Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Physiol Plant ; 171(4): 785-801, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33280130

ABSTRACT

The ATP-binding cassette (ABC) transporters belong to a large protein family predominantly present in diverse species. ABC transporters are driven by ATP hydrolysis and can act as exporters as well as importers. These proteins are localized in the membranes of chloroplasts, mitochondria, peroxisomes and vacuoles. ABC proteins are involved in regulating diverse biological processes in plants, such as growth, development, uptake of nutrients, tolerance to biotic and abiotic stresses, tolerance to metal toxicity, stomatal closure, shape and size of grains, protection of pollens, transport of phytohormones, etc. In mitochondria and chloroplast, the iron metabolism and its transport across the membrane are mediated by ABC transporters. Tonoplast-localized ABC transporters are involved in internal detoxification of metal ion; thus protecting against the DNA impairment and maintaining cell growth. ABC transporters are involved in the transport of secondary metabolites inside the cells. Microorganisms also engage a large number of ABC transporters to import and expel substrates decisive for their pathogenesis. ABC transporters also suppress the seed embryonic growth until favorable conditions come. This review aims at giving insights on ABC transporters, their evolution, structure, functions and roles in different biological processes for helping the terrestrial plants to survive under adverse environmental conditions. These specialized plant membrane transporters ensure a sustainable economic yield and high-quality products, especially under unfavorable conditions of growth. These transporters can be suitably manipulated to develop 'Plants for the Future'.


Subject(s)
ATP-Binding Cassette Transporters , Plants , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Biological Transport , Homeostasis , Plants/metabolism , Stress, Physiological
2.
Planta ; 252(4): 51, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32940767

ABSTRACT

MAIN CONCLUSION: Tomato leaf curl New Delhi virus-derived AC4 protein interacts with host proteins involved in auxin biosynthesis and reprograms auxin biosynthesis/signaling to help in viral replication and manifestation of the disease-associated symptoms. Perturbations of phytohormone-mediated gene regulatory network cause growth and developmental defects. Furthermore, plant viral infections cause characteristic disease symptoms similar to hormone-deficient mutants. Tomato leaf curl New Delhi Virus (ToLCNDV)-encoded AC4 is a small protein that attenuates the host transcriptional gene silencing, and aggravated disease severity in tomato is correlated with transcript abundance of AC4. Hence, investigating the role of AC4 in pathogenesis divulged that ToLCNDV-AC4 interacted with host TAR1 (tryptophan amino transferase 1)-like protein, CYP450 monooxygenase-the key enzyme of indole acetic acid (IAA) biosynthesis pathway-and with a protein encoded by senescence-associated gene involved in jasmonic acid pathway. Also, ToLCNDV infection resulted in the upregulation of host miRNAs, viz., miR164, miR167, miR393 and miR319 involved in auxin signaling and leaf morphogenesis concomitant with the decline in endogenous IAA levels. Ectopic overexpression of ToLCNDV-derived AC4 in tomato recapitulated the transcriptomic and disruption of auxin biosynthesis/signaling features of the infected leaves. Furthermore, exogenous foliar application of IAA caused remission of the characteristic disease-related symptoms in tomato. The roles of ToLCNDV-AC4 in reprogramming auxin biosynthesis, signaling and cross-talk with JA pathway to help viral replication and manifest the disease-associated symptoms during ToLCNDV infection are discussed.


Subject(s)
Geminiviridae , Indoleacetic Acids , Solanum lycopersicum , Geminiviridae/pathogenicity , Indoleacetic Acids/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/virology , Plant Diseases/virology , Signal Transduction/genetics
3.
Physiol Mol Biol Plants ; 26(6): 1099-1110, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549675

ABSTRACT

Development of abiotic stress tolerant rice cultivars is necessary for sustainable rice production under the scenario of global climate change, dwindling fresh water resources and increase in salt affected areas. Several genes from rice have been functionally validated by using EMS mutants and transgenics. Often, many of these desirable alleles are not available indica rice which is mainly cultivated, and where available, introgression of these alleles into elite cultivars is a time and labour intensive process, in addition to the potential introgression of non-desirable genes due to linkage. CRISPR-Cas technology helps development of elite cultivars with desirable alleles by precision gene editing. Hence, this study was carried out to create mutant alleles of drought and salt tolerance (DST) gene by using CRISPR-Cas9 gene editing in indica rice cv. MTU1010. We used two different gRNAs to target regions of DST protein that might be involved in protein-protein interaction and successfully generated different mutant alleles of DST gene. We selected homozygous dst mutant with 366 bp deletion between the two gRNAs for phenotypic analysis. This 366 bp deletion led to the deletion of amino acid residues from 184 to 305 in frame, and hence the mutant was named as dst ∆184-305 . The dst ∆184-305 mutation induced by CRISPR-Cas9 method in DST gene in indica rice cv. MTU1010 phenocopied EMS-induced dst (N69D) mutation reported earlier in japonica cultivar. The dst ∆184-305 mutant produced leaves with broader width and reduced stomatal density, and thus enhanced leaf water retention under dehydration stress. Our study showed that the reduction in stomatal density in loss of function mutants of dst is, at least, in part due to downregulation of stomatal developmental genes SPCH1, MUTE and ICE1. The Cas9-free dst ∆184-305 mutant exhibited moderate level tolerance to osmotic stress and high level of salt stress in seedling stage. Thus, dst mutant alleles generated in this study will be useful for improving drought and salt tolerance and grain yield in indica rice cultivars.

4.
Protoplasma ; 260(4): 1149-1162, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36705736

ABSTRACT

Histone proteins play a critical role in the primary organization of nucleosomes, which is the fundamental unit of chromatin. Among the five types of the histones, histone H3 has multiple variants, and the number differs among the species. Amongst histone H3 variants, centromeric histone H3 (CENH3) is crucial for centromere identification and proper chromosomal segregation during cell division. In the present study, we have identified 17 putative histone H3 genes of Brassica oleracea. Furthermore, we have done a detailed characterization of the CENH3 gene of B. oleracea. We showed that a single CENH3 gene exhibits allelic diversity with at least two alleles and alternative splicing pattern. Also, we have identified a CENH3 gene-specific co-dominant cleaved amplified polymorphic sequence marker SNP34(A/C) to distinguish CENH3 alleles and follow their expression in leaf and flower tissues. The gene structure analysis of the CENH3 gene revealed the conserved 5'-CAGCAG-3' sequence at the intron 3-exon 4 junction in B. oleracea, which serves as an alternative splicing site with one-codon (alanine) addition/deletion. However, this one-codon alternative splicing feature is not conserved in the CENH3 genes of wild allied Brassica species. Our finding suggests that transcriptional complexity and alternative splicing might play a key role in the transcriptional regulation and function of the CENH3 gene in B. oleracea. Altogether, data generated from the present study can serve as a primary information resource and can be used to engineer CENH3 gene towards developing haploid inducer lines in B. oleracea.


Subject(s)
Brassica , Histones , Histones/metabolism , Botrytis/genetics , Botrytis/metabolism , Alleles , Centromere/metabolism , Brassica/genetics , Brassica/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL