlated (r2 ≥ 0.5) variants, at the CLL risk loci located outside of gene promoters. Based on publicly available ChIP-seq and chromatin accessibility data as well as our own ChIP-seq data from CLL patients, we identified six candidate functional variants at six loci and at least two candidate functional variants at each of the remaining six loci. The functional variants are predominantly located within enhancers or super-enhancers, including bi-directionally transcribed enhancers, which are often restricted to immune cell types. Furthermore, we found that, at 78% of the functional variants, the alternative alleles altered the transcription factor binding motifs or histone modifications, indicating the involvement of these variants in the change of local chromatin state. Finally, the enhancers carrying functional variants physically interacted with genes enriched in the type I interferon signaling pathway, apoptosis, or TP53 network that are known to play key roles in CLL. These results support the regulatory roles for inherited noncoding variants in the pathogenesis of CLL.


Subject(s)
Enhancer Elements, Genetic/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Alleles , Chromatin/genetics , Epigenesis, Genetic/genetics , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Polymorphism, Single Nucleotide/genetics , Protein Binding , Risk Factors , Tumor Suppressor Protein p53/genetics
11.
Bioprocess Biosyst Eng ; 45(1): 75-85, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34564754

ABSTRACT

Hyperthermophilic microorganisms play a key role in the hyper-thermophilic composting (HTC) technique. However, little information is available about the hyperthermophilic microorganisms prevalent in HTC systems, except for the Calditerricola satsumensis, Calditerricola yamamurae, and Thermaerobacter. To obtain effective hyper-thermophilic microorganisms, a continuous thermo-acclimation of the suitable thermophilic microorganisms was demonstrated in this study. Bacillus thermoamylovorans with high-temperature endurance (70 °C) were newly isolated from sludge composting, and an adequate slow heating rate (2 °C per cycle) was applied to further improve its thermostability. Finally, a strain with a maximum growth temperature of 80 °C was obtained. Moreover, structural and hydrophobic changes in cell proteins, the special amino acid content ratio, and the membrane permeability of the thermophilic bacterium after thermo-acclimation were evaluated for improved thermostability. In addition, the acclimated hyperthermophilic bacterium was further inoculated into the HTC system, and an excellent performance with a maximum operating temperature of 82 °C was observed.


Subject(s)
Archaea/physiology , Fermentation , Bacterial Physiological Phenomena , Hot Temperature
12.
Int J Mol Sci ; 23(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35328474

ABSTRACT

NAC transcription factor is one of the largest plant gene families, participating in the regulation of plant biological and abiotic stresses. In this study, 182 NAC proteins (HhNACs) were identified based on genomic datasets of Hibiscus hamabo Sieb. et Zucc (H. hamabo). These proteins were divided into 19 subfamilies based on their phylogenetic relationship, motif pattern, and gene structure analysis. Expression analysis with RNA-seq revealed that most HhNACs were expressed in response to drought and salt stress. Research of quantitative real-time PCR analysis of nine selected HhNACs supported the transcriptome data's dependability and suggested that HhNAC54 was significantly upregulated under multiple abiotic stresses. Overexpression of HhNAC54 in Arabidopsis thaliana (A. thaliana) significantly increased its tolerance to salt. This study provides a basis for a comprehensive analysis of NAC transcription factor and insight into the abiotic stress response mechanism in H. hamabo.


Subject(s)
Arabidopsis , Hibiscus , Arabidopsis/genetics , Arabidopsis/metabolism , Droughts , Gene Expression Regulation, Plant , Hibiscus/genetics , Hibiscus/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
13.
BMC Genomics ; 22(1): 535, 2021 Jul 13.
Article in English | MEDLINE | ID: mdl-34256695

ABSTRACT

BACKGROUND: Genetic improvement for disease resilience is anticipated to be a practical method to improve efficiency and profitability of the pig industry, as resilient pigs maintain a relatively undepressed level of performance in the face of infection. However, multiple biological functions are known to be involved in disease resilience and this complexity means that the genetic architecture of disease resilience remains largely unknown. Here, we conducted genome-wide association studies (GWAS) of 465,910 autosomal SNPs for complete blood count (CBC) traits that are important in an animal's disease response. The aim was to identify the genetic control of disease resilience. RESULTS: Univariate and multivariate single-step GWAS were performed on 15 CBC traits measured from the blood samples of 2743 crossbred (Landrace × Yorkshire) barrows drawn at 2-weeks before, and at 2 and 6-weeks after exposure to a polymicrobial infectious challenge. Overall, at a genome-wise false discovery rate of 0.05, five genomic regions located on Sus scrofa chromosome (SSC) 2, SSC4, SSC9, SSC10, and SSC12, were significantly associated with white blood cell traits in response to the polymicrobial challenge, and nine genomic regions on multiple chromosomes (SSC1, SSC4, SSC5, SSC6, SSC8, SSC9, SSC11, SSC12, SSC17) were significantly associated with red blood cell and platelet traits collected before and after exposure to the challenge. By functional enrichment analyses using Ingenuity Pathway Analysis (IPA) and literature review of previous CBC studies, candidate genes located nearby significant single-nucleotide polymorphisms were found to be involved in immune response, hematopoiesis, red blood cell morphology, and platelet aggregation. CONCLUSIONS: This study helps to improve our understanding of the genetic basis of CBC traits collected before and after exposure to a polymicrobial infectious challenge and provides a step forward to improve disease resilience.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Animals , Blood Cell Count , Genome , Phenotype , Sus scrofa/genetics , Swine/genetics
14.
Mol Breed ; 41(11): 70, 2021 Nov.
Article in English | MEDLINE | ID: mdl-37309360

ABSTRACT

Heading date (flowering time) is a key trait that determines the yield and the adaptability of rice varieties. In the past 20 years, a number of genetic studies have been carried out to elucidate the genetic control of rice heading date, and many important genes have been cloned. These genes were identified under natural day (ND) conditions; however, little is known about the heading behavior under extreme day-length conditions. In this study, we identified a japonica variety, Sasanishiki, that showed sensitivity to extremely long days (ELD). Its heading date was significantly delayed for about 20 days under artificial ELD conditions that were achieved by setting a light emitting diode (LED) lamp beside a paddy field. We found that the late heading phenotype of Sasanishiki was induced when the day length was more than 14.75 h, and the LED light intensity was above 2 µmol m-2 s-1. Genetic analysis revealed that the photoperiod sensitivity of Sasanishiki was controlled by a dominant locus, temporarily named Se16(t). It was fine mapped to a 30.4-kb interval on chromosome 3, containing five predicted genes, including PHYC, a phytochrome encoding gene of rice. Our findings provide new information on the heading date under ELD conditions in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-021-01263-8.

15.
Int J Mol Sci ; 23(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35008561

ABSTRACT

Hibiscus hamabo Sieb. et Zucc is an important semi-mangrove plant with great morphological features and strong salt resistance. In this study, by combining single molecule real time and next-generation sequencing technologies, we explored the transcriptomic changes in the roots of salt stressed H. hamabo. A total of 94,562 unigenes were obtained by clustering the same isoforms using the PacBio RSII platform, and 2269 differentially expressed genes were obtained under salt stress using the Illumina platform. There were 519 differentially expressed genes co-expressed at each treatment time point under salt stress, and these genes were found to be enriched in ion signal transduction and plant hormone signal transduction. We used Arabidopsis thaliana (L.) Heynh. transformation to confirm the function of the HhWRKY79 gene and discovered that overexpression enhanced salt tolerance. The full-length transcripts generated in this study provide a full characterization of the transcriptome of H. hamabo and may be useful in mining new salt stress-related genes specific to this species, while facilitating the understanding of the salt tolerance mechanisms.


Subject(s)
Hibiscus/genetics , Salt Stress/genetics , Transcriptome/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Plant Roots/genetics , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods
16.
Int J Mol Sci ; 22(16)2021 Aug 15.
Article in English | MEDLINE | ID: mdl-34445454

ABSTRACT

The basic helix-loop-helix (bHLH) family of transcription factors is one of the most significant and biggest in plants. It is involved in the regulation of both growth and development, as well as stress response. Numerous members of the bHLH family have been found and characterized in woody plants in recent years. However, no systematic study of the bHLH gene family has been published for Hibiscus hamabo Sieb. et Zucc. In this research, we identified 162 bHLH proteins (HhbHLHs) from the genomic and transcriptomic datasets of H. hamabo, which were phylogenetically divided into 19 subfamilies. According to a gene structural study, the number of exon-introns in HhbHLHs varied between zero and seventeen. MEME research revealed that the majority of HhbHLH proteins contained three conserved motifs, 1, 4, and 5. The examination of promoter cis-elements revealed that the majority of HhbHLH genes had several cis-elements involved in plant growth and development and abiotic stress responses. In addition, the overexpression of HhbHLH2 increased salt and drought stress tolerance in Arabidopsis.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Hibiscus , Plant Proteins , Salt Stress , Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Transcription Factors/genetics , Dehydration/genetics , Dehydration/metabolism , Genome-Wide Association Study , Hibiscus/genetics , Hibiscus/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics
17.
BMC Genet ; 21(1): 26, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32138658

ABSTRACT

BACKGROUND: The diacylglycerol acyltransferases (DGAT) are a vital group of enzymes in catalyzing triacylglycerol biosynthesis. DGAT genes like DGAT1 and DGAT2, have been identified as two functional candidate genes affecting milk production traits, especially for fat content in milk. Buffalo milk is famous for its excellent quality, which is rich in fat and protein content. Therefore, this study aimed to characterize DGAT family genes in buffalo and to find candidate markers or DGAT genes influencing lactation performance. RESULTS: We performed a genome-wide study and identified eight DGAT genes in buffalo. All the DGAT genes classified into two distinct clades (DGAT1 and DGAT2 subfamily) based on their phylogenetic relationships and structural features. Chromosome localization displayed eight buffalo DGAT genes distributed on five chromosomes. Collinearity analysis revealed that the DGAT family genes were extensive homologous between buffalo and cattle. Afterward, we discovered genetic variants loci within the genomic regions that DGAT genes located in buffalo. Seven haplotype blocks were constructed and were associated with buffalo milk production traits. Single marker association analyses revealed four most significant single nucleotide polymorphisms (SNPs) mainly affecting milk protein percentage or milk fat yield in buffalo. Genes functional analysis indicated that these DGAT family genes could influence lactation performance in the mammal through regulating lipid metabolism. CONCLUSION: In the present study, we performed a comprehensive analysis for the DGAT family genes in buffalo, which including identification, structural characterization, phylogenetic classification, chromosomal distribution, collinearity analysis, association analysis, and functional analysis. These findings provide useful information for an in-depth study to determine the role of DGAT family gens play in the regulation of milk production and milk quality improvement in buffalo.


Subject(s)
Buffaloes/genetics , Diacylglycerol O-Acyltransferase/genetics , Genome-Wide Association Study , Milk/enzymology , Animals , Buffaloes/growth & development , Cattle , Female , Genome/genetics , Phenotype , Phylogeny , Polymorphism, Single Nucleotide/genetics
18.
BMC Cardiovasc Disord ; 20(1): 326, 2020 07 08.
Article in English | MEDLINE | ID: mdl-32641068

ABSTRACT

OBJECTIVE: To investigate the correlation between ischemia-modified albumin (IMA) levels and coronary collateral circulation (CCC) in patients with chronic total occlusive (CTO). METHODS: Coronary angiography was performed in the Department of Cardiology, Zhongnan Hospital of Wuhan University from 2017 to 08 to 2019-02 to identify 128 patients with CTO lesions in at least one major coronary artery. According to the Rentrop evaluation criteria, the degree of CCC formation was divided into the poor CCC formation group (Rentrop0-1 grade,n = 69) and the good CCC formation group (Rentrop2-3 grade,n = 59). The IMA level of the patients was measured using an albumin-cobalt binding assay. The general data, routine blood panel, total bilirubin (TBIL), blood lipids, uric acid (UA), left ventricular ejection fraction (LVEF) and other indicators of the patients were recorded and analyzed while assessing the patients' blood vessel occlusion. RESULTS: The proportion of platelet count and diabetes in the poor CCC group was higher than that in the good CCC group (P < 0.05). The ratio of ischemia-modified albumin and total bilirubin in the poor CCC group was lower than that in the good CCC group (P < 0.05). Multivariate logistic regression analysis showed that ischemia-modified albumin was positively correlated with CCC formation [OR = 1.190,95% CI (1.092-1.297),P < 0.001], while diabetes was negatively correlated with CCC formation [OR = 0.285,95% CI (0.094-0.864), P < 0.05]. Ischemic modified albumin predicted good formation of CCC according to the ROC curve, and the area under the ROC curve was 0.769(95% CI,0.686-0.851, P<0.001); the optimal cut-off value was 63.35 KU/L, and the sensitivity was 71.2%,specificity is 71%. CONCLUSION: The IMA level is closely related to good formation of CCC. Higher IMA levels can be used as an effective predictor of good CCC formation in patients with CTO.


Subject(s)
Collateral Circulation , Coronary Circulation , Coronary Occlusion/blood , Coronary Occlusion/physiopathology , Aged , Biomarkers/blood , Chronic Disease , Coronary Angiography , Coronary Occlusion/diagnostic imaging , Coronary Occlusion/therapy , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Prognosis , Retrospective Studies , Serum Albumin, Human
19.
J Dairy Res ; 87(1): 27-31, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32114990

ABSTRACT

This research communication describes a genome-wide association study for Italian buffalo mammary gland morphology. Three single nucleotide polymorphisms (AX-85117983, AX-8509475 and AX-85117518) were identified to be significantly associated with buffalo anterior teat length, posterior teat length and distance between anterior and posterior teat, respectively. Two significant signals for buffalo mammary gland morphology were observed in two genomic regions on the chromosome 10, and chromosome 20. One of the regions located on the chromosome 10 has the most likely candidate genes ACTC1 and GJD2, both of which have putative roles in the regulation of mammary gland development. This study provides new insights into the genetic variants of buffalo mammary gland morphology and may be beneficial for understanding of the genetic regulation of mammary growth.


Subject(s)
Buffaloes/genetics , Mammary Glands, Animal/anatomy & histology , Actins/genetics , Animals , Buffaloes/anatomy & histology , Chromosome Mapping/veterinary , Connexins/genetics , Female , Genome-Wide Association Study/veterinary , Mammary Glands, Animal/growth & development , Polymorphism, Single Nucleotide/genetics , Quantitative Trait, Heritable
20.
J Cardiovasc Electrophysiol ; 30(11): 2377-2386, 2019 11.
Article in English | MEDLINE | ID: mdl-31512322

ABSTRACT

AIMS: Ventricular arrhythmias (VAs) originating from the para-Hisian region represent a challenging location. The long-term success rate of catheter ablation above the septal leaflet of the tricuspid valve is not ideal. This study aimed to investigate the safety and efficacy of catheter ablation for para-Hisian VAs via a direct approach under the septal valve with reversed C-curve technique. METHODS AND RESULTS: Twenty-five consecutive patients with para-Hisian VAs were included. Systematic mapping was performed in the right ventricle septum, including both the regions above and under the septal valve. Radiofrequency (RF) ablation was preferentially performed under the valve with reversed C-curve technique in all patients. If the ablation failed under the valve, it was then performed above the valve and even in aortic sinus cusps. The earliest ventricular activation preceding surface QRS (V-QRS) under the valve was significantly larger than that above the valve (34.8 ± 5.3 vs 27.8 ± 5.7 ms, P < .01). RF ablation under the valve with reversed C-curve technique achieved acute success in 22 of 25 (88%) patients. Junctional rhythm developed during ablation in 3 of 25 (12%) patients and no atrioventricular block occurred. In the remaining three patients, RF application above the valve failed to eliminate the VAs and one of them achieved successful ablation in the right coronary cusp. During a mean follow-up of 17.8 ± 9.4 months, no patients presented with VAs recurrence and no postprocedure complications occurred. CONCLUSIONS: Catheter ablation under the valve with reversed C-curve technique shows to be effective and safe for para-Hisian VAs.


Subject(s)
Bundle of His/surgery , Catheter Ablation , Heart Rate , Tachycardia, Ventricular/surgery , Ventricular Premature Complexes/surgery , Action Potentials , Aged , Bundle of His/physiopathology , Catheter Ablation/adverse effects , Female , Humans , Male , Middle Aged , Retrospective Studies , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/physiopathology , Time Factors , Treatment Outcome , Ventricular Premature Complexes/diagnosis , Ventricular Premature Complexes/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL