Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Infect Dis ; 227(1): 141-150, 2022 12 28.
Article in English | MEDLINE | ID: mdl-35994504

ABSTRACT

BACKGROUND: A third dose of measles-mumps-rubella vaccine (MMR3) is recommended in mumps outbreak scenarios, but the immune response and the need for widespread use of MMR3 remain uncertain. Herein, we characterized measles-specific immune responses to MMR3 in a cohort of 232 healthy subjects. METHODS: Serum and peripheral blood mononuclear cells (PBMCs) were sampled at day 0 and day 28 after MMR3. Measles-specific binding and neutralizing antibodies were quantified in sera by enzyme-linked immunosorbent assay and a microneutralization assay, respectively. PBMCs were stimulated with inactivated measles virus, and the release of cytokines/chemokines was assessed by a multiplex assay. Demographic variables of subjects were examined for potential correlations with immune outcomes. RESULTS: Of the study participants, 95.69% and 100% were seropositive at day 0 and day 28, respectively. Antibody avidity significantly increased from 38.08% at day 0 to 42.8% at day 28 (P = .00026). Neutralizing antibodies were significantly enhanced, from 928.7 at day 0 to 1289.64 mIU/mL at day 28 (P = .0001). Meanwhile, cytokine/chemokine responses remained largely unchanged. Body mass index was significantly correlated with the levels of inflammatory cytokines/chemokines. CONCLUSIONS: Measles-specific humoral immune responses, but not cellular responses, were enhanced after MMR3 receipt, extending current understanding of immune responses to MMR3 and supporting MMR3 administration to seronegative or high-risk individuals.


Subject(s)
Measles , Mumps , Rubella , Humans , Measles-Mumps-Rubella Vaccine , Immunity, Humoral , Body Mass Index , Leukocytes, Mononuclear , Antibodies, Viral , Measles/prevention & control , Antibodies, Neutralizing , Mumps/prevention & control , Cytokines , Chemokines , Rubella/prevention & control , Measles Vaccine
3.
medRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38464113

ABSTRACT

In this report, we provide a follow-up analysis of a previously published genome-wide association study of host genetic variants associated with inter-individual variations in cellular immune responses to mumps vaccine. Here we report the results of a polygenic score (PGS) analysis showing how common variants can predict mumps vaccine response. We found higher PGS for IFNγ, IL-2, and TNFα were predictive of higher post-vaccine IFNγ (p-value = 2e-6), IL-2 (p = 2e-7), and TNFα (p = 0.004) levels, respectively. Control of immune responses after vaccination is complex and polygenic in nature. Our results suggest that the PGS-based approach enables better capture of the combined genetic effects that contribute to mumps vaccine-induced immunity, potentially offering a more comprehensive understanding than traditional single-variant GWAS. This approach will likely have broad utility in studying genetic control of immune responses to other vaccines and to infectious diseases.

4.
Vaccine ; 42(4): 912-917, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38233288

ABSTRACT

The responsiveness/cross-binding of vaccine-induced memory B cells/MBCs to previous and emerging divergent SARS-CoV-2 variants (e.g., Omicron) is understudied. In this longitudinal study subjects receiving two or three doses of monovalent ancestral strain-containing COVID-19 mRNA vaccine were evaluated. In contrast to others, we observed significantly lower frequencies of MBCs reactive to the receptor-binding domain/RBD, the N-terminal domain/NTD, and the S1 of Omicron/BA.1, compared to Wuhan and Delta, even after a 3rd vaccine dose/booster. Our study is a proof of concept that MBC cross-reactivity to variants with greater sequence divergence from the vaccine strain may be overestimated and suggests that these variants may exhibit immune escape with reduced recognition by circulating pre-existing MBCs upon infection.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Longitudinal Studies , Memory B Cells , mRNA Vaccines , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral
5.
Front Immunol ; 15: 1358477, 2024.
Article in English | MEDLINE | ID: mdl-38633249

ABSTRACT

B cell transcriptomic signatures hold promise for the early prediction of vaccine-induced humoral immunity and vaccine protective efficacy. We performed a longitudinal study in 232 healthy adult participants before/after a 3rd dose of MMR (MMR3) vaccine. We assessed baseline and early transcriptional patterns in purified B cells and their association with measles-specific humoral immunity after MMR vaccination using two analytical methods ("per gene" linear models and joint analysis). Our study identified distinct early transcriptional signatures/genes following MMR3 that were associated with measles-specific neutralizing antibody titer and/or binding antibody titer. The most significant genes included: the interleukin 20 receptor subunit beta/IL20RB gene (a subunit receptor for IL-24, a cytokine involved in the germinal center B cell maturation/response); the phorbol-12-myristate-13-acetate-induced protein 1/PMAIP1, the brain expressed X-linked 2/BEX2 gene and the B cell Fas apoptotic inhibitory molecule/FAIM, involved in the selection of high-affinity B cell clones and apoptosis/regulation of apoptosis; as well as IL16 (encoding the B lymphocyte-derived IL-16 ligand of CD4), involved in the crosstalk between B cells, dendritic cells and helper T cells. Significantly enriched pathways included B cell signaling, apoptosis/regulation of apoptosis, metabolic pathways, cell cycle-related pathways, and pathways associated with viral infections, among others. In conclusion, our study identified genes/pathways linked to antigen-induced B cell proliferation, differentiation, apoptosis, and clonal selection, that are associated with, and impact measles virus-specific humoral immunity after MMR vaccination.


Subject(s)
Measles-Mumps-Rubella Vaccine , Measles , Adult , Humans , Immunity, Humoral , Longitudinal Studies , Antibodies, Viral , Gene Expression Profiling , Nerve Tissue Proteins
6.
medRxiv ; 2023 May 01.
Article in English | MEDLINE | ID: mdl-37205333

ABSTRACT

Background: We have previously described genetic polymorphisms in candidate genes that are associated with inter-individual variations in antibody responses to mumps vaccination. To expand upon our previous work, we performed a genome-wide association study (GWAS) to discover host genetic variants associated with mumps vaccine-induced cellular immune responses. Methods: We performed a GWAS of mumps-specific immune response outcomes (11 secreted cytokines/chemokines) in a cohort of 1,406 subjects. Results: Among the 11 cytokine/chemokines we studied, four (IFN-γ, IL-2, IL-1ß, and TNFα) demonstrated GWAS signals reaching genome-wide significance (p<5 x 10 -8 ). A genomic region (encoding Sialic acid-binding immunoglobulin-type lectins/SIGLEC) located on chromosome 19q13 (p<5×10 -8 ) was associated with both IL-1ß and TNFα responses. The SIGLEC5/SIGLEC14 region contained 11 statistically significant single nucleotide polymorphisms (SNPs), including the intronic SIGLEC5 rs872629 (p=1.3E-11) and rs1106476 (p=1.32E-11) whose alternate alleles were significantly associated with decreased levels of mumps-specific IL-1ß (rs872629, p=1.77E-09; rs1106476, p=1.78E-09) and TNFα (rs872629, p=1.3E-11; rs1106476, p=1.32E-11) production. Conclusions: Our results suggest that SNPs in the SIGLEC5/SIGLEC14 genes play a role in cellular and inflammatory immune responses to mumps vaccination. These findings motivate further research into the functional roles of SIGLEC genes in the regulation of mumps vaccine-induced immunity.

7.
Heliyon ; 9(12): e22998, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076130

ABSTRACT

The measles-mumps-rubella (MMR) vaccine has been widely used in the US, but measles and mumps outbreaks remain a public health issue in the US and elsewhere, even among individuals immunized with 2 doses of the vaccine. Immune correlates of vaccine-elicited protection against disease are typically assessed with serum antibody assays, but in some cases, these correlates fail to predict immunity, with the complexity and heterogeneity of the immune response. We used multicolor flow cytometry to evaluate changes in the frequency of peripheral T and B cell subsets in 82 study participants after receipt of a third dose of the M-M-RII vaccine (Merck & Co, Inc). We assessed correlations between flow cytometry variables and measles virus (MV), mumps virus (MuV), or rubella virus (RV)-specific immune response outcomes. Following a third vaccine dose, major changes were observed in the T-cell compartment. CD4+ T cell subsets were significantly increased from baseline to day 28, whereas CD8+ T cell subsets were predominantly decreased. Changes in regulatory T cells (Tregs) correlated with RV- and MV-specific immune outcomes and with high- and low-RV antibody responder groups, implicating the importance of Tregs in regulating MMR vaccine-induced immune responses. This information may help define additional correlates of protection and aid in the design of improved vaccines.

8.
Vaccine ; 41(44): 6579-6588, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37778899

ABSTRACT

BACKGROUND: We have previously described genetic polymorphisms in candidate genes that are associated with inter-individual variations in antibody responses to mumps vaccination. To expand upon our previous work, we performed a genome-wide association study (GWAS) to discover host genetic variants associated with mumps vaccine-induced cellular immune responses. METHODS: We performed a GWAS of mumps-specific immune response outcomes (11 secreted cytokines/chemokines) in a cohort of 1,406 subjects. RESULTS: Among the 11 cytokine/chemokines we studied, four (IFN-γ, IL-2, IL-1ß, and TNFα) demonstrated GWAS signals reaching genome-wide significance (p < 5 × 10-8). A genomic region (encoding Sialic acid-binding immunoglobulin-type lectins/SIGLEC) located on chromosome 19q13 (p < 5 × 10-8) was associated with both IL-1ß and TNFα responses. The SIGLEC5/SIGLEC14 region contained 11 statistically significant single nucleotide polymorphisms (SNPs), including the intronic SIGLEC5 rs872629 (p = 1.3E-11) and rs1106476 (p = 1.32E-11) whose alternate alleles were significantly associated with decreased levels of mumps-specific IL-1ß (rs872629, p = 1.77E-09; rs1106476, p = 1.78E-09) and TNFα (rs872629, p = 1.3E-11; rs1106476, p = 1.32E-11) production. CONCLUSIONS: Our results suggest that SNPs in the SIGLEC5/SIGLEC14 genes play a role in cellular and inflammatory immune responses to mumps vaccination. These findings motivate further research into the functional roles of SIGLEC genes in the regulation of mumps vaccine-induced immunity.


Subject(s)
Measles , Mumps , Rubella , Humans , Mumps Vaccine/genetics , Tumor Necrosis Factor-alpha , Mumps/prevention & control , Genome-Wide Association Study , Immunity, Cellular , Cytokines , Chemokines , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Measles-Mumps-Rubella Vaccine , Antibodies, Viral , Rubella/prevention & control
9.
Front Cell Infect Microbiol ; 13: 1229035, 2023.
Article in English | MEDLINE | ID: mdl-38149010

ABSTRACT

Background: The reduced effectiveness of standard-dose influenza vaccines in persons ≥65 years of age led to the preferential recommendation to use high-dose (HDFlu) or MF59-adjuvanted (MF59Flu) vaccines for this age group. Sleep is an important modulator of immune responses to vaccines and poor sleep health is common in older adults. However, potential effects of poor sleep health on immune responses to influenza vaccination in older adults remain largely unknown. Methods: We conducted a cohort study of 210 healthy participants age ≥65 years, who received either seasonal high-dose (HDFlu) or MF59-adjuvanted (MF59Flu) influenza vaccine. We assessed sleep characteristics in this cohort by standardized questionnaires and measured the antibody titer against influenza A/H3N2 virus in serum of study participants by hemagglutination inhibition assay on the day of immunization and 28 days thereafter. We then assessed the association between sleep characteristics and antibody titers. Results: Our results demonstrated that male, but not female, study participants with excessive daytime sleepiness had an impaired influenza A/H3N2-specific antibody response at Day 28 post-vaccination. No other associations were found between antibody titer and other sleep characteristics, including sleep quality and obstructive sleep apnea. Conclusion: Our results provide an additional and easily measured variable explaining poor vaccine effectiveness in older adults. Our results support that gaining sufficient sleep is a simple non-vaccine interventional approach to improve influenza immune responses in older adults. Our findings extend the literature on the negative influence of excessive daytime sleepiness on immune responses to influenza vaccination in older male adults.


Subject(s)
Disorders of Excessive Somnolence , Influenza Vaccines , Influenza, Human , Humans , Male , Aged , Influenza A Virus, H3N2 Subtype , Antibody Formation , Cohort Studies , Antibodies, Viral , Vaccination , Adjuvants, Immunologic
10.
Heliyon ; 8(11): e11676, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36439767

ABSTRACT

While waning immunity and SARS-CoV-2 variant immune escape continue to result in high infection rates worldwide, associations between longitudinal quantitative, qualitative, and functional humoral immune responses after SARS-CoV-2 infection remain unclear. In this study, we found significant waning of antibody against Spike S1 (R = -0.32, p = 0.035) and N protein (R = -0.39, p = 0.008), while RBD antibody moderately decreased (R = -0.19, p = 0.203). Likewise, neutralizing antibody titer (ND50) waned over time (R = -0.46, p = 0.001). In contrast, antibody avidity increased significantly over time for Spike S1 (R = 0.62, p = 6.0e-06), RBD (R = 0.54, p = 2.0e-04), and N (R = 0.33, p = 0.025) antibodies. Across all humoral responses, ND50 strongly associated with Spike S1 (R = 0.85, p = 2.7e-13) and RBD (R = 0.78, p = 2.9e-10) antibodies. Our findings provide longitudinal insight into humoral immune responses after infection and imply the potential of Spike S1/RBD antibody titer as surrogate correlates of protection.

11.
Vaccines (Basel) ; 10(11)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36366367

ABSTRACT

As an extremely contagious pathogen, a high rate of vaccine coverage and the durability of vaccine-induced immunity are key factors to control and eliminate measles. Herein, we assessed the seroprevalence of antibodies specific to measles in a cohort of 1393 adults (20-44 years old). ELISA results showed a nontrivial proportion of 37.6% study subjects being negative for measles immunoglobulin G (IgG). We also found significant influences of sex and age of the study cohort on the IgG level. Our findings suggest that even within a highly vaccinated population, a subset of individuals may still have sub-optimal immunity against measles and potentially be susceptible during any future measles outbreaks.

12.
Vaccine ; 38(50): 7897-7904, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33158591

ABSTRACT

INTRODUCTION: Rubella virus (RV) was eliminated in the United States in 2004, although a small portion of the population fails to develop long-term immunity against RV even after two doses of the measles-mumps-rubella (MMR) vaccine. We hypothesized that inherent biological differences in cytokine and chemokine signaling likely govern an individual's response to a third dose of the vaccine. METHODS: Healthy young women (n = 97) were selected as study participants if they had either low or high extremes of RV-specific antibody titer after two previous doses of MMR vaccine. We measured cytokine and chemokine secretion from RV-stimulated PBMCs before and 28 days after they received a third dose of MMR vaccine and assessed correlations with humoral immune response outcomes. RESULTS: High and low antibody vaccine responders exhibited a strong pro-inflammatory cellular response, with an underlying Th1-associated signature (IL-2, IFN-γ, MIP-1ß, IP-10) and suppressed production of most Th2-associated cytokines (IL-4, IL-10, IL-13). IL-10 and IL-4 exhibited significant negative associations with neutralizing antibody titers and memory B cell ELISpot responses among low vaccine responders. CONCLUSION: IL-4 and IL-10 signaling pathways may be potential targets for understanding and improving the immune response to rubella vaccination or for designing new vaccines that induce more durable immunity.


Subject(s)
Immunity, Cellular , Immunity, Humoral , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles-Mumps-Rubella Vaccine/immunology , Rubella/immunology , Adult , Chemokines/immunology , Chemokines/metabolism , Cytokines/immunology , Cytokines/metabolism , Female , Humans , Immunization Schedule , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Middle Aged , Rubella/prevention & control , Young Adult
13.
Vaccine ; 38(51): 8185-8193, 2020 12 03.
Article in English | MEDLINE | ID: mdl-33190948

ABSTRACT

BACKGROUND: While administration of the measles-mumps-rubella (MMR-II®) vaccine has been effective at preventing rubella infection in the United States, the durability of humoral immunity to the rubella component of MMR vaccine has not been widely studied among older adolescents and adults. METHODS: In this longitudinal study, we sought to assess the durability of rubella virus (RV)-specific humoral immunity in a healthy population (n = 98) of adolescents and young adults at two timepoints: ~7 and ~17 years after two doses of MMR-II® vaccination. Levels of circulating antibodies specific to RV were measured by ELISA and an immune-colorimetric neutralization assay. RV-specific memory B cell responses were also measured by ELISpot. RESULTS: Rubella-specific IgG antibody titers, neutralizing antibody titers, and memory B cell responses declined with increasing time since vaccination; however, these decreases were relatively moderate. Memory B cell responses exhibited a greater decline in men compared to women. CONCLUSIONS: Collectively, rubella-specific humoral immunity declines following vaccination, although subjects' antibody titers remain well above the currently recognized threshold for protective immunity. Clinical correlates of protection based on neutralizing antibody titer and memory B cell ELISpot response should be defined.


Subject(s)
Immunity, Humoral , Measles-Mumps-Rubella Vaccine/immunology , Rubella/immunology , Adolescent , Adult , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , Female , Humans , Immunoglobulin G/blood , Male , Measles-Mumps-Rubella Vaccine/pharmacology , Rubella/prevention & control , Time Factors , Vaccination , Young Adult
14.
PLoS One ; 12(11): e0188149, 2017.
Article in English | MEDLINE | ID: mdl-29145521

ABSTRACT

INTRODUCTION//BACKGROUND: The lack of standardization of the currently used commercial anti-rubella IgG antibody assays leads to frequent misinterpretation of results for samples with low/equivocal antibody concentration. The use of alternative approaches in rubella serology could add new information leading to a fuller understanding of rubella protective immunity and neutralizing antibody response after vaccination. METHODS: We applied microarray technology to measure antibodies to all rubella virus proteins in 75 high and 75 low rubella virus-specific antibody responders after two MMR vaccine doses. These data were used in multivariate penalized logistic regression modeling of rubella-specific neutralizing antibody response after vaccination. RESULTS: We measured antibodies to all rubella virus structural proteins (i.e., the glycoproteins E1 and E2 and the capsid C protein) and to the non-structural protein P150. Antibody levels to each of these proteins were: correlated with the neutralizing antibody titer (p<0.006); demonstrated differences between the high and the low antibody responder groups (p<0.008); and were components of the model associated with/predictive of vaccine-induced rubella virus-specific neutralizing antibody titers (misclassification error = 0.2). CONCLUSION: Our study supports the use of this new technology, as well as the use of antibody profiles/patterns (rather than single antibody measures) as biomarkers of neutralizing antibody response and correlates of protective immunity in rubella virus serology.


Subject(s)
Antibodies, Viral/biosynthesis , Measles-Mumps-Rubella Vaccine/administration & dosage , Proteome , Rubella virus/immunology , Adolescent , Adult , Humans , Rubella virus/metabolism , Young Adult
15.
Viruses ; 7(3): 1113-33, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25763865

ABSTRACT

INTRODUCTION: Comprehensive evaluation of measles-specific humoral immunity after vaccination is important for determining new and/or additional correlates of vaccine immunogenicity and efficacy. METHODS: We used a novel proteome microarray technology and statistical modeling to identify factors and models associated with measles-specific functional protective immunity in 150 measles vaccine recipients representing the extremes of neutralizing antibody response after two vaccine doses. RESULTS: Our findings demonstrate a high seroprevalence of antibodies directed to the measles virus (MV) phosphoprotein (P), nucleoprotein (N), as well as antibodies to the large polymerase (L) protein (fragment 1234 to 1900 AA). Antibodies to these proteins, in addition to anti-F antibodies (and, to a lesser extent, anti-H antibodies), were correlated with neutralizing antibody titer and/or were associated with and predictive of neutralizing antibody response. CONCLUSION: Our results identify antibodies to specific measles virus proteins and statistical models for monitoring and assessment of measles-specific functional protective immunity in vaccinated individuals.


Subject(s)
Antibodies, Viral/blood , Measles virus/immunology , Measles-Mumps-Rubella Vaccine/administration & dosage , Measles-Mumps-Rubella Vaccine/immunology , Protein Array Analysis , Proteome/analysis , Adolescent , Antibodies, Neutralizing/blood , Antigens, Viral/immunology , Child , Female , Humans , Male , Models, Statistical , Young Adult
16.
Vaccine ; 32(17): 1946-53, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24530932

ABSTRACT

INTRODUCTION: Immune response variations after vaccination are influenced by host genetic factors and demographic variables, such as race, ethnicity and sex. The latter have not been systematically studied in regard to live rubella vaccine, but are of interest for developing next generation vaccines for diverse populations, for predicting immune responses after vaccination, and for better understanding the variables that impact immune response. METHODS: We assessed associations between demographic variables, including race, ethnicity and sex, and rubella-specific neutralizing antibody levels and secreted cytokines (IFNγ, IL-6) in two independent cohorts (1994 subjects), using linear and linear mixed models approaches, and genetically defined racial and ethnic categorizations. RESULTS: Our replicated findings in two independent, large, racially diverse cohorts indicate that individuals of African descent have significantly higher rubella-specific neutralizing antibody levels compared to individuals of European descent and/or Hispanic ethnicity (p<0.001). CONCLUSION: Our study provides consistent evidence for racial/ethnic differences in humoral immune response following rubella vaccination.


Subject(s)
Black or African American , Immunity, Humoral , Rubella Vaccine/immunology , White People , Adolescent , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Child , Cohort Studies , Female , Humans , Interferon-gamma/immunology , Interleukin-6/immunology , Linear Models , Male , Rubella/prevention & control , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL