Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
Add more filters

Publication year range
1.
Bioorg Med Chem ; 27(7): 1232-1245, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30777661

ABSTRACT

Generation and screening of oxime libraries by competitive MS Binding Assays represents a powerful tool for the identification of new compounds, with affinity to mGAT1, the most abundant plasma membrane bound GABA transporter in the CNS. By screening a guvacine derived oxime library, new potent inhibitors of mGAT1 had been revealed. In the present study, oxime libraries generated by reaction of a large excess of a rac-nipecotic acid derivative displaying a hydroxylamine functionality in which various aldehydes under suitable conditions, were examined for new potent inhibitors of mGAT1. The pKi values obtained of the best hits were compared with those of related compounds displaying a guvacine instead of a nipecotic acid subunit as hydrophilic moiety. Amongst the new compounds one of the most affine ligands of mGAT1 known so far (pKi = 8.55 ±â€¯0.04) was found.


Subject(s)
Enzyme Inhibitors/pharmacology , N-Acetylglucosaminyltransferases/antagonists & inhibitors , Oximes/pharmacology , Small Molecule Libraries/pharmacology , Binding Sites/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , HEK293 Cells , Humans , Mass Spectrometry , Molecular Structure , N-Acetylglucosaminyltransferases/metabolism , Oximes/chemical synthesis , Oximes/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
2.
Bioorg Med Chem ; 27(5): 822-831, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30718063

ABSTRACT

To discover new, potent, and selective inhibitors for the murine gamma-aminobutyric acid transporter 4 (mGAT4), the structure-activity relationship (SAR) study of a new cis-alkene analog family based on DDPM-1457 [(S)-2], which previously showed promising inhibitory potency at and subtype selectivity for mGAT4, was conducted. To uncover the importance of the differences between the trans- and the cis-alkene moiety in the spacer, the present publication describes the synthesis of the new compounds via catalytic hydrogenation with Lindlar's catalyst. The biological results collected by the SAR study revealed that analog rac-7j characterized by a four-instead of a three-carbon atom spacer with a cis double bond applying to the majority of the studied compounds displays a surprisingly high potency at mGAT1 (pIC50 = 6.00 ±â€¯0.04) and at the same time a reasonable potency at mGAT4 (pIC50 = 4.82).


Subject(s)
Alkenes/pharmacology , GABA Uptake Inhibitors/pharmacology , Nipecotic Acids/pharmacology , Alkenes/chemical synthesis , Alkenes/chemistry , Animals , Drug Design , GABA Plasma Membrane Transport Proteins/metabolism , GABA Uptake Inhibitors/chemical synthesis , GABA Uptake Inhibitors/chemistry , HEK293 Cells , Humans , Mice , Nipecotic Acids/chemical synthesis , Nipecotic Acids/chemistry , Stereoisomerism , Structure-Activity Relationship , Tiagabine/pharmacology
3.
Bioorg Med Chem ; 27(13): 2753-2763, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31097402

ABSTRACT

In the present study, the concept of oxime library screening by MS Binding Assays was successfully extended to N-substituted lipophilic pyrrolidine-3-carboxylic acid derivatives in the pursuit of varying the amino acid motif in order to identify new inhibitors for GAT1 and to broaden structure-activity-relationships for this target, the most abundant GABA transporter in the central nervous system. For the screening, 28 different oxime sub-libraries were employed that were generated by simple condensation reaction of an excess of pyrrolidine-3-carboxylic acid derivatives carrying a hydroxylamine functionality with various sub-libraries each assembled of eight aldehydes with broadly varying chemical structures and functionalities. The compounds responsible for the activity of an oxime sub-library were identified by deconvolution experiments performed by employing single oximes. Binding affinities of the oxime hits were confirmed in full-scale competitive MS Binding Assays. Thereby, oxime derivatives with a 1,1'-biphenyl moiety were found as the first inhibitors of mGAT1 comprising a pyrrolidine-3-carboxylic acid motif with affinities in the submicromolar range.


Subject(s)
GABA Plasma Membrane Transport Proteins/metabolism , GABA Uptake Inhibitors/therapeutic use , Oximes/chemistry , Pyrrolidines/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , GABA Uptake Inhibitors/pharmacology , Structure-Activity Relationship
4.
Bioorg Med Chem ; 27(1): 144-152, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30503411

ABSTRACT

The γ-aminobutyric acid (GABA) transporter mGAT4 represents a promising drug target for the treatment of epilepsy and other neurological disorders; however, the lack of highly potent and selective inhibitors for mGAT4 still retards its pharmacological elucidation. Herein, the generation and screening of pseudostatic combinatorial hydrazone libraries at the murine GABA transporter mGAT4 for the search of novel GABA uptake inhibitors is described. The hydrazone libraries contained more than 1100 compounds derived from nipecotic acid derivatives substituted at the 5-position instead, as common, at the 1-position of the core structure. Two hits were found and evaluated, which display potencies in the lower micromolar range at mGAT4 and its human equivalent hGAT3. These compounds possess a lipophilic moiety derived from a biphenyl residue attached to the 5-position of the hydrophilic nipecotic acid moiety via a three-atom spacer. Thus, the novel structures with potencies close to that of the bench mark mGAT4 inhibitor (S)-SNAP-5114 add new insights into the structure-activity relationship of mGAT4 inhibitors and could provide a promising starting point for the development of new mGAT4 inhibitors with even higher potencies.


Subject(s)
GABA Plasma Membrane Transport Proteins/metabolism , GABA Uptake Inhibitors/pharmacology , Hydrazones/pharmacology , Nipecotic Acids/pharmacology , Small Molecule Libraries/pharmacology , Animals , GABA Uptake Inhibitors/chemical synthesis , GABA Uptake Inhibitors/chemistry , HEK293 Cells , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Mice , Molecular Structure , Nipecotic Acids/chemical synthesis , Nipecotic Acids/chemistry , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
5.
Bioorg Med Chem ; 26(22): 5944-5961, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30442505

ABSTRACT

Our study presents the synthesis and structure-activity relationship (SAR) of novel N-substituted nipecotic acid derivatives closely related to DDPM-1457 [(S)-2a], a chemically stable analog of (S)-SNAP-5114 (1), in the pursuit of finding new and potent mGAT4 selective inhibitors. Iminium ion chemistry served as key step for the preparation of the desired, new N-substituted nipecotic acid derivatives containing a variety of different heterocycles attached to the nipecotic acid moiety via a trans-alkene spacer. The target compounds were characterized with regard to their potency at and subtype selectivity for the GABA transporters mGAT1-mGAT4.


Subject(s)
Alkenes/pharmacology , GABA Uptake Inhibitors/pharmacology , Nipecotic Acids/pharmacology , gamma-Aminobutyric Acid/metabolism , Alkenes/chemistry , Dose-Response Relationship, Drug , GABA Uptake Inhibitors/chemical synthesis , GABA Uptake Inhibitors/chemistry , HEK293 Cells , Humans , Molecular Structure , Nipecotic Acids/chemical synthesis , Nipecotic Acids/chemistry , Structure-Activity Relationship
6.
Bioorg Med Chem ; 26(12): 3668-3687, 2018 07 23.
Article in English | MEDLINE | ID: mdl-29886082

ABSTRACT

In this study, we present the synthesis and structure-activity relationships (SAR) of novel N-substituted nipecotic acid derivatives closely related to (S)-SNAP-5114 (2) in the pursuit of finding new and potent mGAT4 selective inhibitors. By the use of iminium ion chemistry, a series of new N-substituted nipecotic acid derivatives containing a variety of heterocycles, and an alkyne spacer were synthesized. Biological evaluation of the prepared compounds showed, how the inhibitory potency and subtype selectivity for the murine GABA transporters (mGATs) were influenced by the performed modifications.


Subject(s)
Alkynes/chemistry , GABA Plasma Membrane Transport Proteins/chemistry , GABA Plasma Membrane Transport Proteins/metabolism , GABA Uptake Inhibitors/chemical synthesis , Nipecotic Acids/chemistry , Animals , GABA Uptake Inhibitors/metabolism , HEK293 Cells , Humans , Mice , Nipecotic Acids/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/metabolism , Structure-Activity Relationship , gamma-Aminobutyric Acid/metabolism
7.
Biomed Chromatogr ; 32(7): e4231, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29500932

ABSTRACT

MS Binding Assays represent a label-free alternative to radioligand binding assays. In this study, we present an LC-ESI-MS/MS method for the quantification of (R,R)-4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidin-3-ol [(R,R)-D-84, (R,R)-1], (S,S)-reboxetine [(S,S)-2], and (S)-citalopram [(S)-3] employed as highly selective nonlabeled reporter ligands in MS Binding Assays addressing the dopamine [DAT, (R,R)-D-84], norepinephrine [NET, (S,S)-reboxetine] and serotonin transporter [SERT, (S)-citalopram], respectively. The developed LC-ESI-MS/MS method uses a pentafluorphenyl stationary phase in combination with a mobile phase composed of acetonitrile and ammonium formate buffer for chromatography and a triple quadrupole mass spectrometer in the multiple reaction monitoring mode for mass spectrometric detection. Quantification is based on deuterated derivatives of all three analytes serving as internal standards. The established LC-ESI-MS/MS method enables fast, robust, selective and highly sensitive quantification of all three reporter ligands in a single chromatographic run. The method was validated according to the Center for Drug Evaluation and Research (CDER) guideline for bioanalytical method validation regarding selectivity, accuracy, precision, calibration curve and sensitivity. Finally, filtration-based MS Binding Assays were performed for all three monoamine transporters based on this LC-ESI-MS/MS quantification method as read out. The affinities determined in saturation experiments for (R,R)-D-84 toward hDAT, for (S,S)-reboxetine toward hNET, and for (S)-citalopram toward hSERT, respectively, were in good accordance with results from literature, clearly demonstrating that the established MS Binding Assays have the potential to be an efficient alternative to radioligand binding assays widely used for this purpose so far.


Subject(s)
Benzhydryl Compounds/analysis , Chromatography, Liquid/methods , Citalopram/analysis , Morpholines/analysis , Piperidines/analysis , Symporters/metabolism , Animals , Benzhydryl Compounds/metabolism , Citalopram/metabolism , Humans , Morpholines/metabolism , Piperidines/metabolism , Protein Binding , Reboxetine , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
8.
PLoS Comput Biol ; 12(11): e1005197, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27835643

ABSTRACT

Human neurotransmitter transporters are found in the nervous system terminating synaptic signals by rapid removal of neurotransmitter molecules from the synaptic cleft. The homologous transporter LeuT, found in Aquifex aeolicus, was crystallized in different conformations. Here, we investigated the inward-open state of LeuT. We compared LeuT in membranes and micelles using molecular dynamics simulations and lanthanide-based resonance energy transfer (LRET). Simulations of micelle-solubilized LeuT revealed a stable and widely open inward-facing conformation. However, this conformation was unstable in a membrane environment. The helix dipole and the charged amino acid of the first transmembrane helix (TM1A) partitioned out of the hydrophobic membrane core. Free energy calculations showed that movement of TM1A by 0.30 nm was driven by a free energy difference of ~15 kJ/mol. Distance measurements by LRET showed TM1A movements, consistent with the simulations, confirming a substantially different inward-open conformation in lipid bilayer from that inferred from the crystal structure.


Subject(s)
Amino Acid Transport Systems/chemistry , Amino Acid Transport Systems/ultrastructure , Bacterial Proteins/chemistry , Lipid Bilayers/chemistry , Neurotransmitter Transport Proteins/chemistry , Neurotransmitter Transport Proteins/ultrastructure , Bacterial Proteins/ultrastructure , Models, Chemical , Molecular Dynamics Simulation , Protein Conformation , Protein Domains , Structure-Activity Relationship
9.
J Org Chem ; 82(16): 8371-8388, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28699342

ABSTRACT

The relative reactivities of several secondary amines serving as hydride donors in propargylic amines undergoing a [1,5]-hydride transfer reaction to yield the respective terminal and 1,3-disubstituted allenes were studied. For this study, a two-step procedure was employed. At first, the synthesis of propargylic amines via the CuI-catalyzed aldehyde-alkyne-amine reactions (A3 coupling) was accomplished. The obtained propargylic amines were subsequently transformed to the desired allenes under CdI2 or ZnI2 catalysis. As a result, among the various secondary amines employed, differing in steric bulk, electronic nature, and conformational properties, allyl(tert-butyl)amine was found to be the best hydride donor for the synthesis of terminal allenes. For the synthesis of 1,3-disubstituted allenes, the propyne derivatives containing either a allyl(tert-butyl)amine or a 1,2,3,6-tetrahydropyridine unit in propargylic position performed best. Finally, with the developed procedure, nipecotic acid derivatives containing an N-allenyl substituent were synthesized with good yields using either ZnI2 as catalyst for the preparation of 1-substituted or CdI2 for the synthesis of 1,3-disubstitued allenes.

10.
Chirality ; 29(6): 294-303, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28437017

ABSTRACT

(+)-R,R-D-84 ((+)-R,R-4-(2-benzhydryloxyethyl)-1-(4-fluorobenzyl)piperidin-3-ol) is a promising pharmacological tool for the dopamine transporter (DAT), due to its high affinity and selectivity for this target. In this study, an analytical method to ascertain the enantiomeric purity of this compound was established. For this purpose, a high-performance liquid chromatographic (HPLC) method, based on a cellulose derived chiral stationary phase (CSP) was developed. The method was characterized concerning its specificity, linearity, and range. It was shown that the method is suitable to determine an enantiomeric excess of up to 99.8%. With only a few adjustments, this analytical CSP-HPLC method is also well suited to separate (+)-R,R-D-84 from its enantiomer in a semipreparative scale.


Subject(s)
Benzhydryl Compounds/chemistry , Benzhydryl Compounds/pharmacology , Dopamine Plasma Membrane Transport Proteins/antagonists & inhibitors , Piperidines/chemistry , Piperidines/pharmacology , Benzhydryl Compounds/isolation & purification , Chromatography, High Pressure Liquid , Piperidines/isolation & purification , Stereoisomerism
11.
Chirality ; 29(1): 48-56, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28019695

ABSTRACT

For the enantiopure synthesis of novel chiral GABA uptake inhibitors, nipecotic acid (1) is an important key precursor. To characterize accurately the pharmacological activity of these interesting target compounds, the determination of the correct enantiomeric purity of nipecotic acid as the starting material is indispensable. In this report, a sensitive high-performance liquid chromatography (HPLC) based method for the separation and quantitation of both enantiomers of nipecotic acid as 1-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl) derivatives (5) on a Chiralpak ID-3 column (Daicel, Illkirch, France) was established. UV/Vis-detection at 490 nm was chosen to ensure a selective determination of even highly enantioenriched samples. Reliability was demonstrated by validation of specificity, linearity, lower limit of quantification (LLOQ), accuracy, and precision. By spiking highly enantiopure samples with small amounts of racemic rac-5, it was proven that the established HPLC method is able to detect even slight changes in enantiomeric excess (ee) values. Thus, accurate determination of ee values up to 99.87% ee for (R)-5 and 99.86% ee for (S)-5 over a linear concentration range of 1-1500 µM for (R)-5 and of 1-1455 µM for (S)-5 could be demonstrated.


Subject(s)
Chromatography, High Pressure Liquid/methods , Nipecotic Acids/chemistry , Nitro Compounds/chemistry , Oxadiazoles/chemistry , Reproducibility of Results , Stereoisomerism
12.
Bioorg Med Chem ; 24(9): 2072-96, 2016 May 01.
Article in English | MEDLINE | ID: mdl-27039250

ABSTRACT

In this study, we disclose the design and synthesis of novel 4-susbtituted nipecotic acid derivatives as inhibitors of the GABA transporter mGAT1. Based on molecular modeling studies the compounds are assumed to adopt a binding pose similar to that of the potent mGAT1 inhibitor nipecotic acid. As substitution in 4-position should not cause an energetically unfavorable orientation of nipecotic acid as it is the case for N-substituted derivatives this is expected to lead to highly potent binders. For the synthesis of novel 4-substituted nipecotic acid derivatives a linear synthetic strategy was employed. As a key step, palladium catalyzed cross coupling reactions were used to attach the required biaryl moieties to the ω-position of the alkenyl- or alkynyl spacers of varying length in the 4-position of the nipecotic acid scaffold. The resulting amino acids were characterized with respect to their binding affinities and inhibitory potencies at mGAT1. Though the biological activities found were generally insignificant to poor, two compounds, one of which possesses a reasonable binding affinity for mGAT1, rac-57, the other a notable inhibitory potency at mGAT4, rac-84, both displaying a slight subtype selectivity for the individual transporters, could be identified.


Subject(s)
GABA Uptake Inhibitors/pharmacology , Nipecotic Acids/chemical synthesis , Drug Evaluation, Preclinical , Nipecotic Acids/pharmacology
13.
Bioorg Med Chem ; 23(6): 1284-306, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25698617

ABSTRACT

In this paper, we disclose the design and synthesis of a series of 2-substituted pyrrolidine-2-yl-acetic acid as core structures and the N-arylalkyl derivatives thereof as potential GABA transport inhibitors. The 2-position in the side chain of pyrrolidine-2-yl-acetic acid derivatives was substituted with alkyl, hydroxy and amino groups to modulate the activity and selectivity to mGAT1 and mGAT4 proteins. SAR studies of the compounds performed for the four mouse GABA transporter proteins (mGAT1-mGAT4) implied significant potencies and subtype selectivities for 2-hydroxy-2-pyrrolidine-2-yl-acetic acid derivatives. The racemate rac-(u)-13c exhibited the highest potency (pIC50 5.67) at and selectivity for mGAT1 in GABA uptake assays. In fact, the potency of rac-(u)-13c at hGAT-1 (pIC50 6.14) was even higher than its potency at mGAT1. These uptake results for rac-(u)-13c are in line with the binding affinities to the aforesaid proteins mGAT1 (pKi 6.99) and hGAT-1 (pKi 7.18) determined by MS Binding Assay based on NO711 as marker quantified by LC-ESI-MS-MS analysis. Interestingly, the 2-hydroxy-2-pyrrolidine-2-yl-acetic acid rac-(u)-13d containing 2-{[tris(4-methoxyphenyl)]methoxy} ethyl group at the nitrogen atom of the pyrrolidine ring showed high potency at mGAT4 and a comparatively better selectivity for this protein (>15 against mGAT3) than the well known mGAT4 uptake inhibitor (S)-SNAP-5114.


Subject(s)
Drug Design , GABA Plasma Membrane Transport Proteins/metabolism , Proline/analogs & derivatives , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Mice , Molecular Structure , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacology , Structure-Activity Relationship
14.
Anal Bioanal Chem ; 407(2): 471-85, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450050

ABSTRACT

We herein present the first LC-MS/MS quantification method for indatraline, a highly potent nonselective inhibitor of the three monoamine transporters (for dopamine, DAT; norepinephrine, NET; serotonin, SERT), and its application to MS Binding Assays. For HPLC, an R18 column with a mobile phase composed of acetonitrile and ammonium bicarbonate buffer (5 mmol L(-1), pH 10.0) in a ratio of 90:10 (v/v) at a flow rate of 600 µL min(-1) was used. Recording indatraline at m/z 292.2/261.0 and ((2)H(7))-indatraline, employed as internal standard, at m/z 299.2/268.0 allowed reliable quantification from 5 pmol L(-1) (LLOQ) to 5 nmol L(-1) in biological matrices without additional sample preparation. Validation of the developed quantification method showed that selectivity, calibration standard curve, accuracy, as well as precision meet the criteria of the CDER guideline. Applying this method to mass spectrometry (MS) Binding Assays, a label-free MS-based alternative to conventional radioligand binding assays, binding of indatraline's eutomer, (1R,3S)-indatraline, towards NET could be characterized directly for the first time, revealing an equilibrium dissociation constant (K d) of 805 pmol L(-1). Additionally, it could be shown that the established MS Binding Assays enable characterization of test compounds in competition experiments. As the established setup is based on a 96-well format and an LC MS/MS method with a short chromatographic cycle time (1.5 min), the developed MS Binding Assays enable considerable throughput and are therefore well suited as substitute for corresponding radioligand binding assays.


Subject(s)
Chromatography, High Pressure Liquid/methods , Indans/analysis , Indans/metabolism , Methylamines/analysis , Methylamines/metabolism , Tandem Mass Spectrometry/methods , Binding, Competitive , Dopamine Plasma Membrane Transport Proteins/metabolism , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Norepinephrine Plasma Membrane Transport Proteins/antagonists & inhibitors , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Radioligand Assay , Sensitivity and Specificity , Serotonin Plasma Membrane Transport Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization/methods
15.
Anal Chem ; 86(15): 7575-83, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25007119

ABSTRACT

Transport assays for neurotransmitters based on radiolabeled substrates are widely spread and often indispensable in basic research and the drug development process, although the use of radioisotopes is inherently coupled to issues concerning radioactive waste and safety precautions. To overcome these disadvantages, we developed mass spectrometry (MS)-based transport assays for γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system (CNS). These "MS Transport Assays" provide all capabilities of [(3)H]GABA transport assays and therefore represent the first substitute for the latter. The performance of our approach is demonstrated for GAT1, the most important GABA transporter (GAT) subtype. As GABA is endogenously present in COS-7 cells employed as hGAT1 expression system, ((2)H6)GABA was used as a substrate to differentiate transported from endogenous GABA. To record transported ((2)H6)GABA, a highly sensitive, short, robust, and reliable HILIC-ESI-MS/MS quantification method using ((2)H2)GABA as an internal standard was developed and validated according to the Center for Drug Evaluation and Research (CDER) guidelines. Based on this LC-MS quantification, a setup to characterize hGAT1 mediated ((2)H6)GABA transport in a 96-well format was established, that enables automated processing and avoids any sample preparation. The K(m) value for ((2)H6)GABA determined for hGAT1 is in excellent agreement with results obtained from [(3)H]GABA uptake assays. In addition, the established assay format enables efficient determination of the inhibitory potency of GAT1 inhibitors, is capable of identifying those inhibitors transported as substrates, and furthermore allows characterization of efflux. The approach described here combines the strengths of LC-MS/MS with the high efficiency of transport assays based on radiolabeled substrates and is applicable to all GABA transporter subtypes.


Subject(s)
Spectrometry, Mass, Electrospray Ionization/methods , Animals , COS Cells , Chlorocebus aethiops , Chromatography, Liquid , GABA Plasma Membrane Transport Proteins , Radiometry
16.
Toxicol Lett ; 394: 23-31, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387764

ABSTRACT

Intoxications with organophosphorus compounds (OPCs) effect a severe impairment of cholinergic neurotransmission that, as a result of overstimulation may lead to desensitization of nicotinic acetylcholine receptors (nAChRs) and finally to death due to respiratory paralysis. So far, therapeutics, that are capable to address and revert desensitized neuromuscular nAChRs into their resting, i.e. functional state are still missing. Still, among a class of compounds termed bispyridinium salts, which are characterized by the presence of two pyridinium subunits, constituents have been identified, that can counteract organophosphate poisoning by resensitizing desensitized nAChRs. According to comprehensive modeling studies this effect is mediated by an allosteric binding site at the nAChR termed MB327-PAM-1 site. For MB327, the most prominent representative of the bispyridinium salts and all other analogues studied so far, the affinity for the aforementioned binding site and the intrinsic activity measured in ex vivo and in in vivo experiments are distinctly too low, to meet the criteria to be fulfilled for therapeutic use. Hence, in order to identify new compounds with higher affinities for the MB327-PAM-1 binding site, as a basic requirement for an enhanced potency, two compound libraries, the ChemDiv library with 60 constituents and the Tocriscreen Plus library with 1280 members have been screened for hit compounds addressing the MB327-PAM-1 binding site, utilizing the [2H6]MB327 MS Binding Assay recently developed by us. This led to the identification of a set of 10 chemically diverse compounds, all of which exhibit an IC50 value of ≤ 10 µM (in the [2H6]MB327 MS Binding Assay), which had been defined as selection criteria. The three most affine ligands, which besides a quinazoline scaffold share similarities with regard to the substitution pattern and the nature of the substituents, are UNC0638, UNC0642 and UNC0646. With binding affinities expressed as pKi values of 6.01 ± 0.10, 5.97 ± 0.05 and 6.23 ± 0.02, respectively, these compounds exceed the binding affinity of MB327 by more than one log unit. This renders them promising starting points for the development of drugs for the treatment of organophosphorus poisoning by addressing the MB327-PAM-1 binding site of the nAChR.


Subject(s)
Organophosphate Poisoning , Pyridinium Compounds , Receptors, Nicotinic , Humans , Receptors, Nicotinic/metabolism , Salts/metabolism , Salts/therapeutic use , Structure-Activity Relationship , Binding Sites , Organophosphate Poisoning/drug therapy , Ligands
17.
Toxicol Lett ; 398: 91-104, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768836

ABSTRACT

Desensitization of nicotinic acetylcholine receptors (nAChRs) can be induced by overstimulation with acetylcholine (ACh) caused by an insufficient degradation of ACh after poisoning with organophosphorus compounds (OPCs). Currently, there is no generally applicable treatment for OPC poisoning that directly targets the desensitized nAChR. The bispyridinium compound MB327, an allosteric modulator of nAChR, has been shown to act as a resensitizer of nAChRs, indicating that drugs binding directly to nAChRs can have beneficial effects after OPC poisoning. However, MB327 also acts as an inhibitor of nAChRs at higher concentrations and can thus not be used for OPC poisoning treatment. Consequently, novel, more potent resensitizers are required. To successfully design novel ligands, the knowledge of the binding site is of utmost importance. Recently, we performed in silico studies to identify a new potential binding site of MB327, MB327-PAM-1, for which a more affine ligand, UNC0646, has been described. In this work, we performed ligand-based screening approaches to identify novel analogs of UNC0646 to help further understand the structure-affinity relationship of this compound class. Furthermore, we used structure-based screenings and identified compounds representing four new chemotypes binding to MB327-PAM-1. One of these compounds, cycloguanil, is the active metabolite of the antimalaria drug proguanil and shows a higher affinity towards MB327-PAM-1 than MB327. Furthermore, cycloguanil can reestablish the muscle force in soman-inhibited rat muscles. These results can act as a starting point to develop more potent resensitizers of nAChR and to close the gap in the treatment after OPC poisoning.

18.
Toxicol Lett ; 397: 151-162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759939

ABSTRACT

Poisoning with organophosphorus compounds, which can lead to a cholinergic crisis due to the inhibition of acetylcholinesterase and the subsequent accumulation of acetylcholine (ACh) in the synaptic cleft, is a serious problem for which treatment options are currently insufficient. Our approach to broadening the therapeutic spectrum is to use agents that interact directly with desensitized nicotinic acetylcholine receptors (nAChRs) in order to induce functional recovery after ACh overstimulation. Although MB327, one of the most prominent compounds investigated in this context, has already shown positive properties in terms of muscle force recovery, this compound is not suitable for use as a therapeutic agent due to its insufficient potency. By means of in silico studies based on our recently presented allosteric binding pocket at the nAChR, i.e. the MB327-PAM-1 binding site, three promising MB327 analogs with a 4-aminopyridinium ion partial structure (PTM0056, PTM0062, and PTM0063) were identified. In this study, we present the synthesis and biological evaluation of a series of new analogs of the aforementioned compounds with a 4-aminopyridinium ion partial structure (PTM0064-PTM0072), as well as hydroxy-substituted analogs of MB327 (PTMD90-0012 and PTMD90-0015) designed to substitute entropically unfavorable water clusters identified during molecular dynamics simulations. The compounds were characterized in terms of their binding affinity towards the aforementioned binding site by applying the UNC0642 MS Binding Assays and in terms of their muscle force reactivation in rat diaphragm myography. More potent compounds were identified compared to MB327, as some of them showed a higher affinity towards MB327-PAM-1 and also a higher recovery of neuromuscular transmission at lower compound concentrations. To improve the treatment of organophosphate poisoning, direct targeting of nAChRs with appropriate compounds is a key step, and this study is an important contribution to this research.


Subject(s)
Receptors, Nicotinic , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Animals , Male , Nerve Agents/toxicity , Rats, Wistar , Rats , Organophosphate Poisoning/drug therapy , Diaphragm/drug effects , Diaphragm/metabolism , Structure-Activity Relationship , Pyridinium Compounds/pharmacology , Pyridinium Compounds/chemical synthesis , Pyridinium Compounds/chemistry , Muscle Contraction/drug effects , Neuromuscular Junction/drug effects , Binding Sites
19.
Toxicol Lett ; 392: 94-106, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38216073

ABSTRACT

Intoxications with organophosphorus compounds (OPCs) based chemical warfare agents and insecticides may result in a detrimental overstimulation of muscarinic and nicotinic acetylcholine receptors evolving into a cholinergic crisis leading to death due to respiratory failure. In the case of the nicotinic acetylcholine receptor (nAChR), overstimulation leads to a desensitization of the receptor, which cannot be pharmacologically treated so far. Still, compounds interacting with the MB327 binding site of the nAChR like the bispyridinium salt MB327 have been found to re-establish the functional activity of the desensitized receptor. Only recently, a series of quinazoline derivatives with UNC0642 as one of the most prominent representatives has been identified to address the MB327 binding site of the nAChR, as well. In this study, UNC0642 has been utilized as a reporter ligand to establish new Binding Assays for this target. These assays follow the concept of MS Binding Assays for which by assessing the amount of bound reporter ligand by mass spectrometry no radiolabeled material is required. According to the results of the performed MS Binding Assays comprising saturation and competition experiments it can be concluded, that UNC0642 used as a reporter ligand addresses the MB327 binding site of the Torpedo-nAChR. This is further supported by the outcome of ex vivo studies carried out with poisoned rat diaphragm muscles as well as by in silico studies predicting the binding mode of UNC0646, an analog of UNC0642 with the highest binding affinity, in the recently proposed binding site of MB327 (MB327-PAM-1). With UNC0642 addressing the MB327 binding site of the Torpedo-nAChR, this and related quinazoline derivatives represent a promising starting point for the development of novel ligands of the nAChR as antidotes for the treatment of intoxications with organophosphorus compounds. Further, the new MS Binding Assays are a potent alternative to established assays and of particular value, as they do not require the use of radiolabeled material and are based on a commercially available compound as reporter ligand, UNC0642, exhibiting one of the highest binding affinities for the MB327 binding site known so far.


Subject(s)
Pyridinium Compounds , Receptors, Nicotinic , Rats , Animals , Receptors, Nicotinic/metabolism , Ligands , Structure-Activity Relationship , Binding Sites , Quinazolines , Organophosphorus Compounds , Torpedo/metabolism
20.
J Biol Chem ; 287(42): 35733-35746, 2012 Oct 12.
Article in English | MEDLINE | ID: mdl-22896705

ABSTRACT

The GABA transporters (GAT1, GAT2, GAT3, and BGT1) have mostly been discussed in relation to their potential roles in controlling the action of transmitter GABA in the nervous system. We have generated the first mice lacking the GAT2 (slc6a13) gene. Deletion of GAT2 (both mRNA and protein) neither affected growth, fertility, nor life span under nonchallenging rearing conditions. Immunocytochemistry showed that the GAT2 protein was predominantly expressed in the plasma membranes of periportal hepatocytes and in the basolateral membranes of proximal tubules in the renal cortex. This was validated by processing tissue from wild-type and knockout mice in parallel. Deletion of GAT2 reduced liver taurine levels by 50%, without affecting the expression of the taurine transporter TAUT. These results suggest an important role for GAT2 in taurine uptake from portal blood into liver. In support of this notion, GAT2-transfected HEK293 cells transported [(3)H]taurine. Furthermore, most of the uptake of [(3)H]GABA by cultured rat hepatocytes was due to GAT2, and this uptake was inhibited by taurine. GAT2 was not detected in brain parenchyma proper, excluding a role in GABA inactivation. It was, however, expressed in the leptomeninges and in a subpopulation of brain blood vessels. Deletion of GAT2 increased brain taurine levels by 20%, suggesting a taurine-exporting role for GAT2 in the brain.


Subject(s)
Brain/metabolism , GABA Plasma Membrane Transport Proteins/metabolism , Liver/metabolism , Taurine/metabolism , Animals , Brain/cytology , Brain Chemistry , GABA Plasma Membrane Transport Proteins/genetics , HEK293 Cells , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Kidney Cortex/cytology , Kidney Cortex/metabolism , Kidney Tubules, Proximal/cytology , Kidney Tubules, Proximal/metabolism , Liver/cytology , Male , Mice , Mice, Knockout , Rabbits , Rats , Rats, Wistar , Taurine/genetics
SELECTION OF CITATIONS
SEARCH DETAIL