Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cereb Cortex ; 34(2)2024 01 31.
Article in English | MEDLINE | ID: mdl-38372292

ABSTRACT

The cerebral cortex is organized into distinct but interconnected cortical areas, which can be defined by abrupt differences in patterns of resting state functional connectivity (FC) across the cortical surface. Such parcellations of the cortex have been derived in adults and older infants, but there is no widely used surface parcellation available for the neonatal brain. Here, we first demonstrate that existing parcellations, including surface-based parcels derived from older samples as well as volume-based neonatal parcels, are a poor fit for neonatal surface data. We next derive a set of 283 cortical surface parcels from a sample of n = 261 neonates. These parcels have highly homogenous FC patterns and are validated using three external neonatal datasets. The Infomap algorithm is used to assign functional network identities to each parcel, and derived networks are consistent with prior work in neonates. The proposed parcellation may represent neonatal cortical areas and provides a powerful tool for neonatal neuroimaging studies.


Subject(s)
Brain , Magnetic Resonance Imaging , Adult , Infant, Newborn , Humans , Magnetic Resonance Imaging/methods , Neuroimaging , Cerebral Cortex/diagnostic imaging , Algorithms , Image Processing, Computer-Assisted/methods
2.
Proc Natl Acad Sci U S A ; 119(42): e2204135119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36219693

ABSTRACT

Early life adversity (social disadvantage and psychosocial stressors) is associated with altered microstructure in fronto-limbic pathways important for socioemotional development. Understanding when these associations begin to emerge may inform the timing and design of preventative interventions. In this longitudinal study, 399 mothers were oversampled for low income and completed social background measures during pregnancy. Measures were analyzed with structural equation analysis resulting in two latent factors: social disadvantage (education, insurance status, income-to-needs ratio [INR], neighborhood deprivation, and nutrition) and psychosocial stress (depression, stress, life events, and racial discrimination). At birth, 289 healthy term-born neonates underwent a diffusion MRI (dMRI) scan. Mean diffusivity (MD) and fractional anisotropy (FA) were measured for the dorsal and inferior cingulum bundle (CB), uncinate, and fornix using probabilistic tractography in FSL. Social disadvantage and psychosocial stress were fitted to dMRI parameters using regression models adjusted for infant postmenstrual age at scan and sex. Social disadvantage, but not psychosocial stress, was independently associated with lower MD in the bilateral inferior CB and left uncinate, right fornix, and lower MD and higher FA in the right dorsal CB. Results persisted after accounting for maternal medical morbidities and prenatal drug exposure. In moderation analysis, psychosocial stress was associated with lower MD in the left inferior CB among the lower-to-higher socioeconomic status (SES) (INR ≥ 200%) group, but not the extremely low SES (INR < 200%) group. Increasing access to social welfare programs that reduce the burden of social disadvantage and related psychosocial stressors may be an important target to protect fetal brain development in fronto-limbic pathways.


Subject(s)
Prenatal Exposure Delayed Effects , White Matter , Brain/diagnostic imaging , Diffusion Tensor Imaging/methods , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Mothers , Pregnancy , White Matter/diagnostic imaging
3.
Cereb Cortex ; 33(5): 2200-2214, 2023 02 20.
Article in English | MEDLINE | ID: mdl-35595540

ABSTRACT

The adult human brain is organized into functional brain networks, groups of functionally connected segregated brain regions. A key feature of adult functional networks is long-range selectivity, the property that spatially distant regions from the same network have higher functional connectivity than spatially distant regions from different networks. Although it is critical to establish the status of functional networks and long-range selectivity during the neonatal period as a foundation for typical and atypical brain development, prior work in this area has been mixed. Although some studies report distributed adult-like networks, other studies suggest that neonatal networks are immature and consist primarily of spatially isolated regions. Using a large sample of neonates (n = 262), we demonstrate that neonates have long-range selective functional connections for the default mode, fronto-parietal, and dorsal attention networks. An adult-like pattern of functional brain networks is evident in neonates when network-detection algorithms are tuned to these long-range connections, when using surface-based registration (versus volume-based registration), and as per-subject data quantity increases. These results help clarify factors that have led to prior mixed results, establish that key adult-like functional network features are evident in neonates, and provide a foundation for studies of typical and atypical brain development.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Adult , Infant, Newborn , Humans , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Neural Pathways , Brain , Image Processing, Computer-Assisted , Nerve Net
4.
Cereb Cortex ; 33(6): 2788-2803, 2023 03 10.
Article in English | MEDLINE | ID: mdl-35750056

ABSTRACT

The period immediately after birth is a critical developmental window, capturing rapid maturation of brain structure and a child's earliest experiences. Large-scale brain systems are present at delivery, but how these brain systems mature during this narrow window (i.e. first weeks of life) marked by heightened neuroplasticity remains uncharted. Using multivariate pattern classification techniques and functional connectivity magnetic resonance imaging, we detected robust differences in brain systems related to age in newborns (n = 262; R2 = 0.51). Development over the first month of life occurred brain-wide, but differed and was more pronounced in brain systems previously characterized as developing early (i.e. sensorimotor networks) than in those characterized as developing late (i.e. association networks). The cingulo-opercular network was the only exception to this organizing principle, illuminating its early role in brain development. This study represents a step towards a normative brain "growth curve" that could be used to identify atypical brain maturation in infancy.


Subject(s)
Brain Mapping , Brain , Child , Humans , Infant, Newborn , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Insular Cortex , Neural Pathways/diagnostic imaging
5.
Am J Respir Crit Care Med ; 207(5): 594-601, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36173816

ABSTRACT

Rationale: Preterm infants are at risk for ventilatory control instability that may be due to aberrant peripheral chemoreceptor activity. Although term infants have increasing peripheral chemoreceptor contribution to overall ventilatory drive with increasing postnatal age, how peripheral chemoreceptor contribution changes in preterm infants with increasing postmenstrual age is not known. Objectives: To evaluate peripheral chemoreceptor activity between 32 and 52 weeks postmenstrual age in preterm infants, using both quantitative and qualitative measures. Methods: Fifty-five infants born between 24 weeks, 0 days gestation and 28 weeks, 6 days gestation underwent hyperoxic testing at one to four time points between 32 and 52 weeks postmenstrual age. Quantitative [Formula: see text] decreases were calculated, and qualitative responses were categorized as apnea, continued breathing with a clear reduction in [Formula: see text], sigh breaths, and no response. Measurements and Main Results: A total of 280 hyperoxic tests were analyzed (2.2 ± 0.3 tests per infant at each time point). Mean peripheral chemoreceptor contribution to ventilatory drive was 85.2 ± 20.0% at 32 weeks and 64.1 ± 22.0% at 52 weeks. Apneic responses were more frequent at earlier postmenstrual ages. Conclusions: Among preterm infants, the peripheral chemoreceptor contribution to ventilatory drive was greater at earlier postmenstrual ages. Apnea was a frequent response to hyperoxic testing at earlier postmenstrual ages, suggesting high peripheral chemoreceptor activity. A clearer description of how peripheral chemoreceptor activity changes over time in preterm infants may help explain how ventilatory control instability contributes to apnea and sleep-disordered breathing later in childhood. Clinical trial registered with www.clinicaltrials.gov (NCT03464396).


Subject(s)
Hyperoxia , Sleep Apnea Syndromes , Humans , Infant , Infant, Newborn , Chemoreceptor Cells/physiology , Infant, Premature/physiology , Respiration
6.
Am J Perinatol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810899

ABSTRACT

This study aimed to investigate and present a review of the literature on long-term neurodevelopmental outcomes in children with gastroschisis. Gastroschisis is the most common abdominal wall defect. Children with gastroschisis are at high risk for premature birth, intestinal failure, sepsis, and repeated anesthesia exposure, which collectively increase the risk for adverse long-term neurodevelopmental outcomes. The existing literature on neurodevelopmental outcomes is limited in number, quality, and generalizability, creating a gap in clinical knowledge and care. Five internet databases were searched by a professional research librarian: Ovid MEDLINE, Scopus, Web of Science, PsycINFO, and Cochrane Library. Included articles were (1) published in English, (2) included postneonatal hospital discharge neurodevelopmental outcomes of children with gastroschisis, and (3) included patients under the age of 18 years. No date parameters were applied. The paucity of literature on long-term neurodevelopmental outcomes in gastroschisis children has left large gaps in the body of knowledge on post-hospital care of such children. In this review, 37 articles were found evaluating neurodevelopmental outcomes in gastroschisis and, while conclusions were contradictory, the literature broadly indicated the potential for neurodevelopmental deficits in the gastroschisis pediatric population. A significant limitation of this review was the heterogeneous samples included in available literature, which confounded the ability to determine cognitive risk of gastroschisis independent of other abdominal wall defects. Findings of this review demonstrate potential risk for neurodevelopmental deficits in the pediatric gastroschisis population exist, yet additional research is needed to definitively predict the significance, type, onset, and trajectory of neurodevelopmental impairment in this population. The significant gaps in long-term outcomes data have elucidated the need for prospective, longitudinal investigation of various cognitive domains in homogenous gastroschisis populations to properly evaluate prevalence of neurodevelopmental deficits and guide recommendations for long-term clinical care. KEY POINTS: · Limited literature exists regarding long-term neurodevelopmental outcomes in gastroschisis.. · There is some evidence to suggest worse cognitive behavioral outcomes in gastroschisis over time.. · Developmental surveillance, screening, and evaluation may be beneficial for gastroschisis patients..

7.
Proc Natl Acad Sci U S A ; 117(14): 7941-7949, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32179676

ABSTRACT

Late-onset sepsis (LOS) is a highly consequential complication of preterm birth and is defined by a positive blood culture obtained after 72 h of age. The causative bacteria can be found in patients' intestinal tracts days before dissemination, and cohort studies suggest reduced LOS risk in breastfed preterm infants through unknown mechanisms. Reduced concentrations of epidermal growth factor (EGF) of maternal origin within the intestinal tract of mice correlated to the translocation of a gut-resident human pathogen Escherichia coli, which spreads systemically and caused a rapid, fatal disease in pups. Translocation of Escherichia coli was associated with the formation of colonic goblet cell-associated antigen passages (GAPs), which translocate enteric bacteria across the intestinal epithelium. Thus, maternally derived EGF, and potentially other EGFR ligands, prevents dissemination of a gut-resident pathogen by inhibiting goblet cell-mediated bacterial translocation. Through manipulation of maternally derived EGF and alteration of the earliest gut defenses, we have developed an animal model of pathogen dissemination which recapitulates gut-origin neonatal LOS.


Subject(s)
Bacterial Translocation/immunology , ErbB Receptors/metabolism , Escherichia coli Infections/immunology , Escherichia coli/immunology , Gastrointestinal Microbiome/immunology , Milk, Human/immunology , Neonatal Sepsis/immunology , Animals , Animals, Newborn , Antigens, Bacterial/immunology , Antigens, Bacterial/metabolism , Breast Feeding , Colon/metabolism , Colon/microbiology , Disease Models, Animal , Epidermal Growth Factor/metabolism , ErbB Receptors/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Feces/chemistry , Feces/microbiology , Female , Humans , Infant, Newborn , Infant, Premature/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Male , Mice , Mice, Transgenic , Milk, Human/metabolism , Neonatal Sepsis/metabolism , Neonatal Sepsis/microbiology , Signal Transduction/immunology , Time Factors
8.
J Pediatr ; 246: 71-79.e3, 2022 07.
Article in English | MEDLINE | ID: mdl-35430247

ABSTRACT

OBJECTIVES: To examine healthy, full-term neonatal behavior using the Neonatal Intensive Care Unit Network Neurobehavioral Scale (NNNS) in relation to measures of maternal adversity, maternal medical risk, and infant brain volumes. STUDY DESIGN: This was a prospective, longitudinal, observational cohort study of pregnant mothers followed from the first trimester and their healthy, full-term infants. Infants underwent an NNNS assessment and high-quality magnetic resonance imaging 2-5 weeks after birth. A latent profile analysis of NNNS scores categorized infants into neurobehavioral profiles. Univariate and multivariate analyses compared differences in maternal factors (social advantage, psychosocial stress, and medical risk) and neonatal characteristics between profiles. RESULTS: The latent profile analysis of NNNS summary scales of 296 infants generated 3 profiles: regulated (46.6%), hypotonic (16.6%), and fussy (36.8%). Infants with a hypotonic profile were more likely to be male (χ2 = 8.601; P = .014). Fussy infants had smaller head circumferences (F = 3.871; P = .022) and smaller total brain (F = 3.522; P = .031) and cerebral white matter (F = 3.986; P = .020) volumes compared with infants with a hypotonic profile. There were no differences between profiles in prenatal maternal health, social advantage, or psychosocial stress. CONCLUSIONS: Three distinct neurobehavioral profiles were identified in healthy, full-term infants with hypotonic and fussy neurobehavioral features related to neonatal brain volumes and head circumference, but not prenatal exposure to socioeconomic or psychosocial adversity. Follow-up beyond the neonatal period will determine if identified profiles at birth are associated with subsequent clinical or developmental outcomes.


Subject(s)
Infant Behavior , Intensive Care Units, Neonatal , Cohort Studies , Female , Humans , Infant , Infant, Newborn , Male , Pregnancy , Prospective Studies
9.
Nature ; 534(7606): 263-6, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27279225

ABSTRACT

Immunoglobulin A (IgA), the major class of antibody secreted by the gut mucosa, is an important contributor to gut barrier function. The repertoire of IgA bound to gut bacteria reflects both T-cell-dependent and -independent pathways, plus glycans present on the antibody's secretory component. Human gut bacterial taxa targeted by IgA in the setting of barrier dysfunction are capable of producing intestinal pathology when isolated and transferred to gnotobiotic mice. A complex reorientation of gut immunity occurs as infants transition from passively acquired IgA present in breast milk to host-derived IgA. How IgA responses co-develop with assembly of the microbiota during this period remains poorly understood. Here, we (1) identify a set of age-discriminatory bacterial taxa whose representations define a program of microbiota assembly and maturation during the first 2 postnatal years that is shared across 40 healthy twin pairs in the USA; (2) describe a pattern of progression of gut mucosal IgA responses to bacterial members of the microbiota that is highly distinctive for family members (twin pairs) during the first several postnatal months then generalizes across pairs in the second year; and (3) assess the effects of zygosity, birth mode, and breast feeding. Age-associated differences in these IgA responses can be recapitulated in young germ-free mice, colonized with faecal microbiota obtained from two twin pairs at 6 and 18 months of age, and fed a sequence of human diets that simulate the transition from milk feeding to complementary foods. Most of these responses were robust to diet, suggesting that 'intrinsic' properties of community members play a dominant role in dictating IgA responses. The approach described can be used to define gut mucosal immune development in health and disease states and to help discover ways of repairing or preventing perturbations in this facet of host immunity.


Subject(s)
Aging/immunology , Gastrointestinal Microbiome/immunology , Germ-Free Life , Immunity, Mucosal/immunology , Immunoglobulin A/immunology , Models, Animal , Twins , Animals , Breast Feeding , Child, Preschool , Diet , Fecal Microbiota Transplantation , Female , Healthy Volunteers , Humans , Infant , Intestines/immunology , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Weaning
10.
J Infect Dis ; 223(12 Suppl 2): S257-S263, 2021 06 16.
Article in English | MEDLINE | ID: mdl-33330904

ABSTRACT

Decades of research have failed to define the pathophysiology of necrotizing enterocolitis (NEC), a devastating pediatric gastrointestinal disorder of preterm infants. However, evidence suggests that host-microbiota interactions, in which microbial dysbiosis is followed by loss of barrier integrity, inflammation, and necrosis, are central to NEC development. Thus, greater knowledge of the preterm infant microbiome could accelerate attempts to diagnose, treat, and prevent NEC. In this article, we summarize clinical characteristics of and risk factors for NEC, the structure of the pre-event NEC microbiome, how this community interfaces with host immunology, and microbiome-based approaches that might prevent or lessen the severity of NEC in this very vulnerable population.


Subject(s)
Enterocolitis, Necrotizing/microbiology , Gastrointestinal Microbiome/physiology , Dysbiosis/microbiology , Enterocolitis, Necrotizing/therapy , Host-Pathogen Interactions , Humans , Infant, Newborn , Infant, Premature , Risk Factors
11.
Pediatr Nephrol ; 36(7): 1709-1718, 2021 07.
Article in English | MEDLINE | ID: mdl-32757062

ABSTRACT

Multiple single-center studies have examined the progression of kidney function biomarkers such as serum cystatin C (Cys C) in the first 30 days of life (DOL) after preterm birth, but from different ethnicities and in different gestational ages (GA), without a functional summary available. We performed a systematic literature review within PubMed, Google Scholar, and Scopus, with additional use of the snowballing method to find studies including data on serum Cys C concentrations in the first 30 DOL. We identified 15 papers that met criteria, published from 2000 to 2019, from 10 countries across 4 continents, in 1468 babies born preterm. Cys C was superior to creatinine in 11/13 studies, and equal in 2/13. For infants born at 24-28 weeks GA, the DOL1 Cys C concentrations ranged from 1.44 to 1.90 mg/L, from 1.20 to 1.77 on DOL3, and from 1.36 to 2.02 between DOL 4 and 30. For infants born at 29-33 weeks GA, the DOL1 Cys C values ranged from 1.41 to 1.96 mg/L, from 1.28 to 1.70 on DOL3, and 1.51 to 1.87 between DOL 4 and 30. For preterm infants born after 34 weeks GA, the DOL1 Cys C values ranged from 1.22 to 1.96 mg/L, from 1.24 to 1.85 on DOL3, and 1.22 to 1.82 between DOL 4 and 30. This systematic review provides generalizable worldwide reference data on Cys C that could be used to estimate progression or resolution of abnormal kidney function in the first months after preterm birth, stratified by GA.


Subject(s)
Cystatin C , Premature Birth , Biomarkers , Creatinine , Glomerular Filtration Rate , Humans , Infant , Infant, Newborn , Infant, Premature
12.
Pediatr Res ; 85(2): 216-224, 2019 01.
Article in English | MEDLINE | ID: mdl-30283047

ABSTRACT

Bidirectional communication between the gut and brain is well recognized, with data now accruing for a specific role of the gut microbiota in that link, referred to as the microbiome-gut-brain axis. This review will discuss the emerging role of the gut microbiota in brain development and behavior. Animal studies have clearly demonstrated effects of the gut microbiota on gene expression and neurochemical metabolism impacting behavior and performance. Based on these changes, a modulating role of the gut microbiota has been demonstrated for a variety of neuropsychiatric disorders, including depression, anxiety, and movement including Parkinson's, and importantly for the pediatric population autism. Critical developmental windows that influence early behavioral outcomes have been identified that include both the prenatal environment and early postnatal colonization periods. The clearest data regarding the role of the gut microbiota on neurodevelopment and psychiatric disorders is from animal studies; however, human data have begun to emerge, including an association between early colonization patterns and cognition. The importance of understanding the contribution of the gut microbiota to the development and functioning of the nervous system lies in the potential to intervene using novel microbial-based approaches to treating neurologic conditions. While pathways of communication between the gut and brain are well established, the gut microbiome is a new component of this axis. The way in which organisms that live in the gut influence the central nervous system (CNS) and host behavior is likely to be multifactorial in origin. This includes immunologic, endocrine, and metabolic mechanisms, all of which are pathways used for other microbial-host interactions. Germ-free (GF) mice are an important model system for understanding the impact of gut microbes on development and function of the nervous system. Alternative animal model systems have further clarified the role of the gut microbiota, including antibiotic treatment, fecal transplantation, and selective gut colonization with specific microbial organisms. Recently, researchers have started to examine the human host as well. This review will examine the components of the CNS potentially influenced by the gut microbiota, and the mechanisms mediating these effects. Links between gut microbial colonization patterns and host behavior relevant to a pediatric population will be examined, highlighting important developmental windows in utero or early in development.


Subject(s)
Gastrointestinal Microbiome , Mental Disorders/microbiology , Nervous System Diseases/microbiology , Animals , Feces/microbiology , Humans , Mice
13.
Clin Infect Dis ; 67(2): 269-274, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29394356

ABSTRACT

Background: Cronobacter sakazakii causes severe neonatal infections, but we know little about gut carriage of this pathogen in very low birthweight infants. Methods: We sequenced 16S ribosomal RNA (rRNA) genes from 2304 stools from 121 children at St Louis Children's Hospital whose birthweight was ≤1500 g, attempted to isolate C. sakazakii from 157 of these stools, genome-sequenced the recovered isolates, and sought correlations between indices of Cronobacter excretion, host characteristics, and unit formula use. Results: Of these 2304 stools, 1271 (55.2%) contained Cronobacter rRNA gene sequences. The median (interquartile range) per-subject percentage of specimens with at least 1 Cronobacter sequence and the median per-subject read density were 57.1 (25.5-87.3) and 0.07 (0.01-0.67), respectively. There was no variation according to commercially prepared liquid vs powdered formula use in the neonatal intensive care unit, or the day of life that specimens were produced. However, the proportion of specimens containing >4.0% of reads mapping to Cronobacter fell from 4.3% to 0.9% after powdered infant formula was discontinued (P < .0001). We isolated sequence type 4 (ST4) C. sakazakii from multiple specimens from 2 subjects; 1 also harbored sequence type 233. The sequenced ST4 isolates from the 2 subjects had >99.9% sequence identity in the approximately 93% of best-match reference genome that they contained, and shared multiple virulence loci. Conclusions: Very low birthweight infants excrete putatively pathogenic Cronobacter. High-density Cronobacter sequence samples were more common during the use of powdered infant formula. Better understanding of the ecology of Cronobacter in infant guts will inform future prevention and control strategies.


Subject(s)
Carrier State/microbiology , Cronobacter sakazakii/isolation & purification , Gastrointestinal Tract/microbiology , Cohort Studies , Cronobacter sakazakii/genetics , DNA, Bacterial/genetics , Enterobacteriaceae Infections/microbiology , Feces/microbiology , Food Microbiology , Genome, Bacterial , Genotype , Humans , Infant Formula/microbiology , Infant, Newborn , Infant, Premature , Infant, Very Low Birth Weight , RNA, Ribosomal, 16S/genetics , Virulence Factors/genetics
14.
Hum Mutat ; 38(11): 1477-1484, 2017 11.
Article in English | MEDLINE | ID: mdl-28726266

ABSTRACT

Biallelic GLDN mutations have recently been identified among infants with lethal congenital contracture syndrome 11 (LCCS11). GLDN encodes gliomedin, a protein required for the formation of the nodes of Ranvier and development of the human peripheral nervous system. We report six infants and children from four unrelated families with biallelic GLDN mutations, four of whom survived beyond the neonatal period into infancy, childhood, and late adolescence with intensive care and chronic respiratory and nutritional support. Our findings expand the genotypic and phenotypic spectrum of LCCS11 and demonstrate that the condition may not necessarily be lethal in the neonatal period.


Subject(s)
Arthrogryposis/diagnosis , Arthrogryposis/genetics , Genes, Lethal , Membrane Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , Phenotype , Arthrogryposis/mortality , Biopsy , DNA Mutational Analysis , Fatal Outcome , Genetic Association Studies , Humans , Infant , Infant, Newborn , Male , Pedigree , Spinal Nerve Roots/ultrastructure , Exome Sequencing
15.
Lancet ; 387(10031): 1928-36, 2016 May 07.
Article in English | MEDLINE | ID: mdl-26969089

ABSTRACT

BACKGROUND: Gut bacteria might predispose to or protect from necrotising enterocolitis, a severe illness linked to prematurity. In this observational prospective study we aimed to assess whether one or more bacterial taxa in the gut differ between infants who subsequently develop necrotising enterocolitis (cases) and those who do not (controls). METHODS: We enrolled very low birthweight (1500 g and lower) infants in the primary cohort (St Louis Children's Hospital) between July 7, 2009, and Sept 16, 2013, and in the secondary cohorts (Kosair Children's Hospital and Children's Hospital at Oklahoma University) between Sept 12, 2011 and May 25, 2013. We prospectively collected and then froze stool samples for all infants. Cases were defined as infants whose clinical courses were consistent with necrotising enterocolitis and whose radiographs fulfilled criteria for Bell's stage 2 or 3 necrotising enterocolitis. Control infants (one to four per case; not fixed ratios) with similar gestational ages, birthweight, and birth dates were selected from the population after cases were identified. Using primers specific for bacterial 16S rRNA genes, we amplified and then pyrosequenced faecal DNA from stool samples. With use of Dirichlet multinomial analysis and mixed models to account for repeated measures, we identified host factors, including development of necrotising enterocolitis, associated with gut bacterial populations. FINDINGS: We studied 2492 stool samples from 122 infants in the primary cohort, of whom 28 developed necrotising enterocolitis; 94 infants were used as controls. The microbial community structure in case stools differed significantly from those in control stools. These differences emerged only after the first month of age. In mixed models, the time-by-necrotising-enterocolitis interaction was positively associated with Gammaproteobacteria (p=0·0010) and negatively associated with strictly anaerobic bacteria, especially Negativicutes (p=0·0019). We studied 1094 stool samples from 44 infants in the secondary cohorts. 18 infants developed necrotising enterocolitis (cases) and 26 were controls. After combining data from all cohorts (166 infants, 3586 stools, 46 cases of necrotising enterocolitis), there were increased proportions of Gammaproteobacteria (p=0·0011) and lower proportions of both Negativicutes (p=0·0013) and the combined Clostridia-Negativicutes class (p=0·0051) in infants who went on to develop necrotising enterocolitis compared with controls. These associations were strongest in both the primary cohort and the overall cohort for infants born at less than 27 weeks' gestation. INTERPRETATION: A relative abundance of Gammaproteobacteria (ie, Gram-negative facultative bacilli) and relative paucity of strict anaerobic bacteria (especially Negativicutes) precede necrotising enterocolitis in very low birthweight infants. These data offer candidate targets for interventions to prevent necrotising enterocolitis, at least among infants born at less than 27 weeks' gestation. FUNDING: National Institutes of Health (NIH), Foundation for the NIH, the Children's Discovery Institute.


Subject(s)
Dysbiosis/microbiology , Enterocolitis, Necrotizing/microbiology , Gram-Negative Bacterial Infections , Gram-Positive Bacterial Infections , Case-Control Studies , Feces/microbiology , Female , Gestational Age , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/isolation & purification , Humans , Infant , Infant, Newborn , Infant, Very Low Birth Weight , Male , Prospective Studies
16.
Proc Natl Acad Sci U S A ; 111(34): 12522-7, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25114261

ABSTRACT

In the weeks after birth, the gut acquires a nascent microbiome, and starts its transition to bacterial population equilibrium. This early-in-life microbial population quite likely influences later-in-life host biology. However, we know little about the governance of community development: does the gut serve as a passive incubator where the first organisms randomly encountered gain entry and predominate, or is there an orderly progression of members joining the community of bacteria? We used fine interval enumeration of microbes in stools from multiple subjects to answer this question. We demonstrate via 16S rRNA gene pyrosequencing of 922 specimens from 58 subjects that the gut microbiota of premature infants residing in a tightly controlled microbial environment progresses through a choreographed succession of bacterial classes from Bacilli to Gammaproteobacteria to Clostridia, interrupted by abrupt population changes. As infants approach 33-36 wk postconceptional age (corresponding to the third to the twelfth weeks of life depending on gestational age at birth), the gut is well colonized by anaerobes. Antibiotics, vaginal vs. Caesarian birth, diet, and age of the infants when sampled influence the pace, but not the sequence, of progression. Our results suggest that in infants in a microbiologically constrained ecosphere of a neonatal intensive care unit, gut bacterial communities have an overall nonrandom assembly that is punctuated by microbial population abruptions. The possibility that the pace of this assembly depends more on host biology (chiefly gestational age at birth) than identifiable exogenous factors warrants further consideration.


Subject(s)
Gastrointestinal Tract/microbiology , Infant, Premature , Microbiota , Age Factors , Clostridium/genetics , Clostridium/isolation & purification , Cohort Studies , Feces/microbiology , Humans , Infant, Newborn , Intensive Care Units, Neonatal , Male , Microbiota/genetics , Prospective Studies , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
17.
J Infect Dis ; 212(12): 1862-8, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-25969564

ABSTRACT

BACKGROUND: The reservoir of pathogenic ciprofloxacin-resistant Escherichia coli remains unknown. METHODS: We conducted a prospective cohort study of 80 healthy twins and their mothers to determine the frequency of excretion of ciprofloxacin-resistant, potentially pathogenic E. coli. Stool specimens were cultured selectively for ciprofloxacin-resistant gram-negative bacteria. Isolates were categorized on the basis of additional resistance and virulence profiles. We also prospectively collected clinical metadata. RESULTS: Fifteen children (19%) and 8 mothers (20%) excreted ciprofloxacin-resistant E. coli at least once. Overall, 33% of 40 families had at least 1 member whose stool specimen yielded ciprofloxacin-resistant E. coli on culture. Fifty-seven submitted stool specimens (2.8%) contained such organisms; clones ST131-H30 and ST405 accounted for 52 and 5 of the positive specimens, respectively. Length of hospital stay after birth (P = .002) and maternal colonization (P = .0001) were associated with subsequent childhood carriage of ciprofloxacin-resistant E. coli; antibiotic use, acid suppression, sex, mode of delivery, and maternal perinatal antibiotic use were not. Ciprofloxacin-resistant E. coli were usually resistant to additional antibiotic classes, and all had virulence genotypes typical of extraintestinal pathogenic E. coli. CONCLUSIONS: Healthy children and their mothers commonly harbor ciprofloxacin-resistant E. coli with pathogenic potential.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carrier State/microbiology , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial , Escherichia coli Infections/microbiology , Escherichia coli/drug effects , Gastrointestinal Tract/microbiology , Adult , Carrier State/epidemiology , Child, Preschool , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Feces/microbiology , Female , Genotype , Healthy Volunteers , Humans , Infant , Infant, Newborn , Male , Molecular Typing , Pregnancy , Prevalence , Prospective Studies
19.
Clin Infect Dis ; 58(9): 1211-8, 2014 May.
Article in English | MEDLINE | ID: mdl-24647013

ABSTRACT

BACKGROUND: Late-onset sepsis is a major problem in neonatology, but the habitat of the pathogens before bloodstream invasion occurs is not well established. METHODS: We examined prospectively collected stools from premature infants with sepsis to find pathogens that subsequently invaded their bloodstreams, and sought the same organisms in stools of infants without sepsis. Culture-based techniques were used to isolate stool bacteria that provisionally matched the bloodstream organisms, which were then genome sequenced to confirm or refute commonality. RESULTS: Of 11 children with late-onset neonatal bloodstream infections, 7 produced at least 1 stool that contained group B Streptococcus (GBS), Serratia marcescens, or Escherichia coli before their sepsis episode with provisionally matching organisms. Of 96 overlap comparison subjects without sepsis temporally associated with these cases, 4 were colonized with provisionally matching GBS or S. marcescens. Of 175 comparisons of stools from randomly selected infants without sepsis, 1 contained a GBS (this infant had also served as an overlap comparison subject and both specimens contained provisionally matching GBS). Genome sequencing confirmed common origin of provisionally matching fecal and blood isolates. The invasive E. coli were present in all presepticemic stools since birth, but gut colonization with GBS and S. marcescens occurred closer to time of bloodstream infection. CONCLUSIONS: The neonatal gut harbors sepsis-causing pathogens, but such organisms are not inevitable members of the normal microbiota. Surveillance microbiology, decolonization, and augmented hygiene might prevent dissemination of invasive bacteria between and within premature infants.


Subject(s)
Bacteremia/microbiology , Infant, Premature , Sepsis/microbiology , Cohort Studies , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli Infections/epidemiology , Feces/microbiology , Genome, Bacterial , Humans , Infant, Newborn , Microbiota , Risk Factors , Serratia Infections/epidemiology , Serratia marcescens/genetics , Serratia marcescens/isolation & purification , Streptococcal Infections/epidemiology , Streptococcus agalactiae/genetics , Streptococcus agalactiae/isolation & purification
20.
Biol Psychiatry Glob Open Sci ; 4(1): 135-144, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38298774

ABSTRACT

Background: Race is commonly used as a proxy for multiple features including socioeconomic status. It is critical to dissociate these factors, to identify mechanisms that affect infant outcomes, such as birth weight, gestational age, and brain development, and to direct appropriate interventions and shape public policy. Methods: Demographic, socioeconomic, and clinical variables were used to model infant outcomes. There were 351 participants included in the analysis for birth weight and gestational age. For the analysis using brain volumes, 280 participants were included after removing participants with missing magnetic resonance imaging scans and those matching our exclusion criteria. We modeled these three different infant outcomes, including infant brain, birth weight, and gestational age, with both linear and nonlinear models. Results: Nonlinear models were better predictors of infant birth weight than linear models (R2 = 0.172 vs. R2 = 0.145, p = .005). In contrast to linear models, nonlinear models ranked income, neighborhood disadvantage, and experiences of discrimination higher in importance than race while modeling birth weight. Race was not an important predictor for either gestational age or structural brain volumes. Conclusions: Consistent with the extant social science literature, the findings related to birth weight suggest that race is a linear proxy for nonlinear factors related to structural racism. Methods that can disentangle factors often correlated with race are important for policy in that they may better identify and rank the modifiable factors that influence outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL