Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Nature ; 614(7948): 555-563, 2023 02.
Article in English | MEDLINE | ID: mdl-36725935

ABSTRACT

Single-cell technologies have enabled the characterization of the tumour microenvironment at unprecedented depth and have revealed vast cellular diversity among tumour cells and their niche. Anti-tumour immunity relies on cell-cell relationships within the tumour microenvironment1,2, yet many single-cell studies lack spatial context and rely on dissociated tissues3. Here we applied imaging mass cytometry to characterize the immunological landscape of 139 high-grade glioma and 46 brain metastasis tumours from patients. Single-cell analysis of more than 1.1 million cells across 389 high-dimensional histopathology images enabled the spatial resolution of immune lineages and activation states, revealing differences in immune landscapes between primary tumours and brain metastases from diverse solid cancers. These analyses revealed cellular neighbourhoods associated with survival in patients with glioblastoma, which we leveraged to identify a unique population of myeloperoxidase (MPO)-positive macrophages associated with long-term survival. Our findings provide insight into the biology of primary and metastatic brain tumours, reinforcing the value of integrating spatial resolution to single-cell datasets to dissect the microenvironmental contexture of cancer.


Subject(s)
Brain Neoplasms , Glioma , Single-Cell Analysis , Tumor Microenvironment , Humans , Brain/immunology , Brain/pathology , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Glioblastoma/immunology , Glioblastoma/pathology , Glioma/immunology , Glioma/pathology , Macrophages/enzymology , Tumor Microenvironment/immunology , Neoplasm Metastasis , Datasets as Topic
2.
Cell ; 150(2): 251-63, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22817889

ABSTRACT

Despite recent insights into melanoma genetics, systematic surveys for driver mutations are challenged by an abundance of passenger mutations caused by carcinogenic UV light exposure. We developed a permutation-based framework to address this challenge, employing mutation data from intronic sequences to control for passenger mutational load on a per gene basis. Analysis of large-scale melanoma exome data by this approach discovered six novel melanoma genes (PPP6C, RAC1, SNX31, TACC1, STK19, and ARID2), three of which-RAC1, PPP6C, and STK19-harbored recurrent and potentially targetable mutations. Integration with chromosomal copy number data contextualized the landscape of driver mutations, providing oncogenic insights in BRAF- and NRAS-driven melanoma as well as those without known NRAS/BRAF mutations. The landscape also clarified a mutational basis for RB and p53 pathway deregulation in this malignancy. Finally, the spectrum of driver mutations provided unequivocal genomic evidence for a direct mutagenic role of UV light in melanoma pathogenesis.


Subject(s)
Genome-Wide Association Study , Melanoma/genetics , Mutagenesis , Ultraviolet Rays , Amino Acid Sequence , Cells, Cultured , Exome , Humans , Melanocytes/metabolism , Models, Molecular , Molecular Sequence Data , Proto-Oncogene Proteins B-raf/genetics , Sequence Alignment , rac1 GTP-Binding Protein/genetics
3.
BMC Cancer ; 22(1): 38, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34986841

ABSTRACT

BACKGROUND: Melanoma-intrinsic activated ß-catenin pathway, the product of the catenin beta 1 (CTNNB1) gene, has been associated with low/absent tumor-infiltrating lymphocytes, accelerated tumor growth, metastases development, and resistance to anti-PD-L1/anti-CTLA-4 agents in mouse melanoma models. Little is known about the association between the adenomatous polyposis coli (APC) and CTNNB1 gene mutations in stage IV melanoma with immunotherapy response and overall survival (OS). METHODS: We examined the prognostic significance of somatic APC/CTNNB1 mutations in the Cancer Genome Atlas Project for Skin Cutaneous Melanoma (TCGA-SKCM) database. We assessed APC/CTNNB1 mutations as predictors of response to immunotherapies in a clinicopathologically annotated metastatic patient cohort from three US melanoma centers. RESULTS: In the TCGA-SKCM patient cohort (n = 434) presence of a somatic APC/CTNNB1 mutation was associated with a worse outcome only in stage IV melanoma (n = 82, median OS of APC/CTNNB1 mutants vs. wild-type was 8.15 vs. 22.8 months; log-rank hazard ratio 4.20, p = 0.011). APC/CTNNB1 mutation did not significantly affect lymphocyte distribution and density. In the 3-melanoma institution cohort, tumor tissues underwent targeted panel sequencing using two standards of care assays. We identified 55 patients with stage IV melanoma and APC/CTNNB1 genetic aberrations (mut) and 169 patients without (wt). At a median follow-up of more than 25 months for both groups, mut compared with wt patients had slightly more frequent (44% vs. 39%) and earlier (66% vs. 45% within six months from original diagnosis of stage IV melanoma) development of brain metastases. Nevertheless, time-to-development of brain metastases was not significantly different between the two groups. Fortunately, mut patients had similar clinical benefits from PD-1 inhibitor-based treatments compared to wt patients (median OS 26.1 months vs. 29.9 months, respectively, log-rank p = 0.23). Less frequent mutations in the NF1, RAC1, and PTEN genes were seen in the mut compared with wt patients from the 3-melanoma institution cohort. Analysis of brain melanoma tumor tissues from a separate craniotomy patient cohort (n = 55) showed that melanoma-specific, activated ß-catenin (i.e., nuclear localization) was infrequent (n = 3, 6%) and not prognostic in established brain metastases. CONCLUSIONS: APC/CTNNB1 mutations are associated with a worse outcome in stage IV melanoma and early brain metastases independent of tumor-infiltrating lymphocyte density. However, PD1 inhibitor-based treatments provide comparable benefits to both mut and wt patients with stage IV melanoma.


Subject(s)
Genes, APC , Melanoma/genetics , Melanoma/mortality , Skin Neoplasms/genetics , Skin Neoplasms/mortality , beta Catenin/genetics , Adult , Aged , Aged, 80 and over , Female , Humans , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Mutation , Neoplasm Staging , Prognosis , Proportional Hazards Models , Melanoma, Cutaneous Malignant
4.
Breast Cancer Res ; 22(1): 7, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941526

ABSTRACT

BACKGROUND: The p66ShcA redox protein is the longest isoform of the Shc1 gene and is variably expressed in breast cancers. In response to a variety of stress stimuli, p66ShcA becomes phosphorylated on serine 36, which allows it to translocate from the cytoplasm to the mitochondria where it stimulates the formation of reactive oxygen species (ROS). Conflicting studies suggest both pro- and anti-tumorigenic functions for p66ShcA, which prompted us to examine the contribution of tumor cell-intrinsic functions of p66ShcA during breast cancer metastasis. METHODS: We tested whether p66ShcA impacts the lung-metastatic ability of breast cancer cells. Breast cancer cells characteristic of the ErbB2+/luminal (NIC) or basal (4T1) subtypes were engineered to overexpress p66ShcA. In addition, lung-metastatic 4T1 variants (4T1-537) were engineered to lack endogenous p66ShcA via Crispr/Cas9 genomic editing. p66ShcA null cells were then reconstituted with wild-type p66ShcA or a mutant (S36A) that cannot translocate to the mitochondria, thereby lacking the ability to stimulate mitochondrial-dependent ROS production. These cells were tested for their ability to form spontaneous metastases from the primary site or seed and colonize the lung in experimental (tail vein) metastasis assays. These cells were further characterized with respect to their migration rates, focal adhesion dynamics, and resistance to anoikis in vitro. Finally, their ability to survive in circulation and seed the lungs of mice was assessed in vivo. RESULTS: We show that p66ShcA increases the lung-metastatic potential of breast cancer cells by augmenting their ability to navigate each stage of the metastatic cascade. A non-phosphorylatable p66ShcA-S36A mutant, which cannot translocate to the mitochondria, still potentiated breast cancer cell migration, lung colonization, and growth of secondary lung metastases. However, breast cancer cell survival in the circulation uniquely required an intact p66ShcA S36 phosphorylation site. CONCLUSION: This study provides the first evidence that both mitochondrial and non-mitochondrial p66ShcA pools collaborate in breast cancer cells to promote their maximal metastatic fitness.


Subject(s)
Breast Neoplasms/pathology , Lung Neoplasms/secondary , Mitochondria/pathology , Oxidative Stress , Reactive Oxygen Species/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Lung Neoplasms/metabolism , Mice , Mice, Inbred BALB C , Mitochondria/metabolism , Phosphorylation
5.
Nat Rev Genet ; 14(10): 703-18, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24022702

ABSTRACT

Recent advances in technological tools for massively parallel, high-throughput sequencing of DNA have enabled the comprehensive characterization of somatic mutations in a large number of tumour samples. In this Review, we describe recent cancer genomic studies that have assembled emerging views of the landscapes of somatic mutations through deep-sequencing analyses of the coding exomes and whole genomes in various cancer types. We discuss the comparative genomics of different cancers, including mutation rates and spectra, as well as the roles of environmental insults that influence these processes. We highlight the developing statistical approaches that are used to identify significantly mutated genes, and discuss the emerging biological and clinical insights from such analyses, as well as the future challenges of translating these genomic data into clinical impacts.


Subject(s)
Genome, Human/genetics , Genomics/methods , Neoplasms/genetics , Exome/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation , Mutation Rate , Sequence Analysis, DNA
6.
Nature ; 485(7399): 502-6, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22622578

ABSTRACT

Melanoma is notable for its metastatic propensity, lethality in the advanced setting and association with ultraviolet exposure early in life. To obtain a comprehensive genomic view of melanoma in humans, we sequenced the genomes of 25 metastatic melanomas and matched germline DNA. A wide range of point mutation rates was observed: lowest in melanomas whose primaries arose on non-ultraviolet-exposed hairless skin of the extremities (3 and 14 per megabase (Mb) of genome), intermediate in those originating from hair-bearing skin of the trunk (5-55 per Mb), and highest in a patient with a documented history of chronic sun exposure (111 per Mb). Analysis of whole-genome sequence data identified PREX2 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2)--a PTEN-interacting protein and negative regulator of PTEN in breast cancer--as a significantly mutated gene with a mutation frequency of approximately 14% in an independent extension cohort of 107 human melanomas. PREX2 mutations are biologically relevant, as ectopic expression of mutant PREX2 accelerated tumour formation of immortalized human melanocytes in vivo. Thus, whole-genome sequencing of human melanoma tumours revealed genomic evidence of ultraviolet pathogenesis and discovered a new recurrently mutated gene in melanoma.


Subject(s)
Genome, Human/genetics , Guanine Nucleotide Exchange Factors/genetics , Melanoma/genetics , Mutation/genetics , Sunlight/adverse effects , Chromosome Breakpoints/radiation effects , DNA Damage , DNA Mutational Analysis , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/metabolism , Humans , Melanocytes/metabolism , Melanocytes/pathology , Melanoma/pathology , Mutagenesis/radiation effects , Mutation/radiation effects , Oncogenes/genetics , Ultraviolet Rays/adverse effects
7.
Br J Cancer ; 115(2): 145-55, 2016 Jul 12.
Article in English | MEDLINE | ID: mdl-27336610

ABSTRACT

Large-scale genomic analyses of cutaneous melanoma have revealed insights into the aetiology and heterogeneity of this disease, as well as opportunities to further personalise treatment for patients with targeted and immune therapies. Herein, we review the proposed genomic classification of cutaneous melanoma from large-scale next-generation sequencing studies, including the largest integrative analysis of melanoma from The Cancer Genome Atlas (TCGA) Network. We examine studies that have identified molecular features of melanomas linked to immune checkpoint inhibitor response. In addition, we draw attention to low-frequency actionable mutations and highlight frequent non-coding mutations in melanoma where little is known about their biological function that may provide novel avenues for the development of treatment strategies for melanoma patients.


Subject(s)
Melanoma/genetics , Melanoma/therapy , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Atlases as Topic , Humans , Immunotherapy , Mutation
8.
J Cutan Pathol ; 42(5): 308-17, 2015 May.
Article in English | MEDLINE | ID: mdl-25754356

ABSTRACT

BACKGROUND: SMARCB1 (INI1/BAF47/SNF5) encodes a part of a multiprotein complex that regulates gene expression through chromatin remodeling. SMARCB1 expression is lost or downregulated in multiple human tumors, including epithelioid sarcoma, meningioma and rhabdoid tumors of the brain, soft tissue and kidney. METHODS: A 46-gene or 50-gene next-generation sequencing AmpliSeq Cancer Panel (Life Technologies; San Francisco, CA, USA) was applied to ∼1400 primary or metastatic melanoma tissues. RESULTS: We identified eight cases of melanoma harboring mutations in SMARCB1. Immunohistochemistry demonstrated preservation of SMARCB1 protein expression in all cases. SMARCB1 mutations occurred together with TP53 mutations in five of the eight cases, suggesting a functional relationship between these tumor suppressors in melanoma. CONCLUSIONS: Because single-base substitutions in SMARCB1 occur in a small subset of melanomas and do not affect SMARCB1 protein expression, such mutations would only be discovered by sequencing approaches. Our findings highlight the potential for next-generation sequencing platforms to identify mutations unexpected for melanoma that may contribute to its oncogenic potential. Though rare, the identification of SMARCB1 mutations adds to the growing literature regarding the role of epigenetic control mechanisms in melanoma progression and therapeutic resistance and provide a rationale for strategies targeting such alterations (via chromatin remodeling agents) in clinical trials.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , High-Throughput Nucleotide Sequencing/methods , Melanoma/genetics , Mutation , Sequence Analysis, DNA/methods , Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Down-Regulation , Epigenesis, Genetic , Female , Humans , Male , Melanoma/pathology , Middle Aged , SMARCB1 Protein , Tumor Suppressor Protein p53/genetics
9.
Clin Exp Metastasis ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38217840

ABSTRACT

Melanoma is a highly immunogenic malignancy with an elevated mutational burden, diffuse lymphocytic infiltration, and one of the highest response rates to immune checkpoint inhibitors (ICIs). However, over half of all late-stage patients treated with ICIs will either not respond or develop progressive disease. Spatial imaging technologies are being increasingly used to study the melanoma tumor microenvironment (TME). The goal of such studies is to understand the complex interplay between the stroma, melanoma cells, and immune cell-types as well as their association with treatment response. Investigators seeking a better understanding of the role of cell location within the TME and the importance of spatial expression of biomarkers are increasingly turning to highly multiplexed imaging approaches to more accurately measure immune infiltration as well as to quantify receptor-ligand interactions (such as PD-1 and PD-L1) and cell-cell contacts. CyTOF-IMC (Cytometry by Time of Flight - Imaging Mass Cytometry) has enabled high-dimensional profiling of melanomas, allowing researchers to identify complex cellular subpopulations and immune cell interactions with unprecedented resolution. Other spatial imaging technologies, such as multiplexed immunofluorescence and spatial transcriptomics, have revealed distinct patterns of immune cell infiltration, highlighting the importance of spatial relationships, and their impact in modulating immunotherapy responses. Overall, spatial imaging technologies are just beginning to transform our understanding of melanoma biology, providing new avenues for biomarker discovery and therapeutic development. These technologies hold great promise for advancing personalized medicine to improve patient outcomes in melanoma and other solid malignancies.

10.
Nat Med ; 29(8): 2121-2132, 2023 08.
Article in English | MEDLINE | ID: mdl-37414899

ABSTRACT

Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 .


Subject(s)
Fecal Microbiota Transplantation , Melanoma , Animals , Mice , Fecal Microbiota Transplantation/methods , Immune Checkpoint Inhibitors , Feces/microbiology , Melanoma/therapy , Immunotherapy , Treatment Outcome
11.
Cell Rep ; 39(1): 110634, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385748

ABSTRACT

Although combination BRAF/MEK inhibition has produced significant survival benefits for BRAF p.V600 mutant melanomas, targeted therapies approved for BRAF non-p.V600 mutant melanomas remain limited. Through the analysis of 772 cutaneous melanoma exomes, we reveal that BRAF non-p.V600 mutations co-occurs more frequently with NF1 loss, but not with oncogenic NRAS mutations, than expected by chance. We present cell signaling data, which demonstrate that BRAF non-p.V600 mutants can signal as monomers and dimers within an NF1 loss context. Concordantly, BRAF inhibitors that inhibit both monomeric and dimeric BRAF synergize with MEK inhibition to significantly reduce cell viability in vitro and tumor growth in vivo in BRAF non-p.V600 mutant melanomas with co-occurring NF1 loss-of-function mutations. Our data suggest that patients harboring BRAF non-p.V600 mutant melanomas may benefit from current FDA-approved BRAF/MEK inhibitor combination therapy currently reserved for BRAF p.V600 mutant patients.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics
12.
Cell Rep ; 40(13): 111412, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36170819

ABSTRACT

Cyclic AMP (cAMP) signaling is localized to multiple spatially distinct microdomains, but the role of cAMP microdomains in cancer cell biology is poorly understood. Here, we present a tunable genetic system that allows us to activate cAMP signaling in specific microdomains. We uncover a nuclear cAMP microdomain that activates a tumor-suppressive pathway in a broad range of cancers by inhibiting YAP, a key effector protein of the Hippo pathway, inside the nucleus. We show that nuclear cAMP induces a LATS-dependent pathway leading to phosphorylation of nuclear YAP solely at serine 397 and export of YAP from the nucleus with no change in YAP protein stability. Thus, nuclear cAMP inhibition of nuclear YAP is distinct from other known mechanisms of Hippo regulation. Pharmacologic targeting of specific cAMP microdomains remains an untapped therapeutic approach for cancer; thus, drugs directed at the nuclear cAMP microdomain may provide avenues for the treatment of cancer.


Subject(s)
Cyclic AMP , Neoplasms , Humans , Cell Line , Cyclic AMP/metabolism , Hippo Signaling Pathway , Phosphorylation , Protein Serine-Threonine Kinases , Serine/metabolism
13.
Sci Immunol ; 7(70): eabi5072, 2022 04.
Article in English | MEDLINE | ID: mdl-35363543

ABSTRACT

Melanoma is an immunogenic cancer with a high response rate to immune checkpoint inhibitors (ICIs). It harbors a high mutation burden compared with other cancers and, as a result, has abundant tumor-infiltrating lymphocytes (TILs) within its microenvironment. However, understanding the complex interplay between the stroma, tumor cells, and distinct TIL subsets remains a substantial challenge in immune oncology. To properly study this interplay, quantifying spatial relationships of multiple cell types within the tumor microenvironment is crucial. To address this, we used cytometry time-of-flight (CyTOF) imaging mass cytometry (IMC) to simultaneously quantify the expression of 35 protein markers, characterizing the microenvironment of 5 benign nevi and 67 melanomas. We profiled more than 220,000 individual cells to identify melanoma, lymphocyte subsets, macrophage/monocyte, and stromal cell populations, allowing for in-depth spatial quantification of the melanoma microenvironment. We found that within pretreatment melanomas, the abundance of proliferating antigen-experienced cytotoxic T cells (CD8+CD45RO+Ki67+) and the proximity of antigen-experienced cytotoxic T cells to melanoma cells were associated with positive response to ICIs. Our study highlights the potential of multiplexed single-cell technology to quantify spatial cell-cell interactions within the tumor microenvironment to understand immune therapy responses.


Subject(s)
Melanoma , Humans , Image Cytometry , Lymphocytes, Tumor-Infiltrating , T-Lymphocytes, Cytotoxic , Tumor Microenvironment
14.
Clin Cancer Res ; 27(12): 3432-3442, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33593882

ABSTRACT

PURPOSE: Next-generation sequencing studies and CRISPR-Cas9 screens have established mutations in the IFNγ-JAK-STAT pathway as an immune checkpoint inhibitor (ICI) resistance mechanism in a subset of patients with melanoma. We hypothesized ICI resistance mutations in the IFNγ pathway would simultaneously render melanomas susceptible to oncolytic virus (OV) therapy. EXPERIMENTAL DESIGN: Cytotoxicity experiments were performed with a number of OVs on a matched melanoma cell line pair generated from a baseline biopsy and a progressing lesion with complete JAK2 loss from a patient that relapsed on anti-PD-1 therapy, in melanoma lines following JAK1/2 RNA interference (RNAi) and pharmacologic inhibition and in Jak2 knockout (KO) B16-F10 mouse melanomas. Furthermore, we estimated the frequency of genetic alterations in the IFNγ-JAK-STAT pathway in human melanomas. RESULTS: The melanoma line from an anti-PD-1 progressing lesion was 7- and 22-fold more sensitive to the modified OVs, herpes simplex virus 1 (HSV1-dICP0) and vesicular stomatitis virus (VSV-Δ51), respectively, compared with the line from the baseline biopsy. RNAi, JAK1/2 inhibitor studies, and in vivo studies of Jak2 KOs B16-F10 melanomas revealed a significant increase in VSV-Δ51 sensitivity with JAK/STAT pathway inhibition. Our analysis of The Cancer Genome Atlas data estimated that approximately 11% of ICI-naïve cutaneous melanomas have alterations in IFNγ pathway genes that may confer OV susceptibility. CONCLUSIONS: We provide mechanistic support for the use of OVs as a precision medicine strategy for both salvage therapy in ICI-resistant and first-line treatment in melanomas with IFNγ-JAK-STAT pathway mutations. Our study also supports JAK inhibitor-OV combination therapy for treatment-naïve melanomas without IFN signaling defects.See related commentary by Kaufman, p. 3278.


Subject(s)
Melanoma, Experimental , Oncolytic Viruses , Animals , Cell Line, Tumor , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Janus Kinases/genetics , Janus Kinases/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Mice , Mutation , Oncolytic Viruses/genetics , STAT Transcription Factors/genetics , STAT Transcription Factors/metabolism , Signal Transduction
15.
Mol Cancer Ther ; 20(1): 64-75, 2021 01.
Article in English | MEDLINE | ID: mdl-33087508

ABSTRACT

Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare but often lethal cancer that is diagnosed at a median age of 24 years. Optimal management of patients is not well defined, and current treatment remains challenging, necessitating the discovery of novel therapeutic approaches. The identification of SMARCA4-inactivating mutations invariably characterizing this type of cancer provided insights facilitating diagnostic and therapeutic measures against this disease. We show here that the BET inhibitor OTX015 acts in synergy with the MEK inhibitor cobimetinib to repress the proliferation of SCCOHT in vivo Notably, this synergy is also observed in some SMARCA4-expressing ovarian adenocarcinoma models intrinsically resistant to BETi. Mass spectrometry, coupled with knockdown of newly found targets such as thymidylate synthase, revealed that the repression of a panel of proteins involved in nucleotide synthesis underlies this synergy both in vitro and in vivo, resulting in reduced pools of nucleotide metabolites and subsequent cell-cycle arrest. Overall, our data indicate that dual treatment with BETi and MEKi represents a rational combination therapy against SCCOHT and potentially additional ovarian cancer subtypes.


Subject(s)
Epigenesis, Genetic , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Nucleotides/metabolism , Protein Kinase Inhibitors/pharmacology , Animals , Azetidines/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Down-Regulation/drug effects , Drug Synergism , Epigenesis, Genetic/drug effects , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice, Inbred NOD , Mice, SCID , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Neoplasm Proteins/metabolism , Ovarian Neoplasms/drug therapy , Piperidines/pharmacology , Protein Kinase Inhibitors/therapeutic use , S Phase/drug effects , Xenograft Model Antitumor Assays
16.
Nat Cancer ; 2(5): 545-562, 2021 05.
Article in English | MEDLINE | ID: mdl-35122017

ABSTRACT

Metastasis is the leading cause of cancer-related deaths, and obesity is associated with increased breast cancer (BC) metastasis. Preclinical studies have shown that obese adipose tissue induces lung neutrophilia associated with enhanced BC metastasis to this site. Here we show that obesity leads to neutrophil-dependent impairment of vascular integrity through loss of endothelial adhesions, enabling cancer cell extravasation into the lung. Mechanistically, neutrophil-produced reactive oxygen species in obese mice increase neutrophil extracellular DNA traps (NETs) and weaken endothelial junctions, facilitating the influx of tumor cells from the peripheral circulation. In vivo treatment with catalase, NET inhibitors or genetic deletion of Nos2 reversed this effect in preclinical models of obesity. Imaging mass cytometry of lung metastasis samples from patients with cancer revealed an enrichment in neutrophils with low catalase levels correlating with elevated body mass index. Our data provide insights into potentially targetable mechanisms that underlie the progression of BC in the obese population.


Subject(s)
Breast Neoplasms , Lung Neoplasms , Animals , Breast Neoplasms/metabolism , Catalase/metabolism , Female , Humans , Lung Neoplasms/metabolism , Mice , Neutrophils/metabolism , Obesity/complications , Oxidative Stress
17.
Nat Cancer ; 1(6): 635-652, 2020 06.
Article in English | MEDLINE | ID: mdl-35121978

ABSTRACT

The high background tumor mutation burden in cutaneous melanoma limits the ability to identify significantly mutated genes (SMGs) that drive this cancer. To address this, we performed a mutation significance study of over 1,000 melanoma exomes, combined with a multi-omic analysis of 470 cases from The Cancer Genome Atlas. We discovered several SMGs with co-occurring loss-of-heterozygosity and loss-of-function mutations, including PBRM1, PLXNC1 and PRKAR1A, which encodes a protein kinase A holoenzyme subunit. Deconvolution of bulk tumor transcriptomes into cancer, immune and stromal components revealed a melanoma-intrinsic oxidative phosphorylation signature associated with protein kinase A pathway alterations. We also identified SMGs on the X chromosome, including the RNA helicase DDX3X, whose loss-of-function mutations were exclusively observed in males. Finally, we found that tumor mutation burden and immune infiltration contain complementary information on survival of patients with melanoma. In summary, our multi-omic analysis provides insights into melanoma etiology and supports contribution of specific mutations to the sex bias observed in this cancer.


Subject(s)
Melanoma , Skin Neoplasms , Biomarkers, Tumor/genetics , Cyclic AMP-Dependent Protein Kinases , DEAD-box RNA Helicases/genetics , Female , Humans , Male , Melanoma/genetics , Skin Neoplasms/genetics , Melanoma, Cutaneous Malignant
18.
Oncogene ; 39(12): 2612-2623, 2020 03.
Article in English | MEDLINE | ID: mdl-32020055

ABSTRACT

Neutrophils represent the immune system's first line of defense and are rapidly recruited into inflamed tissue. In cancer associated inflammation, phenotypic heterogeneity has been ascribed to this cell type, whereby neutrophils can manifest anti- or pro-metastatic functions depending on the cellular/micro-environmental context. Here, we demonstrate that pro-metastatic immature low-density neutrophils (iLDNs) more efficiently accumulate in the livers of mice bearing metastatic lesions compared with anti-metastatic mature high-density neutrophils (HDNs). Transcriptomic analyses reveal enrichment of a migration signature in iLDNs relative to HDNs. We find that conditioned media derived from liver-metastatic breast cancer cells, but not lung-metastatic variants, specifically induces chemotaxis of iLDNs and not HDNs. Chemotactic responses are due to increased surface expression of C3aR in iLDNs relative to HDNs. In addition, we detect elevated secretion of cancer-cell derived C3a from liver-metastatic versus lung-metastatic breast cancer cells. Perturbation of C3a/C3aR signaling axis with either a small molecule inhibitor, SB290157, or reducing the levels of secreted C3a from liver-metastatic breast cancer cells by short hairpin RNAs, can abrogate the chemotactic response of iLDNs both in vitro and in vivo, respectively. Together, these data reveal novel mechanisms through which iLDNs prefentially accumulate in liver tissue harboring metastases in response to tumor-derived C3a secreted from the liver-aggressive 4T1 breast cancer cells.


Subject(s)
Complement C3a/immunology , Liver Neoplasms/immunology , Neutrophils/immunology , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Culture Media, Conditioned , Female , Liver Neoplasms/secondary , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , Receptors, Complement/agonists , Receptors, Complement/metabolism
19.
Cell Rep ; 27(13): 3902-3915.e6, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31242422

ABSTRACT

Neutrophils are phenotypically heterogeneous and exert either anti- or pro-metastatic functions. We show that cancer-cell-derived G-CSF is necessary, but not sufficient, to mobilize immature low-density neutrophils (iLDNs) that promote liver metastasis. In contrast, mature high-density neutrophils inhibit the formation of liver metastases. Transcriptomic and metabolomic analyses of high- and low-density neutrophils reveal engagement of numerous metabolic pathways specifically in low-density neutrophils. iLDNs exhibit enhanced global bioenergetic capacity, through their ability to engage mitochondrial-dependent ATP production, and remain capable of executing pro-metastatic neutrophil functions, including NETosis, under nutrient-deprived conditions. We demonstrate that NETosis is an important neutrophil function that promotes breast cancer liver metastasis. iLDNs rely on the catabolism of glutamate and proline to support mitochondrial-dependent metabolism in the absence of glucose, which enables sustained NETosis. These data reveal that distinct pro-metastatic neutrophil populations exhibit a high degree of metabolic flexibility, which facilitates the formation of liver metastases.


Subject(s)
Liver Neoplasms/metabolism , Mammary Neoplasms, Experimental/metabolism , Neutrophils/metabolism , Animals , Cell Line, Tumor , Female , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Mammary Neoplasms, Experimental/pathology , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , Neutrophils/pathology
SELECTION OF CITATIONS
SEARCH DETAIL