Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Chem Rev ; 122(1): 789-829, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34694124

ABSTRACT

The development of advanced structural alloys with performance meeting the requirements of extreme environments in nuclear reactors has been long pursued. In the long history of alloy development, the search for metallic alloys with improved radiation tolerance or increased structural strength has relied on either incorporating alloying elements at low concentrations to synthesize so-called dilute alloys or incorporating nanoscale features to mitigate defects. In contrast to traditional approaches, recent success in synthesizing multicomponent concentrated solid-solution alloys (CSAs), including medium-entropy and high-entropy alloys, has vastly expanded the compositional space for new alloy discovery. Their wide variety of elemental diversity enables tunable chemical disorder and sets CSAs apart from traditional dilute alloys. The tunable electronic structure critically lowers the effectiveness of energy dissipation via the electronic subsystem. The tunable chemical complexity also modifies the scattering mechanisms in the atomic subsystem that control energy transport through phonons. The level of chemical disorder depends substantively on the specific alloying elements, rather than the number of alloying elements, as the disorder does not monotonically increase with a higher number of alloying elements. To go beyond our knowledge based on conventional alloys and take advantage of property enhancement by tuning chemical disorder, this review highlights synergistic effects involving valence electrons and atomic-level and nanoscale inhomogeneity in CSAs composed of multiple transition metals. Understanding of the energy dissipation pathways, deformation tolerance, and structural stability of CSAs can proceed by exploiting the equilibrium and non-equilibrium defect processes at the electronic and atomic levels, with or without microstructural inhomogeneities at multiple length scales. Knowledge of tunable chemical disorder in CSAs may advance the understanding of the substantial modifications in element-specific alloy properties that effectively mitigate radiation damage and control a material's response in extreme environments, as well as overcome strength-ductility trade-offs and provide overarching design strategies for structural alloys.

2.
Nanotechnology ; 30(29): 294004, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-30947152

ABSTRACT

Grain growth and phase stability of a nanocrystalline face-centered cubic (fcc) Ni0.2Fe0.2Co0.2Cr0.2Cu0.2 high-entropy alloy (HEA), either thermally- or irradiation-induced, are investigated through in situ and post-irradiation transmission electron microscopy (TEM) characterization. Synchrotron and lab x-ray diffraction measurements are carried out to determine the microstructural evolution and phase stability with improved statistics. Under in situ TEM observation, the fcc structure is stable at 300 °C with a small amount of grain growth from 15.8 to ∼20 nm being observed after 1800 s. At 500 °C, however, some abnormal growth activities are observed after 1400 s, and secondary phases are formed. Under 3 MeV Ni room temperature ion irradiation up to an extreme dose of nearly 600 displacements per atom, the fcc phase is stable and the average grain size increases from 15.6 to 25.2 nm. Grain growth mechanisms driven by grain rotation, grain boundary curvature, and disorder are discussed.

3.
Entropy (Basel) ; 20(12)2018 Nov 25.
Article in English | MEDLINE | ID: mdl-33266624

ABSTRACT

In the present study, we have revealed that (NiCoFeCr)100-xPdx (x= 1, 3, 5, 20 atom%) high-entropy alloys (HEAs) have both local- and long-range lattice distortions by utilizing X-ray total scattering, X-ray diffraction, and extended X-ray absorption fine structure methods. The local lattice distortion determined by the lattice constant difference between the local and average structures was found to be proportional to the Pd content. A small amount of Pd-doping (1 atom%) yields long-range lattice distortion, which is demonstrated by a larger (200) lattice plane spacing than the expected value from an average structure, however, the degree of long-range lattice distortion is not sensitive to the Pd concentration. The structural stability of these distorted HEAs under high-pressure was also examined. The experimental results indicate that doping with a small amount of Pd significantly enhances the stability of the fcc phase by increasing the fcc-to-hcp transformation pressure from ~13.0 GPa in NiCoFeCr to 20-26 GPa in the Pd-doped HEAs and NiCoFeCrPd maintains its fcc lattice up to 74 GPa, the maximum pressure that the current experiments have reached.

4.
Phys Chem Chem Phys ; 19(8): 6264-6273, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28195279

ABSTRACT

Due to lattice mismatch between epitaxial films and substrates, in-plane strain fields are produced in the thin films, with accompanying structural distortions, and ion implantation can be used to controllably engineer the strain throughout the film. Because of the strain profile, local defect energetics are changed. In this study, the effects of in-plane strain fields on the formation and migration of oxygen vacancies in KTaO3 are investigated using first-principles calculations. In particular, the doubly positive charged oxygen vacancy (V) is studied, which is considered to be the main charge state of the oxygen vacancy in KTaO3. We find that the formation energies for oxygen vacancies are sensitive to in-plane strain and oxygen position. The local atomic configuration is identified, and strong relaxation of local defect structure is mainly responsible for the formation characteristics of these oxygen vacancies. Based on the computational results, formation-dependent site preferences for oxygen vacancies are expected to occur under epitaxial strain, which can result in orders of magnitude differences in equilibrium vacancy concentrations on different oxygen sites. In addition, all possible migration pathways, including intra- and inter-plane diffusions, are considered. In contrast to the strain-enhanced intra-plane diffusion, the diffusion in the direction normal to the strained plane is impeded under the epitaxial strain field. These anisotropic diffusion processes can further enhance site preferences.

5.
Phys Chem Chem Phys ; 17(35): 22538-42, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26267679

ABSTRACT

Molecular dynamics techniques in combination with the inelastic thermal spike model are used to study the coupled effects of the inelastic energy loss due to 21 MeV Ni ion irradiation with pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the size of nanoscale ion tracks can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding on the role of defects in electronic energy dissipation and electron-lattice coupling.

6.
Phys Chem Chem Phys ; 16(29): 15590-6, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24953742

ABSTRACT

Intrinsic point defect complexes in SrTiO3 under different chemical conditions are studied using density functional theory. The Schottky defect complex consisting of nominally charged Sr, Ti and O vacancies is predicted to be the most stable defect structure in stoichiometric SrTiO3, with a relatively low formation energy of 1.64 eV per defect. In addition, the mechanisms of defect complex formation in nonstoichiometric SrTiO3 are investigated. Excess SrO leads to the formation of oxygen vacancies and a strontium-titanium antisite defect, while a strontium vacancy together with an oxygen vacancy and a titanium-strontium antisite defect are produced in an excess TiO2 environment. Since point defects, such as oxygen vacancies and cation antisite defects, are intimately related to the functionality of SrTiO3, these results provide guidelines for controlling the formation of intrinsic point defects and optimizing the functionality of SrTiO3 by controlling nonstoichiometric chemical compositions of SrO and TiO2 in experiments.

7.
Phys Chem Chem Phys ; 16(17): 8051-9, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24651953

ABSTRACT

Grain growth of nanocrystalline materials is generally thermally activated, but can also be driven by irradiation at much lower temperature. In nanocrystalline ceria and zirconia, energetic ions deposit their energy to both atomic nuclei and electrons. Our experimental results have shown that irradiation-induced grain growth is dependent on the total energy deposited, where electronic energy loss and elastic collisions between atomic nuclei both contribute to the production of disorder and grain growth. Our atomistic simulations reveal that a high density of disorder near grain boundaries leads to locally rapid grain movement. The additive effect from both electronic excitation and atomic collision cascades on grain growth demonstrated in this work opens up new possibilities for controlling grain sizes to improve functionality of nanocrystalline materials.


Subject(s)
Cerium/chemistry , Crystallization/methods , Nanoparticles/chemistry , Nanoparticles/radiation effects , Zirconium/chemistry , Electrons , Ions/chemistry , Nanoparticles/ultrastructure
8.
Nanoscale ; 16(30): 14366-14377, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38984462

ABSTRACT

It is widely accepted that the interaction of swift heavy ions with many complex oxides is predominantly governed by the electronic energy loss that gives rise to nanoscale amorphous ion tracks along the penetration direction. The question of how electronic excitation and electron-phonon coupling affect the atomic system through defect production, recrystallization, and strain effects has not yet been fully clarified. To advance the knowledge of the atomic structure of ion tracks, we irradiated single crystalline SrTiO3 with 629 MeV Xe ions and performed comprehensive electron microscopy investigations complemented by molecular dynamics simulations. This study shows discontinuous ion-track formation along the ion penetration path, comprising an amorphous core and a surrounding few monolayer thick shell of strained/defective crystalline SrTiO3. Using machine-learning-aided analysis of atomic-scale images, we demonstrate the presence of 4-8% strain in the disordered region interfacing with the amorphous core in the initially formed ion tracks. Under constant exposure of the electron beam during imaging, the amorphous part of the ion tracks readily recrystallizes radially inwards from the crystalline-amorphous interface under the constant electron-beam irradiation during the imaging. Cation strain in the amorphous region is observed to be significantly recovered, while the oxygen sublattice remains strained even under the electron irradiation due to the present oxygen vacancies. The molecular dynamics simulations support this observation and suggest that local transient heating and annealing facilitate recrystallization process of the amorphous phase and drive Sr and Ti sublattices to rearrange. In contrast, the annealing of O atoms is difficult, thus leaving a remnant of oxygen vacancies and strain even after recrystallization. This work provides insights for creating and transforming novel interfaces and nanostructures for future functional applications.

9.
Phys Chem Chem Phys ; 15(43): 18915-20, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24091931

ABSTRACT

Nanocrystalline ceramic-oxides are prone to grain growth rendering their highly attractive properties practically unusable. Using atomistic simulations of ceria as a model material system, we elucidate a framework to design dopant-pinned grain boundaries that prevent this grain growth. While in metallic systems it has been shown that a large mismatch between host and dopant atomic sizes prevents grain growth, in ceramic-oxides we find that this concept is not applicable. Instead, we find that dopant-oxygen vacancy interaction, i.e., dopant migration energy in the presence of an oxygen vacancy, and dopant-oxygen vacancy binding energy are the controlling factors in grain growth. Our prediction agrees with and explains previous experimental observations.

10.
Nature ; 445(7124): 190-3, 2007 Jan 11.
Article in English | MEDLINE | ID: mdl-17215840

ABSTRACT

There are large amounts of heavy alpha-emitters in nuclear waste and nuclear materials inventories stored in various sites around the world. These include plutonium and minor actinides such as americium and curium. In preparation for geological disposal there is consensus that actinides that have been separated from spent nuclear fuel should be immobilized within mineral-based ceramics rather than glass because of their superior aqueous durability and lower risk of accidental criticality. However, in the long term, the alpha-decay taking place in these ceramics will severely disrupt their crystalline structure and reduce their durability. A fundamental property in predicting cumulative radiation damage is the number of atoms permanently displaced per alpha-decay. At present, this number is estimated to be 1,000-2,000 atoms/alpha in zircon. Here we report nuclear magnetic resonance, spin-counting experiments that measure close to 5,000 atoms/alpha in radiation-damaged natural zircons. New radiological nuclear magnetic resonance measurements on highly radioactive, 239Pu zircon show damage similar to that caused by 238U and 232Th in mineral zircons at the same dose, indicating no significant effect of half-life or loading levels (dose rate). On the basis of these measurements, the initially crystalline structure of a 10 weight per cent 239Pu zircon would be amorphous after only 1,400 years in a geological repository (desired immobilization timescales are of the order of 250,000 years). These measurements establish a basis for assessing the long-term structural durability of actinide-containing ceramics in terms of an atomistic understanding of the fundamental damage event.

11.
J Chem Phys ; 139(12): 124707, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24089795

ABSTRACT

Density functional theory (DFT) with a tailored Hartree-Fock hybrid functional, which can overcome the band gap problem arising in conventional DFT and gives a valence band width comparable with experiment, is applied to determine formation energies and electronic structures of intrinsic defects in cubic silicon carbide (3C-SiC). Systematic comparison of defect formation energies obtained with the tailored hybrid functional and a conventional DFT functional clearly demonstrates that conventional DFT results are not satisfactory. The understanding on intrinsic defects, which were previously investigated mainly with conventional DFT functionals, is largely revised with regard to formation energies, electronic structures and transition levels. It is found that conventional DFT functionals basically lead to (i) underestimation of the formation energy when the defect charge is more negative and (ii) overestimation when the defect charge is more positive. The underestimation is mainly attributed to the well-known band gap problem. The overestimation is attributed to shrinkage of the valence bands, although in some cases such band shrinkage may lead to underestimation depending on how the defect alters the valence band structure. Both the band gap problem and the valence band shrinkage are often observed in semiconductors, including SiC, with conventional DFT functionals, and thus need to be carefully dealt with to achieve reliable computational results.

12.
Phys Chem Chem Phys ; 14(18): 6556-60, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22456679

ABSTRACT

Most 5d transition-metal (TM) pyrochlores exhibit metallic behavior, but 3d and 4d TM pyrochlores are generally electronic semiconductors or insulators. Here, we report a semiconductor-metal transition induced by introducing excess Ti metal as interstitials into Y(2)Ti(2)O(7). These Ti interstitials prefer anion vacant 8a sites or bridge sites between two neighboring cations along the <010> direction. Density functional theory calculations suggest that an increased electronic conductivity originates from the interplay between the extra Ti and its neighboring cations. These findings suggest a means for achieving metallic behavior in semiconducting pyrochlore oxides and tuning the electronic conduction in pyrochlores for their electrochemical applications in solid oxide fuel cells.

13.
Phys Chem Chem Phys ; 14(38): 13429-36, 2012 Oct 14.
Article in English | MEDLINE | ID: mdl-22948711

ABSTRACT

Radiation tolerance is determined by how effectively the microstructure can remove point defects produced by irradiation. Engineered nanocrystalline SiC with a high-density of stacking faults (SFs) has significantly enhanced recombination of interstitials and vacancies, leading to self-healing of irradiation-induced defects. While single crystal SiC readily undergoes an irradiation-induced crystalline to amorphous transformation at room temperature, the nano-engineered SiC with a high-density of SFs exhibits more than an order of magnitude increase in radiation resistance. Molecular dynamics simulations of collision cascades show that the nano-layered SFs lead to enhanced mobility of interstitial Si atoms. The remarkable radiation resistance in the nano-engineered SiC is attributed to the high-density of SFs within nano-sized grain structures that significantly enhance point defect annihilation.

14.
Phys Chem Chem Phys ; 13(25): 11946-50, 2011 Jul 07.
Article in English | MEDLINE | ID: mdl-21611659

ABSTRACT

Exceptional size-dependent electronic-ionic conductivity of nanostructured ceria can significantly alter materials properties in chemical, physical, electronic and optical applications. Using energetic ions, we have demonstrated effective modification of interface volume and grain size in nanocrystalline ceria from a few nm up to ∼25 nm, which is the critical region for controlling size-dependent material property. The grain size increases and follows an exponential law as a function of ion fluence that increases with temperature, while the cubic phase is stable under the irradiation. The unique self-healing response of radiation damage at grain boundaries is utilized to control the grain size at the nanoscale. Structural modification by energetic ions is proposed to achieve desirable electronic-ionic conductivity.


Subject(s)
Cerium/chemistry , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Radiation, Ionizing , Temperature
15.
Chemphyschem ; 11(15): 3329-32, 2010 Oct 25.
Article in English | MEDLINE | ID: mdl-20803600

ABSTRACT

The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterojunction GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.

16.
Nat Commun ; 11(1): 1022, 2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32094330

ABSTRACT

Quantifying chemical compositions around nanovoids is a fundamental task for research and development of various materials. Atom probe tomography (APT) and scanning transmission electron microscopy (STEM) are currently the most suitable tools because of their ability to probe materials at the nanoscale. Both techniques have limitations, particularly APT, because of insufficient understanding of void imaging. Here, we employ a correlative APT and STEM approach to investigate the APT imaging process and reveal that voids can lead to either an increase or a decrease in local atomic densities in the APT reconstruction. Simulated APT experiments demonstrate the local density variations near voids are controlled by the unique ring structures as voids open and the different evaporation fields of the surrounding atoms. We provide a general approach for quantifying chemical segregations near voids within an APT dataset, in which the composition can be directly determined with a higher accuracy than STEM-based techniques.

17.
Adv Mater ; 32(39): e2002652, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32820560

ABSTRACT

A nanoscale hierarchical dual-phase structure is reported to form in a nanocrystalline NiFeCoCrCu high-entropy-alloy (HEA) film via ion irradiation. Under the extreme energy deposition and consequent thermal energy dissipation induced by energetic particles, a fundamentally new phenomenon is revealed, in which the original single-phase face-centered-cubic (FCC) structure partially transforms into alternating nanometer layers of a body-centered-cubic (BCC) structure. The orientation relationship follows the Nishiyama-Wasser-man relationship, that is, (011)BCC || ( 1¯1¯1)FCC and [100]BCC || [ 11¯0]FCC . Simulation results indicate that Cr, as a BCC stabilizing element, exhibits a tendency to segregate to the stacking faults (SFs). Furthermore, the high densities of SFs and twin boundaries in each nanocrystalline grain serve to accelerate the nucleation and growth of the BCC phase during irradiation. By adjusting the irradiation parameters, desired thicknesses of the FCC and BCC phases in the laminates can be achieved. This work demonstrates the controlled formation of an attractive dual-phase nanolaminate structure under ion irradiation and provides a strategy for designing new derivate structures of HEAs.

18.
Nanotechnology ; 20(7): 075708, 2009 Feb 18.
Article in English | MEDLINE | ID: mdl-19417436

ABSTRACT

Using first-principles molecular dynamics simulations, the displacement threshold energy and defect configurations are determined in SiC nanotubes. The simulation results reveal that a rich variety of defect structures (vacancies, Stone-Wales defects and antisite defects) are formed with threshold energies from 11 to 64 eV. The threshold energy shows an anisotropic behavior and exhibits a dramatic decrease with decreasing tube diameter. The electronic structure can be altered by the defects formed by irradiation, which suggests that the electron irradiation may be a way to use defect engineering to tailor electronic properties of SiC nanotubes.

19.
J Chem Phys ; 130(17): 174502, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19425785

ABSTRACT

This report presents the results of classical molecular dynamics simulations of the diffuse premelting transition, melting, and defect production by 1 keV U recoils in UO(2) using five different rigid ion potentials. The experimentally observed premelting transition occurred for all five cases. For all the potentials studied, dynamic defect annealing is highly effective and is accompanied by replacement events on the anion sublattice. The primary damage state after approximately 15 ps consists of isolated Frenkel pairs and interstitial and vacancy clusters of various sizes. The average displacement energy varies from approximately 28 to approximately 83 eV and the number of Frenkel pairs is different by a factor of 3 depending on the choice of potential. The size and spatial distribution of vacancy and interstitial clusters is drastically different for the potentials studied. The results provide statistics of defect production. They point to a pressing need to determine defect formation, migration, and binding energies in UO(2) from first principles and to develop reliable potentials based on this data for simulating microstructural evolution in nuclear fuel under operating conditions.

20.
ACS Appl Mater Interfaces ; 10(19): 16731-16738, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29697252

ABSTRACT

The formation of metastable phases has attracted significant attention because of their unique properties and potential functionalities. In the present study, we demonstrate the phase conversion of energetic-ion-induced amorphous nanochannels/tracks into a metastable defect fluorite in A2B2O7 structured complex oxides by electron irradiation. Through in situ electron irradiation experiments in a scanning transmission electron microscope, we observe electron-induced epitaxial crystallization of the amorphous nanochannels in Yb2Ti2O7 into the defect fluorite. This energetic-electron-induced phase transformation is attributed to the coupled effect of ionization-induced electronic excitations and local heating, along with subthreshold elastic energy transfers. We also show the role of ionic radii of A-site cations (A = Yb, Gd, and Sm) and B-site cations (Ti and Zr) in facilitating the electron-beam-induced crystallization of the amorphous phase to the defect-fluorite structure. The formation of the defect-fluorite structure is eased by the decrease in the difference between ionic radii of A- and B-site cations in the lattice. Molecular dynamics simulations of thermal annealing of the amorphous phase nanochannels in A2B2O7 draw parallels to the electron-irradiation-induced crystallization and confirm the role of ionic radii in lowering the barrier for crystallization. These results suggest that employing guided electron irradiation with atomic precision is a useful technique for selected area phase formation in nanoscale printed devices.

SELECTION OF CITATIONS
SEARCH DETAIL