Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 241
Filter
Add more filters

Publication year range
1.
Cell ; 168(1-2): 59-72.e13, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28065413

ABSTRACT

Chromosomal translocations of the mixed-lineage leukemia (MLL) gene with various partner genes result in aggressive leukemia with dismal outcomes. Despite similar expression at the mRNA level from the wild-type and chimeric MLL alleles, the chimeric protein is more stable. We report that UBE2O functions in regulating the stability of wild-type MLL in response to interleukin-1 signaling. Targeting wild-type MLL degradation impedes MLL leukemia cell proliferation, and it downregulates a specific group of target genes of the MLL chimeras and their oncogenic cofactor, the super elongation complex. Pharmacologically inhibiting this pathway substantially delays progression, and it improves survival of murine leukemia through stabilizing wild-type MLL protein, which displaces the MLL chimera from some of its target genes and, therefore, relieves the cellular oncogenic addiction to MLL chimeras. Stabilization of MLL provides us with a paradigm in the development of therapies for aggressive MLL leukemia and perhaps for other cancers caused by translocations.


Subject(s)
Leukemia, Biphenotypic, Acute/drug therapy , Leukemia, Biphenotypic, Acute/metabolism , Proteolysis/drug effects , Animals , Disease Models, Animal , Histone-Lysine N-Methyltransferase/metabolism , Humans , Interleukin-1/metabolism , Interleukin-1 Receptor-Associated Kinases/antagonists & inhibitors , Interleukin-1 Receptor-Associated Kinases/metabolism , Mice , Mice, Inbred C57BL , Myeloid-Lymphoid Leukemia Protein/metabolism , Ubiquitin-Conjugating Enzymes
2.
Nat Immunol ; 20(9): 1196-1207, 2019 09.
Article in English | MEDLINE | ID: mdl-31406379

ABSTRACT

The response to systemic infection and injury requires the rapid adaptation of hematopoietic stem cells (HSCs), which proliferate and divert their differentiation toward the myeloid lineage. Significant interest has emerged in understanding the signals that trigger the emergency hematopoietic program. However, the mechanisms that halt this response of HSCs, which is critical to restore homeostasis, remain unknown. Here we reveal that the E3 ubiquitin ligase Speckle-type BTB-POZ protein (SPOP) restrains the inflammatory activation of HSCs. In the absence of Spop, systemic inflammation proceeded in an unresolved manner, and the sustained response in the HSCs resulted in a lethal phenotype reminiscent of hyper-inflammatory syndrome or sepsis. Our proteomic studies decipher that SPOP restricted inflammation by ubiquitinating the innate signal transducer myeloid differentiation primary response protein 88 (MYD88). These findings unearth an HSC-intrinsic post-translational mechanism that is essential for reestablishing homeostasis after emergency hematopoiesis.


Subject(s)
Inflammation/immunology , Leukocytosis/immunology , Myeloid Differentiation Factor 88/metabolism , Neutrophils/immunology , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Cell Line , Female , HEK293 Cells , Hematopoiesis/immunology , Humans , Male , Mice , Neutrophils/cytology , Ubiquitin-Protein Ligase Complexes , Ubiquitin-Protein Ligases/metabolism
3.
Cell ; 149(5): 1023-34, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22632967

ABSTRACT

F-box proteins are the substrate binding subunits of SCF (Skp1-Cul1-F-box protein) ubiquitin ligase complexes. Using affinity purifications and mass spectrometry, we identified RRM2 (the ribonucleotide reductase family member 2) as an interactor of the F-box protein cyclin F. Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides (dNTPs), which are necessary for both replicative and repair DNA synthesis. We found that, during G2, following CDK-mediated phosphorylation of Thr33, RRM2 is degraded via SCF(cyclin F) to maintain balanced dNTP pools and genome stability. After DNA damage, cyclin F is downregulated in an ATR-dependent manner to allow accumulation of RRM2. Defective elimination of cyclin F delays DNA repair and sensitizes cells to DNA damage, a phenotype that is reverted by expressing a nondegradable RRM2 mutant. In summary, we have identified a biochemical pathway that controls the abundance of dNTPs and ensures efficient DNA repair in response to genotoxic stress.


Subject(s)
Cyclins/metabolism , DNA Repair , Ribonucleoside Diphosphate Reductase/metabolism , Amino Acid Motifs , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , DNA Damage , Down-Regulation , G2 Phase , Genomic Instability , Humans , Protein Serine-Threonine Kinases/metabolism
4.
Cell ; 146(1): 92-104, 2011 Jul 08.
Article in English | MEDLINE | ID: mdl-21729782

ABSTRACT

Promoter-proximal pausing by initiated RNA polymerase II (Pol II) and regulated release of paused polymerase into productive elongation has emerged as a major mechanism of transcription activation. Reactivation of paused Pol II correlates with recruitment of super-elongation complexes (SECs) containing ELL/EAF family members, P-TEFb, and other proteins, but the mechanism of their recruitment is an unanswered question. Here, we present evidence for a role of human Mediator subunit MED26 in this process. We identify in the conserved N-terminal domain of MED26 overlapping docking sites for SEC and a second ELL/EAF-containing complex, as well as general initiation factor TFIID. In addition, we present evidence consistent with the model that MED26 can function as a molecular switch that interacts first with TFIID in the Pol II initiation complex and then exchanges TFIID for complexes containing ELL/EAF and P-TEFb to facilitate transition of Pol II into the elongation stage of transcription.


Subject(s)
Trans-Activators/metabolism , Transcription, Genetic , Transcriptional Elongation Factors/metabolism , Cell Proliferation , Gene Expression Regulation , HSP70 Heat-Shock Proteins/metabolism , HeLa Cells , Humans , Mediator Complex , Phosphorylation , Proto-Oncogene Proteins c-myc/metabolism , RNA Polymerase II/metabolism
5.
Nature ; 583(7817): 638-643, 2020 07.
Article in English | MEDLINE | ID: mdl-32555463

ABSTRACT

N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that is present on tRNA and rRNA and has recently been investigated in eukaryotic mRNA1-3. However, the distribution, dynamics and functions of cytidine acetylation have yet to be fully elucidated. Here we report ac4C-seq, a chemical genomic method for the transcriptome-wide quantitative mapping of ac4C at single-nucleotide resolution. In human and yeast mRNAs, ac4C sites are not detected but can be induced-at a conserved sequence motif-via the ectopic overexpression of eukaryotic acetyltransferase complexes. By contrast, cross-evolutionary profiling revealed unprecedented levels of ac4C across hundreds of residues in rRNA, tRNA, non-coding RNA and mRNA from hyperthermophilic archaea. Ac4C is markedly induced in response to increases in temperature, and acetyltransferase-deficient archaeal strains exhibit temperature-dependent growth defects. Visualization of wild-type and acetyltransferase-deficient archaeal ribosomes by cryo-electron microscopy provided structural insights into the temperature-dependent distribution of ac4C and its potential thermoadaptive role. Our studies quantitatively define the ac4C landscape, providing a technical and conceptual foundation for elucidating the role of this modification in biology and disease4-6.


Subject(s)
Acetylation , Cytidine/analogs & derivatives , Eukaryotic Cells/metabolism , Evolution, Molecular , RNA/chemistry , RNA/metabolism , Archaea/chemistry , Archaea/cytology , Archaea/genetics , Archaea/growth & development , Conserved Sequence , Cryoelectron Microscopy , Cytidine/metabolism , Eukaryotic Cells/cytology , HeLa Cells , Humans , Models, Molecular , N-Terminal Acetyltransferases/metabolism , RNA, Archaeal/chemistry , RNA, Archaeal/genetics , RNA-Binding Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Ribosomes/ultrastructure , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA , Temperature
6.
J Cell Sci ; 136(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37921359

ABSTRACT

The nucleolus is sensitive to stress and can orchestrate a chain of cellular events in response to stress signals. Despite being a growth factor, FGF2 has antiproliferative and tumor-suppressive functions in some cellular contexts. In this work, we investigated how the antiproliferative effect of FGF2 modulates chromatin-, nucleolus- and rDNA-associated proteins. The chromatin and nucleolar proteome indicated that FGF2 stimulation modulates proteins related to transcription, rRNA expression and chromatin-remodeling proteins. The global transcriptional rate and nucleolus area increased along with nucleolar disorganization upon 24 h of FGF2 stimulation. FGF2 stimulation induced immature rRNA accumulation by increasing rRNA transcription. The rDNA-associated protein analysis reinforced that FGF2 stimulus interferes with transcription and rRNA processing. RNA Pol I inhibition partially reversed the growth arrest induced by FGF2, indicating that changes in rRNA expression might be crucial for triggering the antiproliferative effect. Taken together, we demonstrate that the antiproliferative FGF2 stimulus triggers significant transcriptional changes and modulates the main cell transcription site, the nucleolus.


Subject(s)
Cell Nucleolus , Fibroblast Growth Factor 2 , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/pharmacology , Fibroblast Growth Factor 2/metabolism , Cell Nucleolus/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , Transcription, Genetic , DNA, Ribosomal/genetics , Chromatin/genetics , Chromatin/metabolism
7.
Cell ; 142(5): 726-36, 2010 Sep 03.
Article in English | MEDLINE | ID: mdl-20813260

ABSTRACT

In response to extracellular cues, signal transduction activates downstream transcription factors like c-Jun to induce expression of target genes. We demonstrate that the ATAC (Ada two A containing) histone acetyltransferase (HAT) complex serves as a transcriptional cofactor for c-Jun at the Jun N-terminal kinase (JNK) target genes Jra and chickadee. ATAC subunits are required for c-Jun occupancy of these genes and for H4K16 acetylation at the Jra enhancer, promoter, and transcribed sequences. Under conditions of osmotic stress, ATAC colocalizes with c-Jun, recruits the upstream kinases Misshapen, MKK4, and JNK, and suppresses further activation of JNK. Relocalization of these MAPKs and suppression of JNK activation by ATAC are dependent on the CG10238 subunit of ATAC. Thus, ATAC governs the transcriptional response to MAP kinase signaling by serving as both a coactivator of transcription and as a suppressor of upstream signaling.


Subject(s)
Drosophila/metabolism , Histone Acetyltransferases/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Signaling System , Sulfurtransferases/metabolism , Animals , Cell Line , Drosophila/enzymology , Drosophila/genetics , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Osmotic Pressure , Protein Structure, Tertiary , Stress, Physiological , Sulfurtransferases/chemistry
8.
Cell ; 136(3): 508-20, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19203584

ABSTRACT

Caspase-2 is unique among all the mammalian caspases in that it is the only caspase that is present constitutively in the cell nucleus, in addition to other cellular compartments. However, the functional significance of this nuclear localization is unknown. Here we show that DNA damage induced by gamma-radiation triggers the phosphorylation of nuclear caspase-2 at the S122 site within its prodomain, leading to its cleavage and activation. This phosphorylation is carried out by the nuclear serine/threonine protein kinase DNA-PKcs and promoted by the p53-inducible death-domain-containing protein PIDD within a large nuclear protein complex consisting of DNA-PKcs, PIDD, and caspase-2, which we have named the DNA-PKcs-PIDDosome. This phosphorylation and the catalytic activity of caspase-2 are involved in the maintenance of a G2/M DNA damage checkpoint and DNA repair mediated by the nonhomologous end-joining (NHEJ) pathway. The DNA-PKcs-PIDDosome thus represents a protein complex that impacts mammalian G2/M DNA damage checkpoint and NHEJ.


Subject(s)
Carrier Proteins/metabolism , Caspase 2/metabolism , Cell Cycle , Cysteine Endopeptidases/metabolism , DNA-Activated Protein Kinase/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Animals , Caspase 2/chemistry , Cell Line , Cysteine Endopeptidases/chemistry , DNA Damage , Death Domain Receptor Signaling Adaptor Proteins , Fibroblasts/metabolism , Gamma Rays , Humans , Mice , Mitosis , Molecular Sequence Data , Sequence Alignment
9.
Mol Cell ; 64(2): 282-293, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27720645

ABSTRACT

RNA metabolism is controlled by an expanding, yet incomplete, catalog of RNA-binding proteins (RBPs), many of which lack characterized RNA binding domains. Approaches to expand the RBP repertoire to discover non-canonical RBPs are currently needed. Here, HaloTag fusion pull down of 12 nuclear and cytoplasmic RBPs followed by quantitative mass spectrometry (MS) demonstrates that proteins interacting with multiple RBPs in an RNA-dependent manner are enriched for RBPs. This motivated SONAR, a computational approach that predicts RNA binding activity by analyzing large-scale affinity precipitation-MS protein-protein interactomes. Without relying on sequence or structure information, SONAR identifies 1,923 human, 489 fly, and 745 yeast RBPs, including over 100 human candidate RBPs that contain zinc finger domains. Enhanced CLIP confirms RNA binding activity and identifies transcriptome-wide RNA binding sites for SONAR-predicted RBPs, revealing unexpected RNA binding activity for disease-relevant proteins and DNA binding proteins.


Subject(s)
Algorithms , Molecular Sequence Annotation , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/classification , RNA/chemistry , Animals , Binding Sites , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Cytoplasm/chemistry , Cytoplasm/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Expression , Gene Ontology , HEK293 Cells , Humans , Nucleotide Motifs , Protein Binding , Protein Interaction Domains and Motifs , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Software , Zinc Fingers
10.
Mol Cell ; 62(4): 558-71, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27132940

ABSTRACT

Histone H2B monoubiquitination (H2Bub1) is centrally involved in gene regulation. The deubiquitination module (DUBm) of the SAGA complex is a major regulator of global H2Bub1 levels, and components of this DUBm are linked to both neurodegenerative diseases and cancer. Unexpectedly, we find that ablation of USP22, the enzymatic center of the DUBm, leads to a reduction, rather than an increase, in global H2bub1 levels. In contrast, depletion of non-enzymatic components, ATXN7L3 or ENY2, results in increased H2Bub1. These observations led us to discover two H2Bub1 DUBs, USP27X and USP51, which function independently of SAGA and compete with USP22 for ATXN7L3 and ENY2 for activity. Like USP22, USP51 and USP27X are required for normal cell proliferation, and their depletion suppresses tumor growth. Our results reveal that ATXN7L3 and ENY2 orchestrate activities of multiple deubiquitinating enzymes and that imbalances in these activities likely potentiate human diseases including cancer.


Subject(s)
Breast Neoplasms/enzymology , Cell Proliferation , Deubiquitinating Enzymes/metabolism , Histones/metabolism , Transcription Factors/metabolism , Tumor Burden , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Deubiquitinating Enzymes/genetics , Endopeptidases/genetics , Endopeptidases/metabolism , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Genotype , HEK293 Cells , Humans , MCF-7 Cells , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Phenotype , RNA Interference , Signal Transduction , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Time Factors , Transcription Factors/genetics , Transfection , Ubiquitin Thiolesterase , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism , Ubiquitination
11.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Article in English | MEDLINE | ID: mdl-34465625

ABSTRACT

The SNF2 family ATPase Amplified in Liver Cancer 1 (ALC1) is the only chromatin remodeling enzyme with a poly(ADP-ribose) (PAR) binding macrodomain. ALC1 functions together with poly(ADP-ribose) polymerase PARP1 to remodel nucleosomes. Activation of ALC1 cryptic ATPase activity and the subsequent nucleosome remodeling requires binding of its macrodomain to PAR chains synthesized by PARP1 and NAD+ A key question is whether PARP1 has a role(s) in ALC1-dependent nucleosome remodeling beyond simply synthesizing the PAR chains needed to activate the ALC1 ATPase. Here, we identify PARP1 separation-of-function mutants that activate ALC1 ATPase but do not support nucleosome remodeling by ALC1. Investigation of these mutants has revealed multiple functions for PARP1 in ALC1-dependent nucleosome remodeling and provides insights into its multifaceted role in chromatin remodeling.


Subject(s)
DNA Helicases/metabolism , DNA-Binding Proteins/metabolism , Nucleosomes/metabolism , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Line, Tumor , Chromatin Assembly and Disassembly , DNA Repair , Humans
12.
Genes Dev ; 30(10): 1198-210, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27198229

ABSTRACT

KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and are involved in cell cycle regulation. However, information regarding their roles in regulating cell cycle progression is limited. Here, we report the identification of subunits of the Drosophila Enok complex and demonstrate that all subunits are important for its HAT activity. We further report a novel interaction between the Enok complex and the Elg1 proliferating cell nuclear antigen (PCNA)-unloader complex. Depletion of Enok in S2 cells resulted in a G1/S cell cycle block, and this block can be partially relieved by depleting Elg1. Furthermore, depletion of Enok reduced the chromatin-bound levels of PCNA in both S2 cells and early embryos, suggesting that the Enok complex may interact with the Elg1 complex and down-regulate its PCNA-unloading function to promote the G1/S transition. Supporting this hypothesis, depletion of Enok also partially rescued the endoreplication defects in Elg1-depleted nurse cells. Taken together, our study provides novel insights into the roles of KAT6 HATs in cell cycle regulation through modulating PCNA levels on chromatin.


Subject(s)
Drosophila Proteins/metabolism , G1 Phase Cell Cycle Checkpoints/genetics , Histone Acetyltransferases/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Animals , Cell Cycle Checkpoints/genetics , Cells, Cultured , Chromatin/metabolism , Down-Regulation/genetics , Drosophila Proteins/genetics , Drosophila melanogaster , Female , Histone Acetyltransferases/genetics , Protein Binding , Protein Subunits/genetics , Protein Subunits/metabolism
13.
Nature ; 544(7649): 196-201, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28241144

ABSTRACT

The conserved Mediator co-activator complex has an essential role in the regulation of RNA polymerase II transcription in all eukaryotes. Understanding the structure and interactions of Mediator is crucial for determining how the complex influences transcription initiation and conveys regulatory information to the basal transcription machinery. Here we present a 4.4 Å resolution cryo-electron microscopy map of Schizosaccharomyces pombe Mediator in which conserved Mediator subunits are individually resolved. The essential Med14 subunit works as a central backbone that connects the Mediator head, middle and tail modules. Comparison with a 7.8 Å resolution cryo-electron microscopy map of a Mediator-RNA polymerase II holoenzyme reveals that changes in the structure of Med14 facilitate a large-scale Mediator rearrangement that is essential for holoenzyme formation. Our study suggests that access to different conformations and crosstalk between structural elements are essential for the Mediator regulation mechanism, and could explain the capacity of the complex to integrate multiple regulatory signals.


Subject(s)
Mediator Complex/chemistry , Mediator Complex/metabolism , RNA Polymerase II/chemistry , RNA Polymerase II/ultrastructure , Binding Sites , Cryoelectron Microscopy , Holoenzymes/chemistry , Holoenzymes/metabolism , Holoenzymes/ultrastructure , Mediator Complex/ultrastructure , Models, Molecular , Protein Binding , Protein Conformation , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA Polymerase II/metabolism , Schizosaccharomyces , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/ultrastructure , Structure-Activity Relationship
14.
Nature ; 546(7659): 554-558, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28614300

ABSTRACT

In response to environmental cues that promote IP3 (inositol 1,4,5-trisphosphate) generation, IP3 receptors (IP3Rs) located on the endoplasmic reticulum allow the 'quasisynaptical' feeding of calcium to the mitochondria to promote oxidative phosphorylation. However, persistent Ca2+ release results in mitochondrial Ca2+ overload and consequent apoptosis. Among the three mammalian IP3Rs, IP3R3 appears to be the major player in Ca2+-dependent apoptosis. Here we show that the F-box protein FBXL2 (the receptor subunit of one of 69 human SCF (SKP1, CUL1, F-box protein) ubiquitin ligase complexes) binds IP3R3 and targets it for ubiquitin-, p97- and proteasome-mediated degradation to limit Ca2+ influx into mitochondria. FBXL2-knockdown cells and FBXL2-insensitive IP3R3 mutant knock-in clones display increased cytosolic Ca2+ release from the endoplasmic reticulum and sensitization to Ca2+-dependent apoptotic stimuli. The phosphatase and tensin homologue (PTEN) gene is frequently mutated or lost in human tumours and syndromes that predispose individuals to cancer. We found that PTEN competes with FBXL2 for IP3R3 binding, and the FBXL2-dependent degradation of IP3R3 is accelerated in Pten-/- mouse embryonic fibroblasts and PTEN-null cancer cells. Reconstitution of PTEN-null cells with either wild-type PTEN or a catalytically dead mutant stabilizes IP3R3 and induces persistent Ca2+ mobilization and apoptosis. IP3R3 and PTEN protein levels directly correlate in human prostate cancer. Both in cell culture and xenograft models, a non-degradable IP3R3 mutant sensitizes tumour cells with low or no PTEN expression to photodynamic therapy, which is based on the ability of photosensitizer drugs to cause Ca2+-dependent cytotoxicity after irradiation with visible light. Similarly, disruption of FBXL2 localization with GGTi-2418, a geranylgeranyl transferase inhibitor, sensitizes xenotransplanted tumours to photodynamic therapy. In summary, we identify a novel molecular mechanism that limits mitochondrial Ca2+ overload to prevent cell death. Notably, we provide proof-of-principle that inhibiting IP3R3 degradation in PTEN-deregulated cancers represents a valid therapeutic strategy.


Subject(s)
Apoptosis , Calcium/metabolism , F-Box Proteins/antagonists & inhibitors , Inositol 1,4,5-Trisphosphate Receptors/metabolism , PTEN Phosphohydrolase/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Animals , Binding, Competitive , Calcium Signaling , Endoplasmic Reticulum/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , Fibroblasts , HEK293 Cells , Humans , Inositol 1,4,5-Trisphosphate Receptors/deficiency , Inositol 1,4,5-Trisphosphate Receptors/genetics , Male , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondria/metabolism , Mutation , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Photochemotherapy , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Proteolysis , Ubiquitin/metabolism , Xenograft Model Antitumor Assays
15.
Mol Cell ; 60(3): 408-21, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26527276

ABSTRACT

Pyruvate kinase M2 (PKM2) is a key enzyme for glycolysis and catalyzes the conversion of phosphoenolpyruvate (PEP) to pyruvate, which supplies cellular energy. PKM2 also phosphorylates histone H3 threonine 11 (H3T11); however, it is largely unknown how PKM2 links cellular metabolism to chromatin regulation. Here, we show that the yeast PKM2 homolog, Pyk1, is a part of a novel protein complex named SESAME (Serine-responsive SAM-containing Metabolic Enzyme complex), which contains serine metabolic enzymes, SAM (S-adenosylmethionine) synthetases, and an acetyl-CoA synthetase. SESAME interacts with the Set1 H3K4 methyltransferase complex, which requires SAM synthesized from SESAME, and recruits SESAME to target genes, resulting in phosphorylation of H3T11. SESAME regulates the crosstalk between H3K4 methylation and H3T11 phosphorylation by sensing glycolysis and glucose-derived serine metabolism. This leads to auto-regulation of PYK1 expression. Thus, our study provides insights into the mechanism of regulating gene expression, responding to cellular metabolism via chromatin modifications.


Subject(s)
Chromatin/metabolism , Histones/metabolism , Multiprotein Complexes/metabolism , Protein-Tyrosine Kinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromatin/genetics , Gene Expression Regulation, Enzymologic/physiology , Gene Expression Regulation, Fungal/physiology , Histones/genetics , Multiprotein Complexes/genetics , Phosphorylation/physiology , Protein-Tyrosine Kinases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
16.
Mol Cell ; 57(4): 685-694, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25699711

ABSTRACT

The Zinc-finger protein of the cerebellum 2 (Zic2) is one of the vertebrate homologs of the Drosophila pair-rule gene odd-paired (opa). Our molecular and biochemical studies demonstrate that Zic2 preferentially binds to transcriptional enhancers and is required for the regulation of gene expression in embryonic stem cells. Detailed genome-wide and molecular studies reveal that Zic2 can function with Mbd3/NuRD in regulating the chromatin state and transcriptional output of genes linked to differentiation. Zic2 is required for proper differentiation of embryonic stem cells (ESCs), similar to what has been previously reported for Mbd3/NuRD. Our study identifies Zic2 as a key factor in the execution of transcriptional fine-tuning with Mbd3/NuRD in ESCs through interactions with enhancers. Our study also points to the role of the Zic family of proteins as enhancer-specific binding factors functioning in development.


Subject(s)
Cell Differentiation , Embryonic Stem Cells/cytology , Transcription Factors/physiology , Animals , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Enhancer Elements, Genetic , Gene Expression Regulation , Mi-2 Nucleosome Remodeling and Deacetylase Complex/metabolism , Mi-2 Nucleosome Remodeling and Deacetylase Complex/physiology , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
17.
Proc Natl Acad Sci U S A ; 117(50): 31861-31870, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33257578

ABSTRACT

Streamlined characterization of protein complexes remains a challenge for the study of protein interaction networks. Here we describe serial capture affinity purification (SCAP), in which two separate proteins are tagged with either the HaloTag or the SNAP-tag, permitting a multistep affinity enrichment of specific protein complexes. The multifunctional capabilities of this protein-tagging system also permit in vivo validation of interactions using acceptor photobleaching Förster resonance energy transfer and fluorescence cross-correlation spectroscopy quantitative imaging. By coupling SCAP to cross-linking mass spectrometry, an integrative structural model of the complex of interest can be generated. We demonstrate this approach using the Spindlin1 and SPINDOC protein complex, culminating in a structural model with two SPINDOC molecules docked on one SPIN1 molecule. In this model, SPINDOC interacts with the SPIN1 interface previously shown to bind a lysine and arginine methylated sequence of histone H3. Our approach combines serial affinity purification, live cell imaging, and cross-linking mass spectrometry to build integrative structural models of protein complexes.


Subject(s)
Chromatography, Affinity/methods , Mass Spectrometry/methods , Models, Molecular , Cell Cycle Proteins/genetics , Cell Cycle Proteins/isolation & purification , Cell Cycle Proteins/metabolism , Co-Repressor Proteins/genetics , Co-Repressor Proteins/isolation & purification , Co-Repressor Proteins/metabolism , Feasibility Studies , Fluorescent Dyes/chemistry , HEK293 Cells , Humans , Intravital Microscopy , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/isolation & purification , Microtubule-Associated Proteins/metabolism , Molecular Imaging/methods , Molecular Probes/chemistry , Phosphoproteins/genetics , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism , Protein Binding , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
18.
J Biol Chem ; 297(3): 101075, 2021 09.
Article in English | MEDLINE | ID: mdl-34391778

ABSTRACT

SETD2 is an important methyltransferase that methylates crucial substrates such as histone H3, tubulin, and STAT1 and also physically interacts with transcription and splicing regulators such as Pol II and various hnRNPs. Of note, SETD2 has a functionally uncharacterized extended N-terminal region, the removal of which leads to its stabilization. How this region regulates SETD2 half-life is unclear. Here we show that SETD2 consists of multiple long disordered regions across its length that cumulatively destabilize the protein by facilitating its proteasomal degradation. SETD2 disordered regions can reduce the half-life of the yeast homolog Set2 in mammalian cells as well as in yeast, demonstrating the importance of intrinsic structural features in regulating protein half-life. In addition to the shortened half-life, by performing fluorescence recovery after photobleaching assay we found that SETD2 forms liquid droplets in vivo, another property associated with proteins that contain disordered regions. The phase-separation behavior of SETD2 is exacerbated upon the removal of its N-terminal segment and results in activator-independent histone H3K36 methylation. Our findings reveal that disordered region-facilitated proteolysis is an important mechanism governing SETD2 function.


Subject(s)
Histone-Lysine N-Methyltransferase/physiology , Intrinsically Disordered Proteins/physiology , Fluorescence Recovery After Photobleaching/methods , HEK293 Cells , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Intrinsically Disordered Proteins/metabolism , Mass Spectrometry/methods , Methylation , Methyltransferases/metabolism , Methyltransferases/physiology , Protein Binding , Protein Processing, Post-Translational , Protein Stability , Proteolysis , Structure-Activity Relationship
19.
Mol Cell Proteomics ; 19(9): 1468-1484, 2020 09.
Article in English | MEDLINE | ID: mdl-32467258

ABSTRACT

Despite the continued analysis of HDAC inhibitors in clinical trials, the heterogeneous nature of the protein complexes they target limits our understanding of the beneficial and off-target effects associated with their application. Among the many HDAC protein complexes found within the cell, Sin3 complexes are conserved from yeast to humans and likely play important roles as regulators of transcriptional activity. The presence of two Sin3 paralogs in humans, SIN3A and SIN3B, may result in a heterogeneous population of Sin3 complexes and contributes to our poor understanding of the functional attributes of these complexes. Here, we profile the interaction networks of SIN3A and SIN3B to gain insight into complex composition and organization. In accordance with existing data, we show that Sin3 paralog identity influences complex composition. Additionally, chemical cross-linking MS identifies domains that mediate interactions between Sin3 proteins and binding partners. The characterization of rare SIN3B proteoforms provides additional evidence for the existence of conserved and divergent elements within human Sin3 proteins. Together, these findings shed light on both the shared and divergent properties of human Sin3 proteins and highlight the heterogeneous nature of the complexes they organize.


Subject(s)
Protein Interaction Maps , Repressor Proteins/metabolism , Sin3 Histone Deacetylase and Corepressor Complex/metabolism , Amino Acid Sequence , Cell Line , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatography, Liquid , Histone Deacetylase 1/metabolism , Humans , Multigene Family , Nuclear Localization Signals/genetics , Nuclear Localization Signals/metabolism , Protein Binding , Protein Domains , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteomics , Recombinant Proteins , Repressor Proteins/genetics , Sin3 Histone Deacetylase and Corepressor Complex/genetics , Tandem Mass Spectrometry
20.
Genes Dev ; 28(20): 2314-30, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25319830

ABSTRACT

The Swi/Snf chromatin remodeling complex functions to alter nucleosome positions by either sliding nucleosomes on DNA or the eviction of histones. The presence of histone acetylation and activator-dependent recruitment and retention of Swi/Snf is important for its efficient function. It is not understood, however, why such mechanisms are required to enhance Swi/Snf activity on nucleosomes. Snf2, the catalytic subunit of the Swi/Snf remodeling complex, has been shown to be a target of the Gcn5 acetyltransferase. Our study found that acetylation of Snf2 regulates both recruitment and release of Swi/Snf from stress-responsive genes. Also, the intramolecular interaction of the Snf2 bromodomain with the acetylated lysine residues on Snf2 negatively regulates binding and remodeling of acetylated nucleosomes by Swi/Snf. Interestingly, the presence of transcription activators mitigates the effects of the reduced affinity of acetylated Snf2 for acetylated nucleosomes. Supporting our in vitro results, we found that activator-bound genes regulating metabolic processes showed greater retention of the Swi/Snf complex even when Snf2 was acetylated. Our studies demonstrate that competing effects of (1) Swi/Snf retention by activators or high levels of histone acetylation and (2) Snf2 acetylation-mediated release regulate dynamics of Swi/Snf occupancy at target genes.


Subject(s)
Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Stress, Physiological/genetics , Acetylation , Adenosine Triphosphatases/metabolism , Nucleosomes/metabolism , Protein Binding , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL