Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Proc Natl Acad Sci U S A ; 117(6): 2835-2845, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31974306

ABSTRACT

Recording cell-specific neuronal activity while monitoring behaviors of freely moving subjects can provide some of the most significant insights into brain function. Current means for monitoring calcium dynamics in genetically targeted populations of neurons rely on delivery of light and recording of fluorescent signals through optical fibers that can reduce subject mobility, induce motion artifacts, and limit experimental paradigms to isolated subjects in open, two-dimensional (2D) spaces. Wireless alternatives eliminate constraints associated with optical fibers, but their use of head stages with batteries adds bulk and weight that can affect behaviors, with limited operational lifetimes. The systems introduced here avoid drawbacks of both types of technologies, by combining highly miniaturized electronics and energy harvesters with injectable photometric modules in a class of fully wireless, battery-free photometer that is fully implantable subdermally to allow for the interrogation of neural dynamics in freely behaving subjects, without limitations set by fiber optic tethers or operational lifetimes constrained by traditional power supplies. The unique capabilities of these systems, their compatibility with magnetic resonant imaging and computed tomography and the ability to manufacture them with techniques in widespread use for consumer electronics, suggest a potential for broad adoption in neuroscience research.


Subject(s)
Brain/physiology , Photometry/methods , Animals , Brain/diagnostic imaging , Brain/surgery , Equipment Design , Magnetic Resonance Imaging , Mice , Mice, Inbred C57BL , Photometry/instrumentation , Prostheses and Implants , Wireless Technology/instrumentation
2.
Nat Mater ; 20(11): 1559-1570, 2021 11.
Article in English | MEDLINE | ID: mdl-34326506

ABSTRACT

Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices. These materials strongly bond both to the surfaces of the devices and to those of different internal organs, with stable adhesion for several days to months, in chemistries that can be tailored to bioresorb at controlled rates. Experimental demonstrations in live animal models include device applications that range from battery-free optoelectronic systems for deep-brain optogenetics and subdermal phototherapy to wireless millimetre-scale pacemakers and flexible multielectrode epicardial arrays. These advances have immediate applicability across nearly all types of bioelectronic/optoelectronic system currently used in animal model studies, and they also have the potential for future treatment of life-threatening diseases and disorders in humans.


Subject(s)
Absorbable Implants , Adhesives , Animals , Electric Conductivity , Electronics
3.
Circulation ; 136(16): 1477-1491, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-28778945

ABSTRACT

BACKGROUND: Cardiomyopathy and arrhythmias are under significant genetic influence. Here, we studied a family with dilated cardiomyopathy and associated conduction system disease in whom prior clinical cardiac gene panel testing was unrevealing. METHODS: Whole-genome sequencing and induced pluripotent stem cells were used to examine a family with dilated cardiomyopathy and atrial and ventricular arrhythmias. We also characterized a mouse model with heterozygous and homozygous deletion of Mybphl. RESULTS: Whole-genome sequencing identified a premature stop codon, R255X, in the MYBPHL gene encoding MyBP-HL (myosin-binding protein-H like), a novel member of the myosin-binding protein family. MYBPHL was found to have high atrial expression with low ventricular expression. We determined that MyBP-HL protein was myofilament associated in the atria, and truncated MyBP-HL protein failed to incorporate into the myofilament. Human cell modeling demonstrated reduced expression from the mutant MYBPHL allele. Echocardiography of Mybphl heterozygous and null mouse hearts exhibited a 36% reduction in fractional shortening and an increased diastolic ventricular chamber size. Atria weight normalized to total heart weight was significantly increased in Mybphl heterozygous and null mice. Using a reporter system, we detected robust expression of Mybphl in the atria, and in discrete puncta throughout the right ventricular wall and septum, as well. Telemetric electrocardiogram recordings in Mybphl mice revealed cardiac conduction system abnormalities with aberrant atrioventricular conduction and an increased rate of arrhythmia in heterozygous and null mice. CONCLUSIONS: The findings of reduced ventricular function and conduction system defects in Mybphl mice support that MYBPHL truncations may increase risk for human arrhythmias and cardiomyopathy.


Subject(s)
Arrhythmias, Cardiac/metabolism , Cardiomyopathy, Dilated/metabolism , Cytoskeletal Proteins/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Animals , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/physiopathology , Atrial Function , Cardiomyopathy, Dilated/diagnostic imaging , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cells, Cultured , Cytoskeletal Proteins/genetics , Disease Models, Animal , Echocardiography , Electrocardiography , Genetic Predisposition to Disease , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Heart Rate , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Heterozygote , Homozygote , Humans , Mice, Inbred C57BL , Mice, Knockout , Myocardial Contraction , Phenotype , Ventricular Function
4.
Nano Lett ; 16(12): 7551-7564, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960515

ABSTRACT

The ability to track labeled cancer cells in vivo would allow researchers to study their distribution, growth, and metastatic potential within the intact organism. Magnetic resonance (MR) imaging is invaluable for tracking cancer cells in vivo as it benefits from high spatial resolution and the absence of ionizing radiation. However, many MR contrast agents (CAs) required to label cells either do not significantly accumulate in cells or are not biologically compatible for translational studies. We have developed carbon-based nanodiamond-gadolinium(III) aggregates (NDG) for MR imaging that demonstrated remarkable properties for cell tracking in vivo. First, NDG had high relaxivity independent of field strength, a finding unprecedented for gadolinium(III) [Gd(III)]-nanoparticle conjugates. Second, NDG demonstrated a 300-fold increase in the cellular delivery of Gd(III) compared to that of clinical Gd(III) chelates without sacrificing biocompatibility. Further, we were able to monitor the tumor growth of NDG-labeled flank tumors by T1- and T2-weighted MR imaging for 26 days in vivo, longer than was reported for other MR CAs or nuclear agents. Finally, by utilizing quantitative maps of relaxation times, we were able to describe tumor morphology and heterogeneity (corroborated by histological analysis), which would not be possible with competing molecular imaging modalities.


Subject(s)
Gadolinium , Molecular Imaging , Nanodiamonds , Neoplasms, Experimental/diagnostic imaging , Animals , Contrast Media , Female , Magnetic Resonance Imaging , Mice , Mice, SCID
5.
J Am Chem Soc ; 137(28): 9108-16, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26083313

ABSTRACT

Multiple imaging modalities are often required for in vivo imaging applications that require both high probe sensitivity and excellent spatial and temporal resolution. In particular, MR and optical imaging are an attractive combination that can be used to determine both molecular and anatomical information. Herein, we describe the synthesis and in vivo testing of two multimeric NIR-MR contrast agents that contain three Gd(III) chelates and an IR-783 dye moiety. One agent contains a PEG linker and the other a short alkyl linker. These agents label cells with extraordinary efficacy and can be detected in vivo using both imaging modalities. Biodistribution of the PEGylated agent shows observable fluorescence in xenograft MCF7 tumors and renal clearance by MR imaging.


Subject(s)
Chelating Agents/chemistry , Coloring Agents/chemistry , Contrast Media/chemistry , Gadolinium/chemistry , Magnetic Resonance Imaging , Multimodal Imaging , Optical Imaging , Animals , Chelating Agents/chemical synthesis , Chelating Agents/pharmacokinetics , Coloring Agents/chemical synthesis , Coloring Agents/pharmacokinetics , Contrast Media/chemical synthesis , Contrast Media/pharmacokinetics , Female , Gadolinium/pharmacokinetics , Humans , Infrared Rays , MCF-7 Cells , Mice, Nude , Neoplasms/diagnosis , Tissue Distribution
6.
Arthritis Rheum ; 65(9): 2279-89, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23740612

ABSTRACT

OBJECTIVE: The ability to noninvasively monitor the development of inflammatory arthritis longitudinally has become increasingly important in experimental rheumatology. Magnetic resonance imaging (MRI) allows for detailed examination of anatomic structures, as well as the assessment of joint and soft tissue inflammation. The aim of this study was to extend the use of MRI to include quantitative measurements of bone destruction in murine ankle joints. METHODS: Joint disease was measured serially using clinical, histologic, in vivo imaging system (IVIS), micro-computed tomography (micro-CT), and MRI techniques in mouse ankle joints, using the K/BxN serum transfer-induced acute arthritis and K/BxA(g7) chronic arthritis models. Ankle joint MRI was performed using a gradient-echo pulse sequence to evaluate bone destruction and a spin-echo sequence to evaluate inflammation (long T2 signal). RESULTS: Arthritic mice, as compared to control mice, demonstrated increased disease severity according to clinical, histologic, IVIS, and MRI measures. Following induction of arthritis, the majority of volume expansion of the long T2 signal occurred in a juxtaarticular, rather than intrarticular, manner within the ankle joints. Bone destruction in K/BxA(g7) mouse ankle joints was readily detectible by MRI. Linear regression analyses demonstrated significant correlations between the clinical score and joint radiance intensity assessed by IVIS, between the ankle joint width and increased long T2 signal on MRI, and between the bone volume obtained by micro-CT and bone volume obtained by MRI. CONCLUSION: MRI is an optimal technology for anatomic localization of articular and soft tissue changes during the development and progression of inflammatory arthritis. Future studies may combine MRI with in vivo labeling agents to investigate joint disease in a cell type-specific manner.


Subject(s)
Ankle Joint/pathology , Arthritis, Experimental/pathology , Bone Resorption/pathology , Inflammation/pathology , Animals , Ankle Joint/diagnostic imaging , Arthritis, Experimental/diagnostic imaging , Bone Resorption/diagnostic imaging , Disease Progression , Inflammation/diagnostic imaging , Magnetic Resonance Imaging , Mice , Radiography
7.
Ann Rheum Dis ; 72(1): 89-95, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22736097

ABSTRACT

OBJECTIVES: Patients with rheumatoid arthritis (RA) have a reduced life expectancy due to increased cardiovascular disease. The lack of a suitable animal model resembling both RA and atherosclerosis has hindered studies demonstrating a direct link between systemic inflammation in RA and the development of atherosclerosis. Our objective was to overcome this barrier by generating an animal model (K/BxA(g7)) that spontaneously develops both RA-like disease and atherosclerosis. METHODS: Arthritis severity was evaluated using clinical indices and immunohistochemical staining of ankle joint specimens. Aortic atherosclerosis was delineated via Sudan IV staining and immunohistochemical analysis. Serum cholesterol and lipoprotein levels were measured using enzymatic assays. Serum levels of cytokines, chemokines and adipokines were determined by Luminex assays. RESULTS: K/BxA(g7) mice developed a destructive arthropathy followed by prominent aortic atherosclerosis. These animals also displayed dyslipidaemia, characterised by reduced serum levels of total cholesterol and high-density lipoprotein, and increased low-density lipoprotein (LDL)/vLDL compared with control mice. Further, there were higher levels of circulating inflammatory mediators, such as interleukin-6, sRANKL and CCL5 in atherosclerotic K/BxA(g7) mice compared with controls. Treatment with etanercept reduced arthritis and atherosclerosis development in K/BxA(g7) mice. CONCLUSIONS: K/BxA(g7) mice recapitulate the same sequence of events occurring in patients with RA, namely an erosive, inflammatory arthritis followed by atherosclerosis. These data suggest that the K/BxA(g7) mouse is a novel system for investigating the interplay between systemic inflammation occurring in RA and the development of atherosclerosis.


Subject(s)
Arthritis, Rheumatoid/complications , Atherosclerosis/complications , Disease Models, Animal , Animals , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/pathology , Atherosclerosis/genetics , Atherosclerosis/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic
8.
bioRxiv ; 2023 May 24.
Article in English | MEDLINE | ID: mdl-37293050

ABSTRACT

The pathology in Duchenne muscular dystrophy (DMD) is characterized by degenerating muscle fibers, inflammation, fibro-fatty infiltrate, and edema, and these pathological processes replace normal healthy muscle tissue. The mdx mouse model is one of the most commonly used preclinical models to study DMD. Mounting evidence has emerged illustrating that muscle disease progression varies considerably in mdx mice, with inter-animal differences as well as intra-muscular differences in pathology in individual mdx mice. This variation is important to consider when conducting assessments of drug efficacy and in longitudinal studies. Magnetic resonance imaging (MRI) is a non-invasive method that can be used qualitatively or quantitatively to measure muscle disease progression in the clinic and in preclinical models. Although MR imaging is highly sensitive, image acquisition and analysis can be time intensive. The purpose of this study was to develop a semi-automated muscle segmentation and quantitation pipeline that can quickly and accurately estimate muscle disease severity in mice. Herein, we show that the newly developed segmentation tool accurately divides muscle. We show that measures of skew and interdecile range based on segmentation sufficiently estimate muscle disease severity in healthy wildtype and diseased mdx mice. Moreover, the semi-automated pipeline reduced analysis time by nearly 10-fold. Use of this rapid, non-invasive, semi-automated MR imaging and analysis pipeline has the potential to transform preclinical studies, allowing for pre-screening of dystrophic mice prior to study enrollment to ensure more uniform muscle disease pathology across treatment groups, improving study outcomes.

9.
Nat Commun ; 13(1): 5571, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36137999

ABSTRACT

In vivo optogenetics and photopharmacology are two techniques for controlling neuronal activity that have immense potential in neuroscience research. Their applications in tether-free groups of animals have been limited in part due to tools availability. Here, we present a wireless, battery-free, programable multilateral optofluidic platform with user-selected modalities for optogenetics, pharmacology and photopharmacology. This system features mechanically compliant microfluidic and electronic interconnects, capabilities for dynamic control over the rates of drug delivery and real-time programmability, simultaneously for up to 256 separate devices in a single cage environment. Our behavioral experiments demonstrate control of motor behaviors in grouped mice through in vivo optogenetics with co-located gene delivery and controlled photolysis of caged glutamate. These optofluidic systems may expand the scope of wireless techniques to study neural processing in animal models.


Subject(s)
Neurosciences , Optogenetics , Animals , Brain/physiology , Glutamates , Mice , Optogenetics/methods , Wireless Technology
10.
Nat Commun ; 13(1): 3009, 2022 05 30.
Article in English | MEDLINE | ID: mdl-35637230

ABSTRACT

Continuous, real-time monitoring of perfusion after microsurgical free tissue transfer or solid organ allotransplantation procedures can facilitate early diagnosis of and intervention for anastomotic thrombosis. Current technologies including Doppler systems, cutaneous O2-sensing probes, and fluorine magnetic resonance imaging methods are limited by their intermittent measurements, requirements for skilled personnel, indirect interfaces, and/or their tethered connections. This paper reports a wireless, miniaturized, minimally invasive near-infrared spectroscopic system designed for uninterrupted monitoring of local-tissue oxygenation. A bioresorbable barbed structure anchors the probe stably at implantation sites for a time period matched to the clinical need, with the ability for facile removal afterward. The probe connects to a skin-interfaced electronic module for wireless access to essential physiological parameters, including local tissue oxygenation, pulse oxygenation, and heart rate. In vitro tests and in vivo studies in porcine flap and kidney models demonstrate the ability of the system to continuously measure oxygenation with high accuracy and sensitivity.


Subject(s)
Oxygen Saturation , Transplants , Animals , Prostheses and Implants , Skin/diagnostic imaging , Spectroscopy, Near-Infrared/methods , Swine
11.
Magn Reson Med ; 65(1): 220-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20740653

ABSTRACT

Despite recent advances in tissue engineering to regenerate biological function by combining cells with material supports, development is hindered by inadequate techniques for characterizing biomaterials in vivo. Magnetic resonance imaging is a tomographic technique with high temporal and spatial resolution and represents an excellent imaging modality for longitudinal noninvasive assessment of biomaterials in vivo. To distinguish biomaterials from surrounding tissues for magnetic resonance imaging, protein polymer contrast agents were developed and incorporated into hydrogels. In vitro and in vivo images of protein polymer hydrogels, with and without covalently incorporated protein polymer contrast agents, were acquired by magnetic resonance imaging. T(1) values of the labeled gels were consistently lower when protein polymer contrast agents were included. As a result, the protein polymer contrast agent hydrogels facilitated fate tracking, quantification of degradation, and detection of immune response in vivo. For the duration of the in vivo study, the protein polymer contrast agent-containing hydrogels could be distinguished from adjacent tissues and from the foreign body response surrounding the gels. The hydrogels containing protein polymer contrast agent have a contrast-to-noise ratio 2-fold greater than hydrogels without protein polymer contrast agent. In the absence of the protein polymer contrast agent, hydrogels cannot be distinguished by the end of the gel lifetime.


Subject(s)
Biocompatible Materials/analysis , Biocompatible Materials/chemistry , Contrast Media/chemical synthesis , Magnetic Resonance Imaging/methods , Polymers/chemistry , Proteins/chemistry , Drug Stability , Drug Storage , Materials Testing , Time Factors
12.
Nano Lett ; 10(2): 484-9, 2010 Feb 10.
Article in English | MEDLINE | ID: mdl-20038088

ABSTRACT

A Gd(III)-nanodiamond conjugate [Gd(III)-ND] was prepared and characterized, enabling detection of nanodiamonds by MR imaging. The Gd(III)-ND particles significantly reduced the T(1) of water protons with a per-Gd(III) relaxivity of 58.82 +/- 1.18 mM(-1) s(-1) at 1.5 T (60 MHz). This represents a 10-fold increase compared to the monomer Gd(III) complex (r(1) = 5.42 +/- 0.20 mM(-1) s(-1)) and is among the highest per-Gd(III) relaxivities reported.


Subject(s)
Contrast Media/pharmacology , Gadolinium/chemistry , Magnetic Resonance Imaging/methods , Nanomedicine/methods , Nanostructures/chemistry , Nanotechnology/methods , Animals , Calorimetry/methods , Diamond , HeLa Cells , Humans , Mice , Microscopy, Electron, Transmission/methods , Molecular Conformation , NIH 3T3 Cells
13.
Front Neurosci ; 15: 768646, 2021.
Article in English | MEDLINE | ID: mdl-35046767

ABSTRACT

Improvements have been made in the diagnosis of Alzheimer's disease (AD), manifesting mostly in the development of in vivo imaging methods that allow for the detection of pathological changes in AD by magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Many of these imaging methods, however, use agents that probe amyloid fibrils and plaques-species that do not correlate well with disease progression and are not present at the earliest stages of the disease. Amyloid ß oligomers (AßOs), rather, are now widely accepted as the Aß species most germane to AD onset and progression. Here we report evidence further supporting the role of AßOs as pathological instigators of AD and introduce promising anti-AßO diagnostic probes capable of distinguishing the 5xFAD mouse model from wild type mice by PET and MRI. In a developmental study, Aß oligomers in 5xFAD mice were found to appear at 3 months of age, just prior to the onset of memory dysfunction, and spread as memory worsened. The increase of AßOs is prominent in the subiculum and correlates with concomitant development of reactive astrocytosis. The impact of these AßOs on memory is in harmony with findings that intraventricular injection of synthetic AßOs into wild type mice induced hippocampal dependent memory dysfunction within 24 h. Compelling support for the conclusion that endogenous AßOs cause memory loss was found in experiments showing that intranasal inoculation of AßO-selective antibodies into 5xFAD mice completely restored memory function, measured 30-40 days post-inoculation. These antibodies, which were modified to give MRI and PET imaging probes, were able to distinguish 5xFAD mice from wild type littermates. These results provide strong support for the role of AßOs in instigating memory loss and salient AD neuropathology, and they demonstrate that AßO selective antibodies have potential both for therapeutics and for diagnostics.

14.
Bioconjug Chem ; 21(12): 2267-75, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-21062033

ABSTRACT

Magnetic resonance imaging (MRI) has long been used clinically and experimentally as a diagnostic tool to obtain three-dimensional, high-resolution images of deep tissues. These images are enhanced by the administration of contrast agents such as paramagnetic Gd(III) complexes. Herein, we describe the preparation of a series of multimodal imaging agents in which paramagnetic Gd(III) complexes are conjugated to a fluorescent tetrapyrrole, namely, a porphyrazine (pz). Zinc metalated pzs conjugated to one, four, or eight paramagnetic Gd(III) complexes are reported. Among these conjugates, Zn-Pz-8Gd(III) exhibits an ionic relaxivity four times that of the monomeric Gd(III) agent, presumably because of increased molecular weight and a molecular relaxivity that is approximately thirty times larger, while retaining the intense electronic absorption and emission of the unmodified pz. Unlike current clinical MR agents, Zn-Pz-1Gd(III) is taken up by cells. This probe demonstrates intracellular fluorescence by confocal microscopy and provides significant contrast enhancement in MR images, as well as marked phototoxicity in assays of cellular viability. These results suggest that pz agents possess a new potential for use in cancer imaging by both MRI and near-infrared (NIR) fluorescence, while acting as a platform for photodynamic therapy.


Subject(s)
Coordination Complexes/chemical synthesis , Gadolinium/metabolism , Magnetic Resonance Imaging/methods , Tetrapyrroles/chemical synthesis , Adenocarcinoma/diagnosis , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/radiotherapy , Biological Transport/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Contrast Media , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Fibroblasts/drug effects , Fluorescence , Gadolinium/chemistry , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Mass Spectrometry , Microscopy, Confocal , Molecular Diagnostic Techniques , Molecular Weight , Photochemotherapy/methods , Radiography , Tetrapyrroles/metabolism , Tetrapyrroles/pharmacology
15.
Biomacromolecules ; 11(6): 1429-36, 2010 Jun 14.
Article in English | MEDLINE | ID: mdl-20420441

ABSTRACT

Magnetic resonance imaging is a noninvasive imaging modality with high spatial and temporal resolution. Contrast agents (CAs) are frequently used to increase the contrast between tissues of interest. To increase the effectiveness of MR agents, small molecule CAs have been attached to macromolecules. We have created a family of biodegradable, macromolecular CAs based on protein polymers, allowing control over the CA properties. The protein polymers are monodisperse, random coil, and contain evenly spaced lysines that serve as reactive sites for Gd(III) chelates. The exact sequence and length of the protein can be specified, enabling controlled variation in lysine spacing and molecular weight. Relaxivity could be modulated by changing protein polymer length and lysine spacing. Relaxivities of up to approximately 14 mM(-1) s(-1) per Gd(III) and approximately 461 mM(-1) s(-1) per conjugate were observed. These CAs are biodegradable by incubation with plasmin, such that they can be easily excreted after use. They do not reduce cell viability, a prerequisite for future in vivo studies. The protein polymer CAs can be customized for different clinical diagnostic applications, including biomaterial tracking, as a balanced agent with high relaxivity and appropriate molar mass.


Subject(s)
Biocompatible Materials/chemistry , Contrast Media/chemistry , Magnetic Resonance Imaging , Recombinant Proteins/chemistry , Amino Acid Sequence , Binding Sites , Biocompatible Materials/toxicity , Cell Line , Cell Survival/drug effects , Chelating Agents/chemistry , Contrast Media/toxicity , Electrophoresis, Polyacrylamide Gel , Fibrinolysin/chemistry , Gadolinium/chemistry , Models, Molecular , Molecular Sequence Data , Molecular Weight , Recombinant Proteins/genetics , Recombinant Proteins/toxicity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Adv Healthc Mater ; 9(16): e2000942, 2020 08.
Article in English | MEDLINE | ID: mdl-32597568

ABSTRACT

Measurements of regional internal body temperatures can yield important information in the diagnosis of immune response-related anomalies, for precisely managing the effects of hyperthermia and hypothermia therapies and monitoring other transient body processes such as those associated with wound healing. Current approaches rely on permanent implants that require extraction surgeries after the measurements are no longer needed. Emerging classes of bioresorbable sensors eliminate the requirements for extraction, but their use of percutaneous wires for data acquisition leads to risks for infection at the suture site. As an alternative, a battery-free, wireless implantable device is reported here, which is constructed entirely with bioresorbable materials for monitoring regional internal body temperatures over clinically relevant timeframes. Ultimately, these devices disappear completely in the body through natural processes. In vivo demonstrations indicate stable operation as subcutaneous and intracranial implants in rat models for up to 4 days. Potential applications include monitoring of healing cascades associated with surgical wounds, recovery processes following internal injuries, and the progression of thermal therapies for various conditions.


Subject(s)
Absorbable Implants , Body Temperature , Animals , Rats , Temperature , Wireless Technology , Wound Healing
17.
Clin Cancer Res ; 25(4): 1331-1342, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30420445

ABSTRACT

PURPOSE: Response to toxicity in chemotherapies varies considerably from tissue to tissue and from patient to patient. An ability to monitor the tissue damage done by chemotherapy may have a profound impact on treatment and prognosis allowing for a proactive management in understanding and mitigating such events. For the first time, we investigated the feasibility of using whole-body imaging to map chemotherapeutic drug-induced toxicity on an individual basis. EXPERIMENTAL DESIGN: In a preclinical proof-of-concept, rats were treated with a single clinical dose of cyclophosphamide, methotrexate, or cisplatin. In vivo whole-body imaging data were acquired using 99mTc-duramycin, which identifies dead and dying cells as an unambiguous marker for tissue injury in susceptible organs. Imaging results were cross-validated using quantitative ex vivo measurements and histopathology and compared with standard blood and serum panels for toxicology. RESULTS: The in vivo whole-body imaging data detected widespread changes, where spatially heterogeneous toxic effects were identified across different tissues, within substructures of organs, as well as among different individuals. The signal changes were consistent with established toxicity profiles of these chemotherapeutic drugs. Apart from generating a map of susceptible tissues, this in vivo imaging approach was more sensitive compared with conventional blood and serum markers used in toxicology. Also, repeated imaging during the acute period after drug treatment captured different kinetics of tissue injury among susceptible organs in males and females. CONCLUSIONS: This novel and highly translational imaging approach shows promise in optimizing therapeutic decisions by detecting and managing drug toxicity on a personalized basis.Toxicity to normal tissues is a significant limitation in chemotherapies. This work demonstrated an in vivo imaging-based approach for characterizing toxicity-induced tissue injury in a systemic, dynamic, and near-real time fashion. This novel approach shows promise in optimizing therapeutic decisions by monitoring drug toxicity on a personalized basis.


Subject(s)
Apoptosis/drug effects , Bacteriocins/pharmacology , Drug-Related Side Effects and Adverse Reactions/diagnostic imaging , Organotechnetium Compounds/pharmacology , Whole Body Imaging , Animals , Cell Death/drug effects , Cisplatin/pharmacology , Cyclophosphamide/pharmacology , Drug-Related Side Effects and Adverse Reactions/pathology , Humans , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Rats
18.
Nat Commun ; 10(1): 5742, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31848334

ABSTRACT

Small animals support a wide range of pathological phenotypes and genotypes as versatile, affordable models for pathogenesis of cardiovascular diseases and for exploration of strategies in electrotherapy, gene therapy, and optogenetics. Pacing tools in such contexts are currently limited to tethered embodiments that constrain animal behaviors and experimental designs. Here, we introduce a highly miniaturized wireless energy-harvesting and digital communication electronics for thin, miniaturized pacing platforms weighing 110 mg with capabilities for subdermal implantation and tolerance to over 200,000 multiaxial cycles of strain without degradation in electrical or optical performance. Multimodal and multisite pacing in ex vivo and in vivo studies over many days demonstrate chronic stability and excellent biocompatibility. Optogenetic stimulation of cardiac cycles with in-animal control and induction of heart failure through chronic pacing serve as examples of modes of operation relevant to fundamental and applied cardiovascular research and biomedical technology.


Subject(s)
Biomedical Engineering/methods , Cardiac Resynchronization Therapy Devices , Heart Failure/etiology , Miniaturization , Optogenetics/methods , Animals , Disease Models, Animal , Electric Power Supplies , Female , Humans , Isolated Heart Preparation , Male , Mice , Mice, Transgenic , Wireless Technology
19.
Magn Reson Med ; 60(5): 1232-6, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18956417

ABSTRACT

Real-time detection of targeted contrast agent binding is challenging due to background signal from unbound agent. (19)F diffusion weighted MR spectroscopy (DWS) could selectively detect binding of angiogenesis-targeted perfluorocarbon nanoparticles in vivo. Transgenic K14-HPV16 mice with epidermal squamous carcinomas exhibiting up-regulated neovasculature were used, with nontransgenic littermates as controls. Mice were treated with alpha(v)beta(3)-integrin targeted perfluorocarbon nanoparticles. (19)F DWS (b-values from 0 to 16,000 s/mm(2)) was performed on mouse ears in vivo at 11.74 Tesla. Progressive decay of (19)F signal with increased diffusion weighting at low b-values (< 1500 s/mm(2)) was observed in ears of both K14-HPV16 and control mice, demonstrating suppression of background (19)F signal from unbound nanoparticles in the blood. Much of the (19)F signal from ears of K14-HPV16 mice persisted at high b-values, indicating a stationary signal source, reflecting abundant nanoparticle binding to angiogenesis. (19)F signal in controls decayed completely at high b-values (> 1500 s/mm(2)), reflecting a moving signal source due to absence of angiogenesis (no binding sites). Estimated ADCs of nanoparticles in K14-HPV16 and control mice were 33.1 +/- 12.9 microm(2)/s and 19563 +/- 5858 microm(2)/s (p < 0.01). In vivo (19)F DWS can be used for specific detection of bound perfluorocarbon nanoparticles by selectively suppressing background (19)F signal from nanoparticles flowing in blood.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Fluorine Radioisotopes/chemistry , Gadolinium/chemistry , Magnetic Resonance Spectroscopy/methods , Molecular Probe Techniques , Nanoparticles/chemistry , Contrast Media/chemistry , Fluorocarbons/chemistry , Image Enhancement/methods
20.
J Cardiovasc Magn Reson ; 10: 43, 2008 Sep 25.
Article in English | MEDLINE | ID: mdl-18817557

ABSTRACT

BACKGROUND: Angiogenesis is a critical early feature of atherosclerotic plaque development and may also feature prominently in the pathogenesis of aortic valve stenosis. It has been shown that MRI can detect and quantify specific molecules of interest expressed in cardiovascular disease and cancer by measuring the unique fluorine signature of appropriately targeted perfluorocarbon (PFC) nanoparticles. In this study, we demonstrated specific binding of alphanubeta3 integrin targeted nanoparticles to neovasculature in a rabbit model of aortic valve disease. We also showed that fluorine MRI could be used to detect and quantify the development of neovasculature in the excised aortic valve leaflets. METHODS: New Zealand White rabbits consumed a cholesterol diet for ~180 days and developed aortic valve thickening, inflammation, and angiogenesis mimicking early human aortic valve disease. Rabbits (n = 7) were treated with alphanubeta3 integrin targeted PFC nanoparticles or control untargeted PFC nanoparticles (n = 6). Competitive inhibition in vivo of nanoparticle binding (n = 4) was tested by pretreatment with targeted nonfluorinated nanoparticles followed 2 hours later by targeted PFC nanoparticles. 2 hours after treatment, aortic valves were excised and 19F MRS was performed at 11.7T. Integrated 19F spectral peaks were compared using a one-way ANOVA and Hsu's MCB (multiple comparisons with the best) post hoc t test. In 3 additional rabbits treated with alphanubeta3 integrin targeted PFC nanoparticles, 19F spectroscopy was performed on a 3.0T clinical scanner. The presence of angiogenesis was confirmed by immunohistochemistry. RESULTS: Valves of rabbits treated with targeted PFC nanoparticles had 220% more fluorine signal than valves of rabbits treated with untargeted PFC nanoparticles (p < 0.001). Pretreatment of rabbits with targeted oil-based nonsignaling nanoparticles reduced the fluorine signal by 42% due to competitive inhibition, to a level not significantly different from control animals. Nanoparticles were successfully detected in all samples scanned at 3.0T. PECAM endothelial staining and alphanubeta3 integrin staining revealed the presence of neovasculature within the valve leaflets. CONCLUSION: Integrin-targeted PFC nanoparticles specifically detect early angiogenesis in sclerotic aortic valves of cholesterol fed rabbits. These techniques may be useful for assessing atherosclerotic components of preclinical aortic valve disease in patients and could assist in defining efficacy of medical therapies.


Subject(s)
Aortic Valve Stenosis/pathology , Aortic Valve/pathology , Fluorocarbons/metabolism , Integrin alphaVbeta3/metabolism , Magnetic Resonance Imaging , Nanoparticles , Neovascularization, Pathologic/pathology , Animals , Aortic Valve/metabolism , Aortic Valve Stenosis/metabolism , Binding Sites , Binding, Competitive , Disease Models, Animal , Fluorine , Immunohistochemistry , Neovascularization, Pathologic/metabolism , Rabbits , Sclerosis , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL