Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Am J Hum Genet ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38843839

ABSTRACT

There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9-3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1-∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5-1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.

2.
Pediatr Blood Cancer ; 65(12): e27373, 2018 12.
Article in English | MEDLINE | ID: mdl-30084242
3.
Clin Mol Allergy ; 9: 14, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22126402

ABSTRACT

Type 1 hyper IgE syndrome (HIES), also known as Job's Syndrome, is an autosomal dominant disorder due to defects in STAT3 signaling and Th17 differentiation. Symptoms may present during infancy but diagnosis is often made in childhood or later. HIES is characterized by immunologic and non-immunologic findings such as recurrent sinopulmonary infections, recurrent skin infections, multiple fractures, atopic dermatitis and characteristic facies. These manifestations are accompanied by elevated IgE levels and reduced IL-17 producing CD3+CD4+ T cells. Diagnosis in young children can be challenging as symptoms accumulate over time along with confounding clinical dilemmas. A NIH clinical HIES scoring system was developed in 1999, and a more recent scoring system with fewer but more pathogonomonic clinical findings was reported in 2010. These scoring systems can be used as tools to help in grading the likelihood of HIES diagnosis. We report a young child ultimately presenting with disseminated histoplasmosis and a novel STAT3 variant in the SH2 domain.

4.
AJP Rep ; 11(2): e65-e75, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34055463

ABSTRACT

Kagami-Ogata syndrome (KOS) (OMIM #608149) is a genetic imprinting disorder affecting chromosome 14 that results in a characteristic phenotype consisting of typical facial features, skeletal abnormalities including rib abnormalities described as "coat hanger ribs," respiratory distress, abdominal wall defects, polyhydramnios, and developmental delay. First identified by Wang et al in 1991, over 80 cases of KOS have been reported in the literature. KOS, however, continues to remain a rare and potentially underdiagnosed disorder. In this report, we describe two unrelated male infants with differing initial presentations who were both found to have the characteristic "coat hanger" rib appearance on chest X-ray, raising suspicion for KOS. Molecular testing confirmed KOS in each case. In addition to these new cases, we reviewed the existing cases reported in literature. Presence of polyhydramnios, small thorax, curved ribs, and abdominal wall defects must alert the perinatologist toward the possibility of KOS to facilitate appropriate molecular testing. The overall prognosis of KOS remains poor. Early diagnosis allows for counseling by a multidisciplinary team and enables parents to make informed decisions regarding both pregnancy management and postnatal care.

5.
JAMA Pediatr ; 175(12): 1218-1226, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34570182

ABSTRACT

Importance: Whole-genome sequencing (WGS) shows promise as a first-line genetic test for acutely ill infants, but widespread adoption and implementation requires evidence of an effect on clinical management. Objective: To determine the effect of WGS on clinical management in a racially and ethnically diverse and geographically distributed population of acutely ill infants in the US. Design, Setting, and Participants: This randomized, time-delayed clinical trial enrolled participants from September 11, 2017, to April 30, 2019, with an observation period extending to July 2, 2019. The study was conducted at 5 US academic medical centers and affiliated children's hospitals. Participants included infants aged between 0 and 120 days who were admitted to an intensive care unit with a suspected genetic disease. Data were analyzed from January 14 to August 20, 2020. Interventions: Patients were randomized to receive clinical WGS results 15 days (early) or 60 days (delayed) after enrollment, with the observation period extending to 90 days. Usual care was continued throughout the study. Main Outcomes and Measures: The main outcome was the difference in the proportion of infants in the early and delayed groups who received a change of management (COM) 60 days after enrollment. Additional outcome measures included WGS diagnostic efficacy, within-group COM at 90 days, length of hospital stay, and mortality. Results: A total of 354 infants were randomized to the early (n = 176) or delayed (n = 178) arms. The mean participant age was 15 days (IQR, 7-32 days); 201 participants (56.8%) were boys; 19 (5.4%) were Asian; 47 (13.3%) were Black; 250 (70.6%) were White; and 38 (10.7%) were of other race. At 60 days, twice as many infants in the early group vs the delayed group received a COM (34 of 161 [21.1%; 95% CI, 15.1%-28.2%] vs 17 of 165 [10.3%; 95% CI, 6.1%-16.0%]; P = .009; odds ratio, 2.3; 95% CI, 1.22-4.32) and a molecular diagnosis (55 of 176 [31.0%; 95% CI, 24.5%-38.7%] vs 27 of 178 [15.0%; 95% CI, 10.2%-21.3%]; P < .001). At 90 days, the delayed group showed a doubling of COM (to 45 of 161 [28.0%; 95% CI, 21.2%-35.6%]) and diagnostic efficacy (to 56 of 178 [31.0%; 95% CI, 24.7%-38.8%]). The most frequent COMs across the observation window were subspecialty referrals (39 of 354; 11%), surgery or other invasive procedures (17 of 354; 4%), condition-specific medications (9 of 354; 2%), or other supportive alterations in medication (12 of 354; 3%). No differences in length of stay or survival were observed. Conclusions and Relevance: In this randomized clinical trial, for acutely ill infants in an intensive care unit, introduction of WGS was associated with a significant increase in focused clinical management compared with usual care. Access to first-line WGS may reduce health care disparities by enabling diagnostic equity. These data support WGS adoption and implementation in this population. Trail Registration: ClinicalTrials.gov Identifier: NCT03290469.


Subject(s)
Acute Disease , Genetic Diseases, Inborn , Whole Genome Sequencing , Female , Humans , Infant , Infant, Newborn , Male , Outcome Assessment, Health Care
6.
Genet Med ; 12(9): 573-86, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20860070

ABSTRACT

PURPOSE: To investigate the potential influence of additional copy number variants in patients with 15q24 rearrangements and the possible underlying mechanisms for these rearrangements. METHODS: Oligonucleotide-based chromosomal microarray analyses were performed, and the results were subsequently confirmed by fluorescence in situ hybridization analyses. Long-range polymerase chain reaction amplification and DNA sequencing analysis were used for breakpoint junction sequencing. RESULTS: We describe a 15-year-old boy with cognitive impairment and dysmorphic features with deletions in 15q24 and 3q21, a 2-month-old female infant with growth deficiency, heterotaxy, cardiovascular malformations, intestinal atresia, and duplications in 15q24 and 16q22, and a 3.5-year-old boy with developmental delay, microcephaly, and dysmorphic features, with duplications in 15q24 and 2q36.3q37.1. Breakpoint sequencing for the 15q24 deletion in the first patient revealed microhomology and suggested the underlying mechanism of either nonhomologous end joining or fork stalling and template switching/microhomology-mediated break-induced replication. CONCLUSIONS: The three described patients with 15q24 rearrangements have copy number variants at other loci and exhibit additional clinical features with a more severe phenotype than that observed in previously reported patients with isolated 15q24 rearrangements, suggesting that the genomic mutational load may contribute to the phenotypic severity and variability in patients with 15q24 rearrangements.


Subject(s)
Chromosome Deletion , Chromosome Duplication/genetics , Chromosomes, Human, Pair 15/genetics , Developmental Disabilities/genetics , Gene Dosage/genetics , Genetic Variation/genetics , Adolescent , Child, Preschool , Chromosome Mapping , Female , Humans , Infant , Male , Phenotype
7.
Hum Mutat ; 29(12): 1435-42, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18566967

ABSTRACT

Autosomal dominant osteogenesis imperfecta (OI) is caused by mutations in the genes (COL1A1 or COL1A2) encoding the chains of type I collagen. Recently, dysregulation of hydroxylation of a single proline residue at position 986 of both the triple-helical domains of type I collagen alpha1(I) and type II collagen alpha1(II) chains has been implicated in the pathogenesis of recessive forms of OI. Two proteins, cartilage-associated protein (CRTAP) and prolyl-3-hydroxylase-1 (P3H1, encoded by the LEPRE1 gene) form a complex that performs the hydroxylation and brings the prolyl cis-trans isomerase cyclophilin-B (CYPB) to the unfolded collagen. In our screen of 78 subjects diagnosed with OI type II or III, we identified three probands with mutations in CRTAP and 16 with mutations in LEPRE1. The latter group includes a mutation in patients from the Irish Traveller population, a genetically isolated community with increased incidence of OI. The clinical features resulting from CRTAP or LEPRE1 loss of function mutations were difficult to distinguish at birth. Infants in both groups had multiple fractures, decreased bone modeling (affecting especially the femurs), and extremely low bone mineral density. Interestingly, "popcorn" epiphyses may reflect underlying cartilaginous and bone dysplasia in this form of OI. These results expand the range of CRTAP/LEPRE1 mutations that result in recessive OI and emphasize the importance of distinguishing recurrence of severe OI of recessive inheritance from those that result from parental germline mosaicism for COL1A1 or COL1A2 mutations.


Subject(s)
Extracellular Matrix Proteins/genetics , Membrane Glycoproteins/genetics , Osteogenesis Imperfecta/genetics , Proteoglycans/genetics , Collagen/metabolism , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Consanguinity , Cyclophilins/genetics , DNA Mutational Analysis , Humans , Infant, Newborn , Molecular Chaperones , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/physiopathology , Prenatal Diagnosis , Prolyl Hydroxylases
8.
Ophthalmic Genet ; 37(2): 217-27, 2016 06.
Article in English | MEDLINE | ID: mdl-26331342

ABSTRACT

PURPOSE: To report longitudinal phenotypic findings in a patient with Sanfilippo syndrome type IIIA, harboring SGSH mutations, one of which is novel. METHODS: Heparan-N-sulfatidase enzyme function testing in skin fibroblasts and white blood cells and SGSH gene sequencing were obtained. Clinical office examinations, examinations under anesthesia, electroretinogram, spectral domain optical coherence tomography (SD-OCT), and fundus photography were performed over a 5-year period. RESULTS: Fundus examination revealed a progressive breadcrumb-like pigmentary retinopathy with perifoveal pigmentary involvement. SD-OCT showed loss of normal neuroretinal lamination and cystic macular changes responsive to treatment with carbonic anhydrase inhibitors. Electroretinography exhibited complex characteristics indicative of a generalized retinal rod > cone dysfunction with significant ON > OFF postreceptoral response compromise. Sequencing revealed compound heterozygous mutations in the SGSH gene, the novel c.88G > C (p.A30P) change and a second, previously reported one (c.734G > A, p.R245H). CONCLUSIONS: We have identified ocular features of a patient with Sanfilippo syndrome type IIIA harboring a novel SGHS mutation that were not previously known to occur in this disease - namely, a progressive retinopathy with distinctive features, cystic macular changes responsive to carbonic anhydrase inhibitors, and complex electroretinographic abnormalities consistent with postreceptoral dysfunction. SD-OCT imaging revealed retinal lamination changes consistent with previously reported histologic studies. Both the SD-OCT and the electroretinogram changes appear attributable to intraretinal deposition of heparan sulfate.


Subject(s)
Hydrolases/genetics , Mucopolysaccharidosis III/genetics , Mutation , Retinitis Pigmentosa/genetics , Adult , Electroretinography , Fibroblasts/enzymology , Humans , Male , Mucopolysaccharidosis III/diagnosis , Mucopolysaccharidosis III/enzymology , Retinitis Pigmentosa/diagnosis , Retinitis Pigmentosa/enzymology , Skin/cytology , Sulfatases/metabolism , Tomography, Optical Coherence
9.
Am J Hum Genet ; 77(1): 41-53, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15889350

ABSTRACT

Allan-Herndon-Dudley syndrome was among the first of the X-linked mental retardation syndromes to be described (in 1944) and among the first to be regionally mapped on the X chromosome (in 1990). Six large families with the syndrome have been identified, and linkage studies have placed the gene locus in Xq13.2. Mutations in the monocarboxylate transporter 8 gene (MCT8) have been found in each of the six families. One essential function of the protein encoded by this gene appears to be the transport of triiodothyronine into neurons. Abnormal transporter function is reflected in elevated free triiodothyronine and lowered free thyroxine levels in the blood. Infancy and childhood in the Allan-Herndon-Dudley syndrome are marked by hypotonia, weakness, reduced muscle mass, and delay of developmental milestones. Facial manifestations are not distinctive, but the face tends to be elongated with bifrontal narrowing, and the ears are often simply formed or cupped. Some patients have myopathic facies. Generalized weakness is manifested by excessive drooling, forward positioning of the head and neck, failure to ambulate independently, or ataxia in those who do ambulate. Speech is dysarthric or absent altogether. Hypotonia gives way in adult life to spasticity. The hands exhibit dystonic and athetoid posturing and fisting. Cognitive development is severely impaired. No major malformations occur, intrauterine growth is not impaired, and head circumference and genital development are usually normal. Behavior tends to be passive, with little evidence of aggressive or disruptive behavior. Although clinical signs of thyroid dysfunction are usually absent in affected males, the disturbances in blood levels of thyroid hormones suggest the possibility of systematic detection through screening of high-risk populations.


Subject(s)
Developmental Disabilities/genetics , Mental Retardation, X-Linked/genetics , Monocarboxylic Acid Transporters/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Chromosomes, Human, X , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Muscle Weakness/genetics , Mutation , Paraplegia/genetics , Pedigree , Symporters
SELECTION OF CITATIONS
SEARCH DETAIL