Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Appl Environ Microbiol ; 85(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31562166

ABSTRACT

Airborne bacteria that nucleate ice at relatively warm temperatures (>-10°C) can interact with cloud water droplets, affecting the formation of ice in clouds and the residency time of the cells in the atmosphere. We sampled 65 precipitation events in southeastern Louisiana over 2 years to examine the effect of season, meteorological conditions, storm type, and ecoregion source on the concentration and type of ice-nucleating particles (INPs) deposited. INPs sensitive to heat treatment were inferred to be biological in origin, and the highest concentrations of biological INPs (∼16,000 INPs liter-1 active at ≥-10°C) were observed in snow and sleet samples from wintertime nimbostratus clouds with cloud top temperatures as warm as -7°C. Statistical analysis revealed three temperature classes of biological INPs (INPs active from -5 to -10°C, -11 to -12°C, and -13 to -14°C) and one temperature class of INPs that were sensitive to lysozyme (i.e., bacterial INPs, active from -5 to -10°C). Significant correlations between the INP data and abundances of taxa in the Bacteroidetes, Firmicutes, and unclassified bacterial divisions implied that certain members of these phyla may possess the ice nucleation phenotype. The interrelation between the INP classes and fluorescent dissolved organic matter, major ion concentrations (Na+, Cl-, SO42-, and NO3-), and backward air mass trajectories indicated that the highest concentrations of INPs were sourced from high-latitude North American and Asian continental environments, whereas the lowest values were observed when air was sourced from marine ecoregions. The intra- and extracontinental regions identified as sources of biological INPs in precipitation deposited in the southeastern United States suggests that these bioaerosols can disperse and affect meteorological conditions thousands of kilometers from their terrestrial points of origin.IMPORTANCE The particles most effective at inducing the freezing of water in the atmosphere are microbiological in origin; however, information on the species harboring this phenotype, their environmental distribution, and ecological sources are very limited. Analysis of precipitation collected over 2 years in Louisiana showed that INPs active at the warmest temperatures were sourced from terrestrial ecosystems and displayed behaviors that implicated specific bacterial taxa as the source of the ice nucleation activity. The abundance of biological INPs was highest in precipitation from winter storms and implied that their in-cloud concentrations were sufficient to affect the formation of ice and precipitation in nimbostratus clouds.


Subject(s)
Bacterial Physiological Phenomena , Ice , Rain , Atmosphere , Freezing , Louisiana , Seasons , Temperature
2.
Appl Environ Microbiol ; 78(11): 3950-7, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22467503

ABSTRACT

The simultaneous increase of atmospheric CO(2) and nitrogen (N) deposition to terrestrial ecosystems is predicted to alter plant productivity and, consequently, to change the amount and quality of above- and belowground carbon entering forest soils. It is not known how such changes will impact the composition and function of soil fungal communities that play a key role in degrading complex carbon. We sequenced the fungal cellobiohydrolase I gene (cbhI) from soil DNA and cDNA to compare the richness and composition of resident and expressed cbhI genes at a U.S. Department of Energy free air-carbon dioxide enrichment (FACE) site (NC), which had been exposed to elevated atmospheric CO(2) and/or N fertilization treatment for several years. Our results provide evidence that the richness and composition of the cellulolytic fungi surveyed in this study were distinct in the DNA- and cDNA-based gene surveys and were dominated by Basidiomycota that have low or no representation in public databases. The surveys did not detect differences in richness or phylum-level composition of cbhI-containing, cellulolytic fungi that correlated with elevated CO(2) or N fertilization at the time of sampling.


Subject(s)
Basidiomycota/enzymology , Carbon Dioxide/metabolism , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/metabolism , Nitrogen/metabolism , Pinus taeda/growth & development , Soil Microbiology , Soil/chemistry , Basidiomycota/classification , Basidiomycota/genetics , Basidiomycota/metabolism , Cellulose 1,4-beta-Cellobiosidase/chemistry , DNA, Ribosomal Spacer/analysis , DNA, Ribosomal Spacer/genetics , Ecosystem , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Trees
3.
Environ Microbiol ; 13(10): 2778-93, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21883796

ABSTRACT

Elevated atmospheric CO(2) generally increases plant productivity and subsequently increases the availability of cellulose in soil to microbial decomposers. As key cellulose degraders, soil fungi are likely to be one of the most impacted and responsive microbial groups to elevated atmospheric CO(2). To investigate the impacts of ecosystem type and elevated atmospheric CO(2) on cellulolytic fungal communities, we sequenced 10,677 cbhI gene fragments encoding the catalytic subunit of cellobiohydrolase I, across five distinct terrestrial ecosystem experiments after a decade of exposure to elevated CO(2). The cbhI composition of each ecosystem was distinct, as supported by weighted Unifrac analyses (all P-values; < 0.001), with few operational taxonomic units (OTUs) being shared across ecosystems. Using a 114-member cbhI sequence database compiled from known fungi, less than 1% of the environmental sequences could be classified at the family level indicating that cellulolytic fungi in situ are likely dominated by novel fungi or known fungi that are not yet recognized as cellulose degraders. Shifts in fungal cbhI composition and richness that were correlated with elevated CO(2) exposure varied across the ecosystems. In aspen plantation and desert creosote bush soils, cbhI gene richness was significantly higher after exposure to elevated CO(2) (550 µmol mol(-1)) than under ambient CO(2) (360 µmol mol(-1) CO(2)). In contrast, while the richness was not altered, the relative abundance of dominant OTUs in desert soil crusts was significantly shifted. This suggests that responses are complex, vary across different ecosystems and, in at least one case, are OTU-specific. Collectively, our results document the complexity of cellulolytic fungal communities in multiple terrestrial ecosystems and the variability of their responses to long-term exposure to elevated atmospheric CO(2).


Subject(s)
Carbon Dioxide/analysis , Ecosystem , Fungi/metabolism , Soil Microbiology , DNA, Fungal/genetics , Fungi/classification , Fungi/genetics , Gene Library , Larrea/microbiology , Molecular Sequence Data , Populus/microbiology , Sequence Analysis, DNA , Soil/analysis
4.
Int J Sports Phys Ther ; 15(6): 910-919, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33344007

ABSTRACT

BACKGROUND: Two-dimensional (2D) video analysis is a practical tool for assessing biomechanical factors that may contribute to running-related injury. Asymmetrical or altered coordination of transverse plane trunk movement has been associated with low back pain, increased vertical and horizontal ground reaction forces, and altered hip abduction torque and strength. However, the reliability and validity of 2D transverse plane upper trunk rotation (UTR) has not been assessed. STUDY DESIGN: Validity and reliability study. PURPOSE: To determine the validity and reliability of 2D video-based, transverse plane UTR measurement during running. METHODS: Sixteen runners ran at self-selected speed on a treadmill while three-dimensional (3D) and 2D motion capture occurred synchronously. Two raters measured peak UTR for five consecutive strides on two occasions. Interrater and intrarater reliability and the minimum detectable change was calculated for right and left peak 2D UTR measurement. Concurrent validity and agreement between 2D and 3D measures were determined by calculating Pearson Product Correlation Coefficients (r) and Bland-Altman plots, respectively. RESULTS: Using a single UTR measure per runner, intrarater and interrater reliability (ICC2,1) was excellent (intrarater ICC2,1 range: 0.989-0.999; interrater ICC2,1 range: 0.990-0.995) and the minimum detectable change was 0.39-1.4 degrees. Measurements in 2D and 3D were significantly correlated for peak UTR (all r ≥ 0.986; all p-values < 0.001) and showed good agreement in Bland-Altman plots. CONCLUSION: Two-dimensional video-based measurement of transverse plane peak UTR is valid and reliable. CLINICAL RELEVANCE: UTR measurement may provide clinical insight into gait deviations in the transverse plane that alter angular momentum and increase risk for running-related injury. LEVEL OF EVIDENCE: 2B.

5.
Appl Environ Microbiol ; 75(23): 7537-41, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19801464

ABSTRACT

mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.


Subject(s)
Biodiversity , Computational Biology/methods , Metagenomics/methods , Software , Environmental Microbiology , Sequence Analysis, DNA
6.
Foot (Edinb) ; 34: 18-22, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29202429

ABSTRACT

BACKGROUND: Lack of response to plantar heel pain (PHP) treatment may be related to unmanaged low back pain (LBP) and low back dysfunction, but a relationship between LBP and PHP has not been established. The purpose of this investigation was to compare the prevalence of LBP among individuals with and without PHP and to assess the association between low back disability and foot/ankle function. METHODS: A cross-sectional study compared the prevalence and likelihood of LBP in individuals with (n=27) and without (n=27) PHP matched to age, sex, BMI, foot posture, and foot mobility. In individuals with PHP, correlations were examined between foot/ankle function using the foot and ankle ability measure (FAAM), low back disability using the Oswestry low back disability questionnaire (OSW), duration of PHP symptoms, body mass index (BMI), and age. RESULTS: A greater percentage of individuals with PHP had LBP (74% versus 37% of controls, odds ratio=5.2, P=0.009) and higher levels of low back disability (17% higher OSW score than controls, P<0.001). In individuals with PHP, FAAM scores were correlated with OSW scores (ρ=-0.463, P=0.015), but not with duration of PHP symptoms, BMI, or age (P>0.150). CONCLUSIONS: Individuals with PHP had a greater prevalence of LBP and higher low back disability that was correlated to reduced foot and ankle function. Treatment to address both local and proximal impairments, including impairments related to LBP, may be warranted to improve the management of PHP.


Subject(s)
Disability Evaluation , Fasciitis, Plantar/epidemiology , Low Back Pain/epidemiology , Pain Measurement , Adult , Age Distribution , Comorbidity , Cross-Sectional Studies , Fasciitis, Plantar/diagnosis , Female , Humans , Incidence , Likelihood Functions , Low Back Pain/diagnosis , Male , Middle Aged , Prognosis , Severity of Illness Index , Sex Distribution , Statistics, Nonparametric
7.
Front Nutr ; 4: 7, 2017.
Article in English | MEDLINE | ID: mdl-28386543

ABSTRACT

Current malnourishment statistics are high and are exacerbated by contemporary agricultural practices that damage the very environments on which the production of nutritious food depends. As the World's population grows at an unprecedented rate, food systems must be revised to provide adequate nutrition while minimizing environmental impacts. One specific nutritional problem that needs attention is mineral (e.g., Fe and Zn) malnutrition, which impacts over two-thirds of the World's people living in countries of every economic status. Microgreens, the edible cotyledons of many vegetables, herbs, and flowers, is a newly emerging crop that may be a dense source of nutrition and has the potential to be produced in just about any locale. This study examined the mineral concentration of broccoli microgreens produced using compost-based and hydroponic growing methods that are easily implemented in one's own home. The nutritional value of the resulting microgreens was quantitatively compared to published nutritional data for the mature vegetable. Nutritional data were also considered in the context of the resource demands (i.e., water, fertilizer, and energy) of producing microgreens in order to gain insights into the potential for local microgreen production to diversify food systems, particularly for urban areas, while minimizing the overall environmental impacts of broccoli farming. Regardless of how they were grown, microgreens had larger quantities of Mg, Mn, Cu, and Zn than the vegetable. However, compost-grown (C) microgreens had higher P, K, Mg, Mn, Zn, Fe, Ca, Na, and Cu concentrations than the vegetable. For eight nutritionally important minerals (P, K, Ca, Mg, Mn, Fe, Zn, and Na), the average C microgreen:vegetable nutrient ratio was 1.73. Extrapolation from experimental data presented here indicates that broccoli microgreens would require 158-236 times less water than it does to grow a nutritionally equivalent amount of mature vegetable in the fields of California's Central Valley in 93-95% less time and without the need for fertilizer, pesticides, or energy-demanding transport from farm to table. The results of this study suggest that broccoli microgreens have the potential to be a rich source of minerals that can be produced by individuals, even in urban settings, providing better access to adequate nutrition.

8.
Front Microbiol ; 8: 207, 2017.
Article in English | MEDLINE | ID: mdl-28270796

ABSTRACT

Previous studies showed that members of the Burkholderiales were important in the succession of aerobic, molybdenum-dependent CO oxidizing-bacteria on volcanic soils. During these studies, four isolates were obtained from Kilauea Volcano (Hawai'i, USA); one strain was isolated from Pico de Orizaba (Mexico) during a separate study. Based on 16S rRNA gene sequence similarities, the Pico de Orizaba isolate and the isolates from Kilauea Volcano were provisionally assigned to the genera Burkholderia and Paraburkholderia, respectively. Each of the isolates possessed a form I coxL gene that encoded the catalytic subunit of carbon monoxide dehydrogenase (CODH); none of the most closely related type strains possessed coxL or oxidized CO. Genome sequences for Paraburkholderia type strains facilitated an analysis of 16S rRNA gene sequence similarities and average nucleotide identities (ANI). ANI did not exceed 95% (the recommended cutoff for species differentiation) for any of the pairwise comparisons among 27 reference strains related to the new isolates. However, since the highest 16S rRNA gene sequence similarity among this set of reference strains was 98.93%, DNA-DNA hybridizations (DDH) were performed for two isolates whose 16S rRNA gene sequence similarities with their nearest phylogenetic neighbors were 98.96 and 99.11%. In both cases DDH values were <16%. Based on multiple variables, four of the isolates represent novel species within the Paraburkholderia: Paraburkholderia hiiakae sp. nov. (type strain I2T = DSM 28029T = LMG 27952T); Paraburkholderia paradisi sp. nov. (type strain WAT = DSM 28027T = LMG 27949T); Paraburkholderia peleae sp. nov. (type strain PP52-1T = DSM 28028T = LMG 27950T); and Paraburkholderia metrosideri sp. nov. (type strain DNBP6-1T = DSM 28030T = LMG 28140T). The remaining isolate represents the first CO-oxidizing member of the Burkholderia cepacia complex: Burkholderia alpina sp. nov. (type strain PO-04-17-38T = DSM 28031T = LMG 28138T).

9.
CBE Life Sci Educ ; 15(2)2016.
Article in English | MEDLINE | ID: mdl-27146162

ABSTRACT

Western science has grown increasingly reductionistic and, in parallel, the undergraduate life sciences curriculum has become disciplinarily fragmented. While reductionistic approaches have led to landmark discoveries, many of the most exciting scientific advances in the late 20th century have occurred at disciplinary interfaces; work at these interfaces is necessary to manage the world's looming problems, particularly those that are rooted in cellular-level processes but have ecosystem- and even global-scale ramifications (e.g., nonsustainable agriculture, emerging infectious diseases). Managing such problems requires comprehending whole scenarios and their emergent properties as sums of their multiple facets and complex interrelationships, which usually integrate several disciplines across multiple scales (e.g., time, organization, space). This essay discusses bringing interdisciplinarity into undergraduate cellular biology courses through the use of multiscalar topics. Discussing how cellular-level processes impact large-scale phenomena makes them relevant to everyday life and unites diverse disciplines (e.g., sociology, cell biology, physics) as facets of a single system or problem, emphasizing their connections to core concepts in biology. I provide specific examples of multiscalar topics and discuss preliminary evidence that using such topics may increase students' understanding of the cell's position within an ecosystem and how cellular biology interfaces with other disciplines.


Subject(s)
Cell Biology/education , Curriculum , Interdisciplinary Studies , Universities , Educational Measurement , Eutrophication , Humans , Neoplasms/pathology
10.
Front Microbiol ; 6: 802, 2015.
Article in English | MEDLINE | ID: mdl-26300868

ABSTRACT

Recent metagenomic studies have revealed that microbial diversity in the atmosphere rivals that of surface environments. This indicates that the atmosphere may be worth bioprospecting in for novel microorganisms, especially those selected for by harsh atmospheric conditions. This is interesting in light of the antibiotic resistance crisis and renewed interests in bioprospecting for members of the Actinomycetales, which harbor novel secondary metabolite-producing pathways and produce spores that make them well suited for atmospheric travel. The latter leads to the hypothesis that the atmosphere may be a promising environment in which to search for novel Actinomycetales. Although ubiquitous in soils, where bioprospecting efforts for Actinomycetales have been and are largely still focused, we present novel data indicating that culturable members of this taxonomic order are 3-5.6 times more abundant in air samples collected at 1.5, 4.5, 7.5, and 18 m above the ground, than in the underlying soil. These results support the hypothesis that mining the vast and readily accessible lower atmosphere for novel Actinomycetales in the search for undescribed secondary metabolites could prove fruitful.

11.
PLoS One ; 10(1): e0117026, 2015.
Article in English | MEDLINE | ID: mdl-25629158

ABSTRACT

Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0-4 cm and 4-8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0-4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and sagebrush-dominated soils warrant future research to examine soil fungal community composition across more sites and time points as well as in association with native grass species that also occupy cheatgrass-invaded ecosystems.


Subject(s)
Artemisia , Bromus , Ecosystem , Mycorrhizae/isolation & purification , Soil Microbiology , Introduced Species , Soil , United States
12.
J Microbiol Biol Educ ; 15(2): 277-86, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25574294

ABSTRACT

Bringing discovery-based research into undergraduate laboratory courses increases student motivation and learning gains over traditional exercises that merely teach technique or demonstrate well-documented phenomena. Laboratory experiences are further enhanced when they are designed to challenge student perspectives on topics relevant to their lives. To this end, a laboratory module on antibiotics and hormones, which are generally discussed in the context of human health, was developed for students to explore the multifaceted roles of antibiotics and hormones in nature (e.g. interspecies communication) via reading primary scientific literature and performing discovery-based experiments. The main objective of this module was to increase the general biological literacy of students as determined by their ability to connect the Five Core Concepts of Biological Literacy (American Association for the Advancement of Science, Vision and Change in Undergraduate Education: A Call to Action, 2011) to the topics "hormones" and "antibiotics" in pre- and postmodule surveys. After discussing unpublished research findings, cell biology students performed experiments demonstrating that: 1) fungi may promote fern growth via hormone production, 2) novel bacterial isolates in the genus Streptomyces produce antifungal compounds, and 3) subinhibitory antibiotic concentrations may enhance soil bacterial growth. The third finding provided evidence supporting a hypothesis framed in a scientific article that students read and discussed. Student perspectives on premodule surveys focused on roles of hormones and antibiotics in the human body (e.g. development, fighting infection), but their broadened postmodule perspectives encompassed the roles of these molecules in organismal communication and possibly the evolution of multicellularity.

13.
Front Microbiol ; 4: 78, 2013.
Article in English | MEDLINE | ID: mdl-23641237

ABSTRACT

Increasing levels of atmospheric carbon dioxide (CO2) and rates of nitrogen (N)-deposition to forest ecosystems are predicted to alter the structure and function of soil fungal communities, but the spatially heterogeneous distribution of soil fungi has hampered investigations aimed at understanding such impacts. We hypothesized that soil physical and chemical properties and fungal community composition would be differentially impacted by elevated atmospheric CO2 (eCO2) and N-fertilization in spatially separated field samples, in the forest floor, 0-2, 2-5, and 5-10 cm depth intervals in a loblolly pine Free-Air Carbon Dioxide Enrichment (FACE) experiment. In all soils, quantitative PCR-based estimates of fungal biomass were highest in the forest floor. Fungal richness, based on pyrosequencing of the fungal ribosomal large subunit gene, increased in response to N-fertilization in 0-2 cm and forest floor intervals. Composition shifted in forest floor, 0-2 and 2-5 cm intervals in response to N-fertilization, but the shift was most distinct in the 0-2 cm interval, in which the largest number of statistically significant changes in soil chemical parameters (i.e., phosphorus, organic matter, calcium, pH) was also observed. In the 0-2 cm interval, increased recovery of sequences from the Thelephoraceae, Tricholomataceae, Hypocreaceae, Clavicipitaceae, and Herpotrichiellaceae families and decreased recovery of sequences from the Amanitaceae correlated with N-fertilization. In this same depth interval, Amanitaceae, Tricholomataceae, and Herpotriciellaceae sequences were recovered less frequently from soils exposed to eCO2 relative to ambient conditions. These results demonstrated that vertical stratification should be taken into consideration in future efforts to elucidate environmental impacts on fungal communities and their feedbacks on ecosystem processes.

14.
J Microbiol Methods ; 88(2): 224-8, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22178429

ABSTRACT

Understanding soil fungal distribution and activities, particularly at the level of gene expression, is important in unveiling mechanisms regulating their activities in situ. Recent identification of fungal genes involved in carbon cycling has provided the foundation for developing reverse-transcriptase PCR assays to monitor spatiotemporal gene expression patterns in soils and other complex microbial systems. The polyadenylated 3' ends of eukaryotic mRNA transcripts enables the use of oligo(dT) primers for cDNA synthesis, but this can result in the overrepresentation of the 3' end of transcripts in cDNA pools. In an effort to increase the uniformity of transcripts represented in cDNA pools, random hexamers have been used. The use of both priming methods is abundant in the literature, but we do not know how these methods perform relative to each other. We performed comparative richness and compositional analyses of the fungal glycosyl hydrolase family 7 cellobiohydrolase I gene cbhI amplified from soil cDNAs that had been generated using either oligo(dT) primers or random hexamers. Our results demonstrate that similar cbhI richness and composition were recovered using both approaches. Richness estimates and compositional profiles of cbhI sequence libraries generated from random hexamer-primed cDNA were more variable than from libraries generated from oligo(dT) primed cDNA. However, our overall results indicate that, on average, comparable richness and composition were recovered from soil cDNAs when either priming method was used.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/genetics , DNA Primers/genetics , Fungal Proteins/genetics , Genes, Fungal/genetics , Oligodeoxyribonucleotides/genetics , Soil Microbiology , Cellulose 1,4-beta-Cellobiosidase/chemistry , DNA Primers/chemistry , DNA, Complementary/analysis , DNA, Complementary/chemistry , DNA, Complementary/metabolism , Fungal Proteins/chemistry , Gene Library , Oligodeoxyribonucleotides/chemistry , RNA, Fungal/analysis , RNA, Fungal/genetics , RNA, Messenger/analysis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
15.
FEMS Microbiol Ecol ; 79(1): 167-75, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22029898

ABSTRACT

Burkholderia is a physiologically and ecologically diverse genus that occurs commonly in assemblages of soil and rhizosphere bacteria. Although Burkholderia is known for its heterotrophic versatility, we demonstrate that 14 distinct environmental isolates oxidized carbon monoxide (CO) and possessed the gene encoding the catalytic subunit of form I CO dehydrogenase (coxL). DNA from a Burkholderia isolate obtained from a passalid beetle also contained coxL as do the genomic sequences of species H160 and Ch1-1. Isolates were able to consume CO at concentrations ranging from 100 ppm (vol/vol) to sub-ambient (< 60 ppb (vol/vol)). High concentrations of pyruvate inhibited CO uptake (> 2.5 mM), but mixotrophic consumption of CO and pyruvate occurred when initial pyruvate concentrations were lower (c. 400 lM). With the exception of an isolate most closely related to Burkholderia cepacia, all CO-oxidizing isolates examined were members of a nonpathogenic clade and were most closely related to Burkholderia species, B. caledonica, B. fungorum, B. oxiphila, B. mimosarum, B. nodosa, B. sacchari, B. bryophila, B. ferrariae, B. ginsengesoli, and B. unamae. However, none of these type strains oxidized CO or contained coxL based on results from PCR analyses. Collectively, these results demonstrate that the presence of CO oxidation within members of the Burkholderia genus is variable but it is most commonly found among rhizosphere inhabitants that are not closely related to B. cepacia.


Subject(s)
Burkholderia/metabolism , Carbon Monoxide/metabolism , Aldehyde Oxidoreductases/genetics , Aldehyde Oxidoreductases/metabolism , Burkholderia/classification , Burkholderia/genetics , Ecology , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Phylogeny , RNA, Ribosomal, 16S
16.
J Microbiol Methods ; 86(3): 344-50, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21704085

ABSTRACT

The importance of soil fungi in complex carbon degradation and the recent identification of genes involved in this process have sparked considerable interest in examining fungal gene expression in situ. Expression of target eukaryotic genes is commonly examined using reverse transcription (RT)-PCR, during which single-stranded (ss) complementary DNA (cDNA) is synthesized from an oligo (dT) primer and the gene of interest is subsequently amplified by PCR using gene specific primers. Another method that is being increasingly employed in environmental gene expression studies is SMART PCR, which generates and amplifies double-stranded (ds) complementary DNA (cDNA) from sscDNA using PCR, prior to gene-specific PCR. We performed a replicated comparison of these two methods using RNA extracted from forest soil and litter to determine if the two approaches yielded comparable results. Richness, composition and reproducibility of gene expression profiles of the fungal glycosyl hydrolase family 7 (GH7) cellobiohydrolase I gene (cbhI) were examined when amplified from sscDNA or dscDNA synthesized using SMART PCR. In the dscDNA libraries from soil or litter samples, richness was significantly reduced and the composition was altered relative to sscDNA libraries. Library composition was significantly more reproducible among replicate sscDNA libraries than among parallel dscDNA libraries from litter. In sum, the reduced richness and altered composition produced in the dscDNA libraries could substantially influence ecological interpretations of the data. Defining the factors underpinning the methodological biases will potentially aid in optimizing the design of gene expression studies in soils and other complex environmental samples.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase/genetics , DNA, Fungal/analysis , Nucleic Acid Amplification Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , DNA Primers , DNA, Fungal/genetics , Fungi/genetics , Fungi/isolation & purification , Garbage , Gene Amplification , Gene Expression Profiling , Gene Library , Genes, Fungal , Sequence Analysis, DNA , Soil Microbiology
19.
ISME J ; 3(12): 1325-34, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19641536

ABSTRACT

Water availability oscillates dramatically on young volcanic deposits, and may control the distribution and activity of microbes during early stages of biological succession. Carbon monoxide (CO)-oxidizing bacteria are among the pioneering colonists on volcanic deposits and are subjected to these water stresses. We report here the effects of water potential on CO-oxidizing bacteria in unvegetated (bare) and vegetated (canopy) sites on a 1959 volcanic deposit on Kilauea Volcano (Hawai'i). Time course measurements of water potential showed that average water potentials in the surface layer (0-1 cm) of canopy soil remained between -0.1 and 0 MPa, whereas dramatic diurnal oscillations (for example, between -60 and 0 MPa) occur in bare site surface cinders. During a moderate drying event in situ (-1.7 to 0 MPa), atmospheric CO consumption by intact bare site cores decreased 2.7-fold. For bare and canopy surface samples, maximum potential CO oxidation rates decreased 40 and 60%, respectively, when water potentials were lowered from 0 to -1.5 MPa in the laboratory. These observations indicated that CO oxidation is moderately sensitive to changes in water potential. Additional analyses showed that CO oxidation resumes within a few hours of rehydration, even after desiccation at -150 MPa for 63 days. Samples from both sites exposed to multiple cycles of drying and rewetting (-80 to 0 MPa), lost significant activity after the first cycle, but not after subsequent cycles. Similar responses of CO oxidation in both sites suggested that active CO-oxidizing communities in bare and canopy sites do not express differential adaptations to water stress.


Subject(s)
Bacterial Physiological Phenomena , Carbon Monoxide/metabolism , Dehydration , Stress, Physiological , Geologic Sediments/microbiology , Hawaii , Oxidation-Reduction , Soil Microbiology
20.
ISME J ; 2(2): 195-203, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18049461

ABSTRACT

Patterns of microbial colonization and interactions between microbial processes and vascular plants on volcanic deposits have received little attention. Previous reports have shown that atmospheric CO and hydrogen contribute significantly to microbial metabolism on Kilauea volcano (Hawaii) deposits with varied ages and successional development. Relationships between CO oxidation and plant communities were not clear, however, since deposit age and vegetation status covaried. To determine plant-microbe interactions in deposits of uniform ages, CO and hydrogen dynamics have been assayed for unvegetated tephra on a 1959 deposit at Pu'u Puai (PP-bare), at the edge of tree 'islands' within the PP deposit (PP-edge) and within PP tree islands (PP-canopy). Similar assays have been conducted for vegetated and unvegetated sites on a 1969 Mauna Ulu (MU) lava flow. Net in situ atmospheric CO uptake was highest at PP-edge and PP-bare sites (2.2+/-0.5 and 1.3+/-0.1 mg CO m(-2) day(-1), respectively), and least for PP-canopy (-3.2+/-0.9 mg CO m(-2) day(-1), net emission). Respiration rates, microbial biomass and maximum CO uptake potential showed an opposing pattern. Comparisons of atmospheric CO uptake and CO(2) production rates indicate that CO contributes significantly to microbial metabolism in PP-bare and MU-unvegetated sites, but negligibly where vegetation is well developed. Nonetheless, maximum potential CO uptake rates indicate that CO oxidizer populations increase with increasing plant biomass and consume CO actively. Some of these CO oxidizers may contribute to elevated nitrogen fixation rates (acetylene reduction) measured within tree islands, and thus, support plant successional development.


Subject(s)
Bacteria/metabolism , Carbon Monoxide/metabolism , Ferns/growth & development , Hydrogen/metabolism , Magnoliopsida/growth & development , Volcanic Eruptions , Hawaii , Magnoliopsida/classification , Myrica/growth & development , Myrtaceae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL