Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Immunol ; 213(5): 651-662, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39007649

ABSTRACT

The expressed Ab repertoire is a critical determinant of immune-related phenotypes. Ab-encoding transcripts are distinct from other expressed genes because they are transcribed from somatically rearranged gene segments. Human Abs are composed of two identical H and L chain polypeptides derived from genes in IGH locus and one of two L chain loci. The combinatorial diversity that results from Ab gene rearrangement and the pairing of different H and L chains contributes to the immense diversity of the baseline Ab repertoire. During rearrangement, Ab gene selection is mediated by factors that influence chromatin architecture, promoter/enhancer activity, and V(D)J recombination. Interindividual variation in the composition of the Ab repertoire associates with germline variation in IGH, implicating polymorphism in Ab gene regulation. Determining how IGH variants directly mediate gene regulation will require integration of these variants with other functional genomic datasets. In this study, we argue that standard approaches using short reads have limited utility for characterizing regulatory regions in IGH at haplotype resolution. Using simulated and chromatin immunoprecipitation sequencing reads, we define features of IGH that limit use of short reads and a single reference genome, namely 1) the highly duplicated nature of the DNA sequence in IGH and 2) structural polymorphisms that are frequent in the population. We demonstrate that personalized diploid references enhance performance of short-read data for characterizing mappable portions of the locus, while also showing that long-read profiling tools will ultimately be needed to fully resolve functional impacts of IGH germline variation on expressed Ab repertoires.


Subject(s)
Gene Expression Regulation , Humans , Immunoglobulin Heavy Chains/genetics , Haplotypes , V(D)J Recombination/genetics , Genes, Immunoglobulin
2.
Bioinformatics ; 40(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38478393

ABSTRACT

SUMMARY: Knowledge of immunoglobulin and T cell receptor encoding genes is derived from high-quality genomic sequencing. High-throughput sequencing is delivering large volumes of data, and precise, high-throughput approaches to annotation are needed. Digger is an automated tool that identifies coding and regulatory regions of these genes, with results comparable to those obtained by current expert curational methods. AVAILABILITY AND IMPLEMENTATION: Digger is published under open source license at https://github.com/williamdlees/Digger and is available as a Python package and a Docker container.


Subject(s)
Receptors, Antigen, T-Cell , Software , Receptors, Antigen, T-Cell/genetics , Chromosome Mapping , Immunoglobulins/genetics , High-Throughput Nucleotide Sequencing/methods
3.
Genes Immun ; 25(4): 297-306, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844673

ABSTRACT

Immunoglobulins (IGs), critical components of the human immune system, are composed of heavy and light protein chains encoded at three genomic loci. The IG Kappa (IGK) chain locus consists of two large, inverted segmental duplications. The complexity of the IG loci has hindered use of standard high-throughput methods for characterizing genetic variation within these regions. To overcome these limitations, we use long-read sequencing to create haplotype-resolved IGK assemblies in an ancestrally diverse cohort (n = 36), representing the first comprehensive description of IGK haplotype variation. We identify extensive locus polymorphism, including novel single nucleotide variants (SNVs) and novel structural variants harboring functional IGKV genes. Among 47 functional IGKV genes, we identify 145 alleles, 67 of which were not previously curated. We report inter-population differences in allele frequencies for 10 IGKV genes, including alleles unique to specific populations within this dataset. We identify haplotypes carrying signatures of gene conversion that associate with SNV enrichment in the IGK distal region, and a haplotype with an inversion spanning the proximal and distal regions. These data provide a critical resource of curated genomic reference information from diverse ancestries, laying a foundation for advancing our understanding of population-level genetic variation in the IGK locus.


Subject(s)
Haplotypes , Immunoglobulin kappa-Chains , Polymorphism, Single Nucleotide , Humans , Immunoglobulin kappa-Chains/genetics , Gene Frequency , Alleles
5.
Science ; 384(6697): eadj8321, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38753769

ABSTRACT

Germline-targeting immunogens hold promise for initiating the induction of broadly neutralizing antibodies (bnAbs) to HIV and other pathogens. However, antibody-antigen recognition is typically dominated by heavy chain complementarity determining region 3 (HCDR3) interactions, and vaccine priming of HCDR3-dominant bnAbs by germline-targeting immunogens has not been demonstrated in humans or outbred animals. In this work, immunization with N332-GT5, an HIV envelope trimer designed to target precursors of the HCDR3-dominant bnAb BG18, primed bnAb-precursor B cells in eight of eight rhesus macaques to substantial frequencies and with diverse lineages in germinal center and memory B cells. We confirmed bnAb-mimicking, HCDR3-dominant, trimer-binding interactions with cryo-electron microscopy. Our results demonstrate proof of principle for HCDR3-dominant bnAb-precursor priming in outbred animals and suggest that N332-GT5 holds promise for the induction of similar responses in humans.


Subject(s)
AIDS Vaccines , Broadly Neutralizing Antibodies , Complementarity Determining Regions , Germinal Center , HIV Antibodies , Animals , Humans , AIDS Vaccines/immunology , B-Lymphocytes/immunology , Broadly Neutralizing Antibodies/immunology , Complementarity Determining Regions/immunology , Cryoelectron Microscopy , env Gene Products, Human Immunodeficiency Virus/immunology , Germinal Center/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Heavy Chains/genetics , Macaca mulatta , Memory B Cells/immunology
6.
Front Immunol ; 14: 1330153, 2023.
Article in English | MEDLINE | ID: mdl-38406579

ABSTRACT

Introduction: Analysis of an individual's immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene reference sets. When sets only contain alleles supported by strong evidence, AIRR sequencing (AIRR-seq) data analysis is more accurate and studies of the evolution of IG genes, their allelic variants and the expressed immune repertoire is therefore facilitated. Methods: The Adaptive Immune Receptor Repertoire Community (AIRR-C) IG Reference Sets have been developed by including only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources. To further improve AIRR-seq analysis, some alleles have been extended to deal with short 3' or 5' truncations that can lead them to be overlooked by alignment utilities. To avoid other challenges for analysis programs, exact paralogs (e.g. IGHV1-69*01 and IGHV1-69D*01) are only represented once in each set, though alternative sequence names are noted in accompanying metadata. Results and discussion: The Reference Sets include less than half the previously recognised IG alleles (e.g. just 198 IGHV sequences), and also include a number of novel alleles: 8 IGHV alleles, 2 IGKV alleles and 5 IGLV alleles. Despite their smaller sizes, erroneous calls were eliminated, and excellent coverage was achieved when a set of repertoires comprising over 4 million V(D)J rearrangements from 99 individuals were analyzed using the Sets. The version-tracked AIRR-C IG Reference Sets are freely available at the OGRDB website (https://ogrdb.airr-community.org/germline_sets/Human) and will be regularly updated to include newly observed and previously reported sequences that can be confirmed by new high-quality data.


Subject(s)
Genes, Immunoglobulin , Immunoglobulins , Humans , Immunoglobulins/genetics , Alleles , V(D)J Recombination/genetics , Germ Cells
SELECTION OF CITATIONS
SEARCH DETAIL