Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters

Database
Main subject
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732996

ABSTRACT

X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography is predominantly performed at large synchrotron facilities. We present a laboratory-scale nanotomography instrument that achieves nanoscale spatial resolution while addressing the limitations of conventional tomography tools. The instrument combines the electron beam of a scanning electron microscope (SEM) with the precise, broadband X-ray detection of a superconducting transition-edge sensor (TES) microcalorimeter. The electron beam generates a highly focused X-ray spot on a metal target held micrometers away from the sample of interest, while the TES spectrometer isolates target photons with a high signal-to-noise ratio. This combination of a focused X-ray spot, energy-resolved X-ray detection, and unique system geometry enables nanoscale, element-specific X-ray imaging in a compact footprint. The proof of concept for this approach to X-ray nanotomography is demonstrated by imaging 160 nm features in three dimensions in six layers of a Cu-SiO2 integrated circuit, and a path toward finer resolution and enhanced imaging capabilities is discussed.

2.
Article in English | MEDLINE | ID: mdl-35529769

ABSTRACT

Feature sizes in integrated circuits have decreased substantially over time, and it has become increasingly difficult to three-dimensionally image these complex circuits after fabrication. This can be important for process development, defect analysis, and detection of unexpected structures in externally sourced chips, among other applications. Here, we report on a non-destructive, tabletop approach that addresses this imaging problem through x-ray tomography, which we uniquely realize with an instrument that combines a scanning electron microscope (SEM) with a transition-edge sensor (TES) x-ray spectrometer. Our approach uses the highly focused SEM electron beam to generate a small x-ray generation region in a carefully designed target layer that is placed over the sample being tested. With the high collection efficiency and resolving power of a TES spectrometer, we can isolate x-rays generated in the target from background and trace their paths through regions of interest in the sample layers, providing information about the various materials along the x-ray paths through their attenuation functions. We have recently demonstrated our approach using a 240 Mo/Cu bilayer TES prototype instrument on a simplified test sample containing features with sizes of ∼ 1 µm. Currently, we are designing and building a 3000 Mo/Au bilayer TES spectrometer upgrade, which is expected to improve the imaging speed by factor of up to 60 through a combination of increased detector number and detector speed.

3.
Nano Lett ; 15(2): 1122-7, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25625509

ABSTRACT

Optimizing new generations of two-dimensional devices based on van der Waals materials will require techniques capable of measuring variations in electronic properties in situ and with nanometer spatial resolution. We perform scanning microwave microscopy (SMM) imaging of single layers of MoS2 and n- and p-doped WSe2. By controlling the sample charge carrier concentration through the applied tip bias, we are able to reversibly control and optimize the SMM contrast to image variations in electronic structure and the localized effects of surface contaminants. By further performing tip bias-dependent point spectroscopy together with finite element simulations, we distinguish the effects of the quantum capacitance and determine the local dominant charge carrier species and dopant concentration. These results underscore the capability of SMM for the study of 2D materials to image, identify, and study electronic defects.

4.
Nanotechnology ; 25(41): 415502, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25258349

ABSTRACT

GaN nanowires were coated with tungsten by means of atomic layer deposition. These structures were then adapted as probe tips for near-field scanning microwave microscopy. These probes displayed a capacitive resolution of ~0.03 fF, which surpasses that of a commercial Pt tip. Upon imaging of MoS2 sheets with both the Pt and GaN nanowire tips, we found that the nanowire tips were comparatively immune to surface contamination and far more durable than their Pt counterparts.

5.
ACS Appl Mater Interfaces ; 15(8): 11084-11091, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36800520

ABSTRACT

Compliant sutures surrounded by stiff matrices are present in biological armors and carapaces, providing enhanced mechanical performance. Understanding the mechanisms through which these sutured composites achieve outstanding properties is key to developing engineering materials with improved strength and toughness. This article studies the impact of suture geometry and load direction on the performance of suture joints using a two-stage reactive polymer resin that enables facile photopatterning of mechanical heterogeneity within a single polymer network. Compliant sinusoidal sutures with varying geometries are photopatterned into stiff matrices, generating a modulus contrast of 2 orders of magnitude. Empirical relationships are developed connecting suture wavelength and amplitude to composite performance under parallel and perpendicular loading conditions. Results indicate that a greater suture interdigitation broadly improves composite performance when loading is applied perpendicular to suture joints but has deleterious effects when loading is applied parallel to the joint. Investigations into the failure mechanisms under perpendicular loading highlight the interplay between suture geometry and crack growth stability after damage initiation occurs. Our findings could enable a framework for engineering composites and bio-inspired structures in the future.


Subject(s)
Sutures , Tensile Strength
6.
Adv Mater ; 35(26): e2209779, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36951229

ABSTRACT

Thermoelectric materials convert heat into electricity through thermally driven charge transport in solids or vice versa for cooling. To compete with conventional energy-conversion technologies, a thermoelectric material must possess the properties of both an electrical conductor and a thermal insulator. However, these properties are normally mutually exclusive because of the interconnection between scattering mechanisms for charge carriers and phonons. Recent theoretical investigations on sub-device scales have revealed that nanopillars attached to a membrane exhibit a multitude of local phonon resonances, spanning the full spectrum, that couple with the heat-carrying phonons in the membrane and cause a reduction in the in-plane thermal conductivity, with no expected change in the electrical properties because the nanopillars are outside the pathway of voltage generation and charge transport. Here this effect is demonstrated experimentally for the first time by investigating device-scale suspended silicon membranes with GaN nanopillars grown on the surface. The nanopillars cause up to 21% reduction in the thermal conductivity while the power factor remains unaffected, thus demonstrating an unprecedented decoupling in the semiconductor's thermoelectric properties. The measured thermal conductivity behavior for coalesced nanopillars and corresponding lattice-dynamics calculations provide evidence that the reductions are mechanistically tied to the phonon resonances. This finding paves the way for high-efficiency solid-state energy recovery and cooling.

7.
Appl Phys Lett ; 114(23)2019.
Article in English | MEDLINE | ID: mdl-38487744

ABSTRACT

The development of a superconducting analog to the transistor with extremely low power dissipation will accelerate the proliferation of low-temperature circuitry operating in the milliKelvin regime. The thin-film, magnetically actuated cryotron switch is a candidate building block for more complicated and flexible milliKelvin circuitry. We demonstrate its utility for implementing reconfigurable circuitry by integrating a cryotron switch into flux-summed code-division SQUID multiplexed readout for large arrays of transition-edge-sensor (TES) microcalorimeters. Code-division multiplexing eliminates the noise penalty of time-division multiplexing while being drop-in compatible with the latter's control electronics. However, code-division multiplexing is susceptible to single-point failure mechanisms which can result in an unconstrained demodulation matrix and the loss of information from many sensing elements. In the event of a failure, the integrated cryotron switch provides a zero-signal output from a single TES, enabling the demodulation matrix used to compute TES signals from SQUID signals to be constrained and data recovered from the remaining sensors. This demonstration of configurable error correction provides both a realworld application of the cryotron switch and a foundation for more complex circuitry at milliKelvin temperatures.

8.
Article in English | MEDLINE | ID: mdl-33343056

ABSTRACT

GaN nanowire LEDs with radial p-i-n junctions were grown by molecular beam epitaxy using N-polar selective area growth on Si(111) substrates. The N-polar selective area growth process facilitated the growth of isolated and high-aspect-ratio n-type NW cores that were not subject to self-shadowing effects during the subsequent growth of a conformal low-temperature Mg:GaN shell. LED devices were fabricated from single-NW and multiple-NW arrays in their as-grown configuration by contacting the n-type core through an underlying conductive GaN layer and the p-type NW shell via a metallization layer. The NW LEDs exhibited rectifying I-V characteristics with a sharp turn-on voltage near the GaN bandgap and low reverse bias leakage current. Under forward bias, the NW LEDs produced electroluminescence with a peak emission wavelength near 380 nm and exhibited a small spectral blueshift with increasing current injection, both of which are consistent with electron recombination in the p-type shell layer through donor-acceptor-pair recombination. These core-shell NW devices demonstrate N-polar selective area growth as an effective technique for producing on-chip nanoscale light sources.

SELECTION OF CITATIONS
SEARCH DETAIL