Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Cell Biochem ; 409(1-2): 243-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26272337

ABSTRACT

Podocytes may be direct target for glucocorticoid therapy in glomerular proteinuric disease. Permeability of podocytes largely depends on their capacity to migrate which involves the contractile apparatus in their foot processes. In this study, we examined the effect of synthetic glucocorticoid dexamethasone (DEX) on the ability of podocytes to produce cyclic guanosine monophosphate (cGMP) in the presence of vasoactive factors, atrial natriuretic peptide (ANP), nitric oxide (NO), and angiotensin II (Ang II). We investigated also the effects of cGMP and DEX on podocyte motility. Primary rat podocytes and immortalized mouse podocytes were pretreated with 1 µM DEX for 4 or 24 h. Glomerular hypertension was mimicked by subjecting the cells to mechanical stress. Total and subcellular cGMP levels were determined in podocytes incubated with 0.1 µM ANP, 1 µM S-nitroso-N-acetyl penicillamine (SNAP), and 1 µM Ang II. Cell motility was estimated by a wound-healing assay. The ANP-dependent production of cGMP increased after 4 h exposition to DEX, but was attenuated after 24 h. Adversely, a 24-h pretreatment with DEX augmented the NO-dependent cGMP synthesis. Ang II suppressed the ANP-dependent cGMP production and the effect was enhanced by DEX in mechanical stress conditions. Mechanical stress reduced total cGMP production in the presence of all stimulators, whereas extracellular to total cGMP ratio increased. 8-Br cGMP enhanced podocyte migration which was accompanied by F-actin disassembly. In the presence of DEX these effects were prevented. We conclude that DEX modulates the production of cGMP in podocytes stimulated with vasoactive factors such as Ang II, ANP, and NO, and the effect is time-dependent. cGMP increases podocyte motility, which is prevented by DEX. This mechanism may account for the antiproteinuric effect of glucocorticoids.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Cyclic GMP/biosynthesis , Dexamethasone/pharmacology , Podocytes/metabolism , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology , Angiotensin II/pharmacology , Animals , Atrial Natriuretic Factor/pharmacology , Cell Movement/drug effects , Cells, Cultured , Flow Cytometry , Mice , Nitric Oxide/pharmacology , Rats , Rats, Wistar , Real-Time Polymerase Chain Reaction , Receptors, Atrial Natriuretic Factor/biosynthesis , S-Nitroso-N-Acetylpenicillamine/pharmacology , Stress, Physiological/physiology
2.
Bioorg Med Chem Lett ; 23(17): 4979-84, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23886683

ABSTRACT

Lead optimization of piperidine amide HTS hits, based on an anilino-thiazole core, led to the identification of analogs which displayed low nanomolar blocking activity at the canonical transient receptor channels 3 and 6 (TRPC3 & 6) based on FLIPR (carbachol stimulated) and electrophysiology (OAG stimulated) assays. In addition, the anilino-thiazole amides displayed good selectivity over other TRP channels (TRPA1, TRPV1, and TRPV4), as well as against cardiac ion channels (CaV1.2, hERG, and NaV1.5). The high oxidation potential of the aliphatic piperidine and aniline groups, as well as the lability of the thiazole amide group contributed to the high clearance observed for this class of compounds. Conversion of an isoquinoline amide to a naphthyridine amide markedly reduced clearance for the bicyclic piperidines, and improved oral bioavailability for this compound series, however TRPC3 and TRPC6 blocking activity was reduced substantially. Although the most potent anilino-thiazole amides ultimately lacked oral exposure in rodents and were not suitable for chronic dosing, analogs such as 14-19, 22, and 23 are potentially valuable in vitro tool compounds for investigating the role of TRPC3 and TRPC6 in cardiovascular disease.


Subject(s)
Aniline Compounds/chemistry , Aniline Compounds/pharmacology , TRPC Cation Channels/antagonists & inhibitors , Thiazoles/chemistry , Thiazoles/pharmacology , Diglycerides/metabolism , Drug Discovery , HEK293 Cells , Humans , TRPC Cation Channels/metabolism , TRPC6 Cation Channel
3.
SLAS Discov ; 26(2): 216-229, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33482073

ABSTRACT

While c-MYC is well established as a proto-oncogene, its structure and function as a transcription factor have made c-MYC a difficult therapeutic target. To identify small-molecule inhibitors targeting c-MYC for anticancer therapy, we designed a high-throughput screening (HTS) strategy utilizing cellular assays. The novel approach for the HTS was based on the detection of cellular c-MYC protein, with active molecules defined as those that specifically decreased c-MYC protein levels in cancer cells. The assay was based on a dual antibody detection system using Förster/fluorescence resonance energy transfer (FRET) and was utilized to detect endogenous c-MYC protein in the MYC amplified cancer cell lines DMS273 and Colo320 HSR. The assays were miniaturized to 1536-well plate format and utilized to screen the GlaxoSmithKline small-molecule collection of approximately 2 million compounds. In addition to the HTS assay, follow-up assays were developed and used to triage and qualify compounds. Two cellular assays used to eliminate false-positive compounds from the initially selected HTS hits were (1) a cellular toxicity assay and (2) an unstable protein reporter assay. Three positive selection assays were subsequently used to qualify compounds: (1) 384-well cell cycle flow cytometry, (2) 384-well cell growth, and (3) c-MYC gene signature reverse transcription quantitative PCR (RT-qPCR). The HTS and follow-up assays successfully identified three compounds that specifically decreased c-MYC protein levels in cancer cells and phenocopied c-MYC siRNA in terms of cell growth inhibition and gene signatures. The HTS, triage, and three compounds identified are described.


Subject(s)
Drug Discovery/methods , Drug Screening Assays, Antitumor/methods , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc , High-Throughput Screening Assays/methods , Small Molecule Libraries , Flow Cytometry , Fluorescence Resonance Energy Transfer/methods , Humans , Reverse Transcriptase Polymerase Chain Reaction
4.
SLAS Discov ; 23(1): 34-46, 2018 01.
Article in English | MEDLINE | ID: mdl-28957646

ABSTRACT

A persistent problem in early small-molecule drug discovery is the frequent lack of rank-order correlation between biochemical potencies derived from initial screens using purified proteins and the diminished potency and efficacy observed in subsequent disease-relevant cellular phenotypic assays. The introduction of the cellular thermal shift assay (CETSA) has bridged this gap by enabling assessment of drug target engagement directly in live cells based on ligand-induced changes in protein thermal stability. Initial success in applying CETSA across multiple drug target classes motivated our investigation into replacing the low-throughput, manually intensive Western blot readout with a quantitative, automated higher-throughput assay that would provide sufficient capacity to use CETSA as a primary hit qualification strategy. We introduce a high-throughput dose-response cellular thermal shift assay (HTDR-CETSA), a single-pot homogenous assay adapted for high-density microtiter plate format. The assay features titratable BacMam expression of full-length target proteins fused to the DiscoverX 42 amino acid ePL tag in HeLa suspension cells, facilitating enzyme fragment complementation-based chemiluminescent quantification of ligand-stabilized soluble protein. This simplified format can accommodate determination of full-dose CETSA curves for hundreds of individual compounds/analyst/day in replicates. HTDR-CETSA data generated for substrate site and alternate binding mode inhibitors of the histone-lysine N-methyltransferase SMYD3 in HeLa suspension cells demonstrate excellent correlation with rank-order potencies observed in cellular mechanistic assays and direct translation to target engagement of endogenous Smyd3 in cancer-relevant cell lines. We envision this workflow to be generically applicable to HTDR-CETSA screening spanning a wide variety of soluble intracellular protein target classes.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Cell Culture Techniques , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Activation , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Small Molecule Libraries , Workflow
5.
Sci Transl Med ; 4(159): 159ra148, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23136043

ABSTRACT

Pulmonary edema resulting from high pulmonary venous pressure (PVP) is a major cause of morbidity and mortality in heart failure (HF) patients, but current treatment options demonstrate substantial limitations. Recent evidence from rodent lungs suggests that PVP-induced edema is driven by activation of pulmonary capillary endothelial transient receptor potential vanilloid 4 (TRPV4) channels. To examine the therapeutic potential of this mechanism, we evaluated TRPV4 expression in human congestive HF lungs and developed small-molecule TRPV4 channel blockers for testing in animal models of HF. TRPV4 immunolabeling of human lung sections demonstrated expression of TRPV4 in the pulmonary vasculature that was enhanced in sections from HF patients compared to controls. GSK2193874 was identified as a selective, orally active TRPV4 blocker that inhibits Ca(2+) influx through recombinant TRPV4 channels and native endothelial TRPV4 currents. In isolated rodent and canine lungs, TRPV4 blockade prevented the increased vascular permeability and resultant pulmonary edema associated with elevated PVP. Furthermore, in both acute and chronic HF models, GSK2193874 pretreatment inhibited the formation of pulmonary edema and enhanced arterial oxygenation. Finally, GSK2193874 treatment resolved pulmonary edema already established by myocardial infarction in mice. These findings identify a crucial role for TRPV4 in the formation of HF-induced pulmonary edema and suggest that TRPV4 blockade is a potential therapeutic strategy for HF patients.


Subject(s)
Heart Failure/complications , Membrane Transport Modulators/administration & dosage , Membrane Transport Modulators/therapeutic use , Pulmonary Edema/drug therapy , Pulmonary Edema/prevention & control , TRPV Cation Channels/antagonists & inhibitors , Administration, Oral , Animals , Blood Pressure/drug effects , Calcium/metabolism , Disease Models, Animal , Diuretics/pharmacology , Endothelium/drug effects , Endothelium/metabolism , Endothelium/pathology , Heart Failure/pathology , Heart Failure/physiopathology , Heart Rate/drug effects , Humans , In Vitro Techniques , Ion Channel Gating/drug effects , Lung/drug effects , Lung/metabolism , Lung/pathology , Membrane Transport Modulators/chemistry , Membrane Transport Modulators/pharmacology , Mice , Mice, Knockout , Permeability/drug effects , Protein Transport/drug effects , Pulmonary Edema/etiology , Pulmonary Edema/pathology , Rats , TRPV Cation Channels/metabolism , Water-Electrolyte Balance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL