Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Genet ; 36(3): 299-303, 2004 Mar.
Article in English | MEDLINE | ID: mdl-14981516

ABSTRACT

We constructed a tiling resolution array consisting of 32,433 overlapping BAC clones covering the entire human genome. This increases our ability to identify genetic alterations and their boundaries throughout the genome in a single comparative genomic hybridization (CGH) experiment. At this tiling resolution, we identified minute DNA alterations not previously reported. These alterations include microamplifications and deletions containing oncogenes, tumor-suppressor genes and new genes that may be associated with multiple tumor types. Our findings show the need to move beyond conventional marker-based genome comparison approaches, that rely on inference of continuity between interval markers. Our submegabase resolution tiling set for array CGH (SMRT array) allows comprehensive assessment of genomic integrity and thereby the identification of new genes associated with disease.


Subject(s)
Oligonucleotide Array Sequence Analysis/methods , Chromosomes, Artificial, Bacterial , Gene Dosage , Genome, Human , Humans , Nucleic Acid Hybridization , Sensitivity and Specificity , Tumor Cells, Cultured
2.
Prostate ; 69(9): 961-75, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19267368

ABSTRACT

BACKGROUND: Carcinoma of the prostate (CaP) is a serious health problem. The altered molecular mechanisms that lead to this disease are poorly understood. METHODS: Specimens from radical prostatectomies and blood were collected from 18 CaP surgery patients. For CGH studies, 20 CaP-related samples (16 Gleason grade 3, 3 higher grades, 1 BPH sample) and 18 samples of patient-matched normal epithelial cells were obtained by laser-assisted microdissection from frozen sections of the 18 prostatectomy specimens. High resolution SMRT aCGH was used to compare genomic profiles of prostatic samples to patient-matched blood and pooled female DNA. TMPRSS2-ERG fusion transcript analysis was performed by RT-PCR in relation to alterations detected at the TMPRSS2 locus. RESULTS: Our comprehensive aCGH approach allowed us to define 35 regions of recurrent alterations while excluding germline copy number polymorphisms. Novel regions identified include 2q14.2, containing INHBB, and 17q21.31. The TMPRSS2 locus at 21q22.3 may be a hotspot for rearrangements with 75% of the alterations resulting in the expression of a TMPRSS2-ERG fusion transcript. Differences in fusion expression in different areas in an individual tumor focus and expression in adjacent normal epithelium supported intrafocal heterogeneity and field cancerization, respectively. Both features challenge our efforts to develop more objective markers for diagnosis and prediction of the severity of CaP. CONCLUSION: The high-density array enabled precise mapping of genomic alterations and consequently definition of minimum altered regions smaller than previously reported thus facilitating identification of those genes that contribute to the cancer transformation process.


Subject(s)
Adenocarcinoma/genetics , Comparative Genomic Hybridization , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Adenocarcinoma/pathology , Chromosome Breakage , Chromosomes, Artificial, Bacterial , Chromosomes, Human , Disease Progression , Epithelial Cells/physiology , Gene Dosage , Genomics/methods , Humans , Male , Microdissection , Polymorphism, Genetic , Prostate/pathology , Prostate/physiology , Prostatic Neoplasms/pathology
3.
BMC Genomics ; 7: 312, 2006 Dec 12.
Article in English | MEDLINE | ID: mdl-17156491

ABSTRACT

BACKGROUND: Formalin-fixed paraffin-embedded (FFPE) tissues represent the largest source of archival biological material available for genomic studies of human cancer. Therefore, it is desirable to develop methods that enable whole genome amplification (WGA) using DNA extracted from FFPE tissues. Multiple-strand Displacement Amplification (MDA) is an isothermal method for WGA that uses the large fragment of Bst DNA polymerase. To date, MDA has been feasible only for genomic DNA isolated from fresh or snap-frozen tissue, and yields a representational distortion of less than threefold. RESULTS: We amplified genomic DNA of five FFPE samples of normal human lung tissue with the large fragment of Bst DNA polymerase. Using quantitative PCR, the copy number of 7 genes was evaluated in both amplified and original DNA samples. Four neuroblastoma xenograft samples derived from cell lines with known N-myc gene copy number were also evaluated, as were 7 samples of non-small cell lung cancer (NSCLC) tumors with known Skp2 gene amplification. In addition, we compared the array comparative genomic hybridization (CGH)-based genome profiles of two NSCLC samples before and after Bst MDA. A median 990-fold amplification of DNA was achieved. The DNA amplification products had a very high molecular weight (> 23 Kb). When the gene content of the amplified samples was compared to that of the original samples, the representational distortion was limited to threefold. Array CGH genome profiles of amplified and non-amplified FFPE DNA were similar. CONCLUSION: Large fragment Bst DNA polymerase is suitable for WGA of DNA extracted from FFPE tissues, with an expected maximal representational distortion of threefold. Amplified DNA may be used for the detection of gene copy number changes by quantitative realtime PCR and genome profiling by array CGH.


Subject(s)
DNA, Neoplasm/analysis , DNA-Directed DNA Polymerase/chemistry , Genome, Human , Nucleic Acid Amplification Techniques/methods , Tissue Fixation/methods , Carcinoma, Non-Small-Cell Lung/chemistry , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Formaldehyde , Gene Dosage , Geobacillus stearothermophilus/chemistry , Humans , Lung/chemistry , Lung/cytology , Lung Neoplasms/chemistry , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Neuroblastoma/chemistry , Neuroblastoma/genetics , Neuroblastoma/pathology , Paraffin Embedding , Polymerase Chain Reaction
4.
BMC Genomics ; 5(1): 6, 2004 Jan 14.
Article in English | MEDLINE | ID: mdl-14723794

ABSTRACT

BACKGROUND: The recent development of array based comparative genomic hybridization (CGH) technology provides improved resolution for detection of genomic DNA copy number alterations. In array CGH, generating spotting solution is a multi-step process where bacterial artificial chromosome (BAC) clones are converted to replenishable PCR amplified fragments pools (AFP) for use as spotting solution in a microarray format on glass substrate. With completion of the human and mouse genome sequencing, large BAC clone sets providing complete genome coverage are available for construction of whole genome BAC arrays. Currently, Southern hybridization, fluorescent in-situ hybridization (FISH), and BAC end sequencing methods are commonly used to identify the initial BAC clone but not the end product used for spotting arrays. The AFP sequencing technique described in this study is a novel method designed to verify the identity of array spotting solution in a high throughput manner. RESULTS: We show here that Southern hybridization, FISH, and AFP sequencing can be used to verify the identity of final spotting solutions using less than 10% of the AFP product. Single pass AFP sequencing identified over half of the 960 AFPs analyzed. Moreover, using two vector primers approximately 90% of the AFP spotting solutions can be identified. CONCLUSIONS: In this feasibility study we demonstrate that current methods for identifying initial BAC clones can be adapted to verify the identity of AFP spotting solutions used in printing arrays. Of these methods, AFP sequencing proves to be the most efficient for large scale identification of spotting solution in a high throughput manner.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , DNA/genetics , Nucleic Acid Hybridization/methods , Animals , Blotting, Southern , Chromosome Mapping , Cloning, Molecular , DNA/chemistry , DNA Probes/genetics , Humans , In Situ Hybridization, Fluorescence , Mice , Polymerase Chain Reaction , Reproducibility of Results , Sequence Analysis, DNA
5.
J Vis Exp ; (18)2008 Aug 05.
Article in English | MEDLINE | ID: mdl-19066503

ABSTRACT

Array comparative genomic hybridization (array CGH) is a method for detecting gains and losses of DNA segments or gene dosage in the genome. Recent advances in this technology have enabled high resolution comparison of whole genomes for the identification of genetic alterations in cancer and other genetic diseases. The Sub-Megabase Resolution Tiling-set array (or SMRT) array is comprised of a set of approximately thirty thousand overlapping bacterial artificial chromosome (BAC) clones that span the human genome in approximately 100 kilobase pair (kb) segments. These BAC targets are individually synthesized and spotted in duplicate on a single glass slide. Array CGH is based on the principle of competitive hybridization. Sample and reference DNA are differentially labeled with Cyanine-3 and Cyanine-5 fluorescent dyes, and co-hybridized to the array. After an incubation period the unbound samples are washed from the slide and the array is imaged. A freely available custom software package called SeeGH (www.flintbox.ca) is used to process the large volume of data collected--a single experiment generates 53,892 data points. SeeGH visualizes the log2 signal intensity ratio between the 2 samples at each BAC target which is vertically aligned with chromosomal position. The SMRT array can detect alterations as small as 50 kb in size. The SMRT array can detect a variety of DNA rearrangement events including DNA gains, losses, amplifications and homozygous deletions. A unique advantage of the SMRT array is that one can use DNA isolated from formalin fixed paraffin embedded samples. When combined with the low input requirements of unamplified DNA (25-100 ng) this allows profiling of precious samples such as those produced by microdissection. This is attributed to the large size of each BAC hybridization target that allows the binding of sufficient labeled samples to produce signals for detection. Another advantage of this platform is the tolerance of tissue heterogeneity, decreasing the need for tedious tissue microdissection. This video protocol is a step-by-step tutorial from labeling the input DNA through to signal acquisition for the whole genome tiling path SMRT array.


Subject(s)
Comparative Genomic Hybridization/methods , Oligonucleotide Array Sequence Analysis/methods , Carbocyanines/chemistry , Chromosomes, Artificial, Bacterial , DNA/analysis , DNA/genetics , Genome, Human , Humans
6.
Hum Genet ; 120(6): 795-805, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17051368

ABSTRACT

Current cytogenetic methods (e.g., G-banding and multicolor chromosomal painting) allow detection of translocation events but lack the resolution to (a) locate the breakpoints precisely at the chromosome band level or (b) discriminate balanced translocations from translocations with copy number alterations not previously reported, or imperfectly balanced translocations. In this study, we demonstrate that cytogenetically balanced translocations are in fact frequently associated with segmental gain or loss of DNA. The recent development of a whole genome tiling path BAC array has enabled tiling resolution analysis of genomic segmental copy number status. Combining tiling resolution BAC array comparative genomic hybridization (array CGH) with G-Banding analysis and multicolor chromosomal painting approaches such as spectral karyotyping (SKY) facilitates high-resolution mapping of genomic alterations associated with imperfectly balanced translocations. Using a refined version of our CGH array we have deduced the copy number status throughout the genomes of three cytogenetically well-characterized prostate cancer cell lines (PC3, DU145, LNCaP) to determine whether translocations are associated with focal gains and losses of DNA. At 78 kb tiling resolution we identified the boundaries of 170, 80, and 34 known and novel copy number alterations (CNA) in these cell line genomes, respectively. Thirty-three of the 36 known translocations (92%, P < 0.001) in DU145 were associated with segmental CNA. Likewise, 80% (P < 0.001) of the known translocations showed association in LNCaP. Although many translocation breakpoints exhibit segmental alteration in PC3, the pattern of chromosomal rearrangements is too complex for use in comprehensive association with CNA boundaries. Our results reveal that imperfectly balanced translocations in tumor genomes are a phenomenon that occurs at frequencies much higher than previously demonstrated.


Subject(s)
Gene Dosage , Translocation, Genetic , Cell Line, Tumor , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Human/genetics , Cytogenetics , DNA, Neoplasm/genetics , Gene Expression Profiling , Humans , In Situ Hybridization, Fluorescence , Male , Oligonucleotide Array Sequence Analysis , Ploidies , Prostatic Neoplasms/genetics
7.
Am J Med Genet A ; 143A(9): 945-51, 2007 May 01.
Article in English | MEDLINE | ID: mdl-17431892

ABSTRACT

Premature ovarian failure (POF) is the occurrence of menopause before the age of 40, and may present with either primary or secondary amenorrhea. Numerous cases of POF in women with X-chromosome deletions or translocations have been reported; thus, it is possible that smaller rearrangements undetectable by conventional cytogenetics may contribute to POF in some patients. In females with an abnormal X chromosome, cells with inactivation of the normal X may be selected against, causing skewed X-chromosome inactivation (XCI). We therefore assessed XCI by methylation sensitive restriction digestion and PCR amplification at the androgen receptor (AR) locus, in 4 primary and 55 secondary POF patients and 109 control women. In samples heterozygous at AR and therefore informative for the skewing assay, the frequency of skewed XCI among the women with secondary amenorrhea was identical to that in control women, with 4 out of 48 (8.3%) secondary ovarian failure patients and 8 out of 97 (8.2%) control women having > or =90% skewing. Notably, all three primary amenorrhea patients that were informative at AR had skewed XCI > or =90% (P = 0.001 vs. control women; Fisher's exact test). To investigate whether X-chromosome copy number alterations were responsible, DNA from selected patients with skewed XCI was examined by high resolution DNA microarray, however no potential regions of DNA addition or deletion were confirmed by FISH or PCR. X-chromosome abnormalities undetectable by array, or reduced follicular pool due to an early trisomic rescue event, may explain the skewed XCI observed in POF patients presenting with primary amenorrhea.


Subject(s)
Amenorrhea/genetics , Primary Ovarian Insufficiency/genetics , X Chromosome Inactivation , Adolescent , Adult , Chromosomes, Human, X , Female , Humans , Middle Aged , Oligonucleotide Array Sequence Analysis
8.
Genes Chromosomes Cancer ; 42(4): 392-403, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15660435

ABSTRACT

Osteosarcoma (OS) is characterized by chromosomal instability and high-copy-number gene amplification. The breakage-fusion-bridge (BFB) cycle is a well-established mechanism of genomic instability in tumors and in vitro models used to study the origins of complex chromosomal rearrangements and cancer genome amplification. However, until now, there have been no high-resolution cytogenetic or genomic array studies of BFB events in OS. In the present study, multicolor banding (mBAND) FISH and submegabase resolution tiling set (SMRT) array comparative genomic hybridization (CGH) were used to identify and map genomic signatures of BFB events in four OS cell lines and one patient tumor. The expected intermediates associated with BFB-dicentric chromosomes, inverted duplications, and intra- and interchromosomal amplifications-were identified. mBAND analysis provided detailed mapping of rearrangements in 1p, 6p, and 8q and showed that translocation junctions were often in close proximity to fragile sites. More detailed mBAND studies of OS cell line MG-63 revealed ladderlike FISH signals of equally spaced interchromosomal coamplifications of 6p21, 8q24, and 9p21-p22 in a homogeneously staining region (hsr). Focal amplifications that concordantly mapped to the hsr were localized to discrete genomic intervals by SMRT array CGH. The complex amplicon structure in this hsr suggests focal amplifications immediately adjacent to microdeletions. Moreover, the genomic regions in which there was deletion/amplification had a preponderance of fragile sites. In summary, this study has provided further support for the role of the BFB mechanism and fragile sites in facilitating gene amplification and chromosomal rearrangement in OS.


Subject(s)
Gene Amplification , Gene Deletion , Nucleic Acid Hybridization , Osteosarcoma/genetics , Cell Line, Tumor , Chromosomes, Human, Pair 6 , Chromosomes, Human, Pair 8 , Humans , Molecular Probes , Oligonucleotide Array Sequence Analysis , Osteosarcoma/pathology , Peptide Nucleic Acids , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL