Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 475
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 18(4): e1009973, 2022 04.
Article in English | MEDLINE | ID: mdl-35417497

ABSTRACT

Wild birds can carry avian influenza viruses (AIV), including those with pandemic or panzootic potential, long distances. Even though AIV has a broad host range, few studies account for host diversity when estimating AIV spread. We analyzed AIV genomic sequences from North American wild birds, including 303 newly sequenced isolates, to estimate interspecies and geographic viral transition patterns among multiple co-circulating subtypes. Our results show high transition rates within Anseriformes and Charadriiformes, but limited transitions between these orders. Patterns of transition between species were positively associated with breeding habitat range overlap, and negatively associated with host genetic distance. Distance between regions (negative correlation) and summer temperature at origin (positive correlation) were strong predictors of transition between locations. Taken together, this study demonstrates that host diversity and ecology can determine evolutionary processes that underlie AIV natural history and spread. Understanding these processes can provide important insights for effective control of AIV.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Animals, Wild , Birds , North America/epidemiology
2.
Cell ; 136(3): 402-10, 2009 Feb 06.
Article in English | MEDLINE | ID: mdl-19203576

ABSTRACT

Both seasonal and pandemic influenza continue to challenge both scientists and clinicians. Drug-resistant H1N1 influenza viruses have dominated the 2009 flu season, and the H5N1 avian influenza virus continues to kill both people and poultry in Eurasia. Here, we discuss the pathogenesis and transmissibility of influenza viruses and we emphasize the need to find better predictors of both seasonal and potentially pandemic influenza.


Subject(s)
Influenza A virus/physiology , Influenza, Human/virology , Animals , Birds , Disease Reservoirs , Drug Resistance, Viral , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H5N1 Subtype/physiology , Influenza A virus/pathogenicity , Influenza Vaccines/immunology , Influenza in Birds/virology , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/transmission , Orthomyxoviridae Infections/virology , Population Surveillance
3.
Int J Rob Res ; 43(1): 53-68, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38524963

ABSTRACT

Understanding elastic instability has been a recent focus of concentric tube robot research. Modeling advances have enabled prediction of when instabilities will occur and produced metrics for the stability of the robot during use. In this paper, we show how these metrics can be used to resolve redundancy to avoid elastic instability, opening the door for the practical use of higher curvature designs than have previously been possible. We demonstrate the effectiveness of the approach using a three-tube robot that is stabilized by redundancy resolution when following trajectories that would otherwise result in elastic instabilities. We also show that it is stabilized when teleoperated in ways that otherwise produce elastic instabilities. Lastly, we show that the redundancy resolution framework presented here can be applied to other control objectives useful for surgical robots, such as maximizing or minimizing compliance in desired directions.

4.
J Virol ; 96(18): e0077622, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36069546

ABSTRACT

The nonstructural protein 1 (NS1) of influenza A viruses is an important virulence factor that controls host cell immune responses. In human cells, NS1 proteins inhibit the induction of type I interferon by several mechanisms, including potentially, by preventing the activation of the retinoic acid-inducible gene I (RIG-I) receptor by the ubiquitin ligase tripartite motif-containing protein 25 (TRIM25). It is unclear whether the inhibition of human TRIM25 is a universal function of all influenza A NS1 proteins or is strain dependent. It is also unclear if NS1 proteins similarly target the TRIM25 of mallard ducks, a natural reservoir host of avian influenza viruses with a long coevolutionary history and unique disease dynamics. To answer these questions, we compared the ability of five different NS1 proteins to interact with human and duck TRIM25 using coimmunoprecipitation and microscopy and assessed the consequence of this on RIG-I ubiquitination and signaling in both species. We show that NS1 proteins from low-pathogenic and highly pathogenic avian influenza viruses potently inhibit RIG-I ubiquitination and reduce interferon promoter activity and interferon-beta protein secretion in transfected human cells, while the NS1 of the mouse-adapted PR8 strain does not. However, all the NS1 proteins, when cloned into recombinant viruses, suppress interferon in infected alveolar cells. In contrast, avian NS1 proteins do not suppress duck RIG-I ubiquitination and interferon promoter activity, despite interacting with duck TRIM25. IMPORTANCE Influenza A viruses are a major cause of human and animal disease. Periodically, avian influenza viruses from wild waterfowl, such as ducks, pass through intermediate agricultural hosts and emerge into the human population as zoonotic diseases with high mortality rates and epidemic potential. Because of their coevolution with influenza A viruses, ducks are uniquely resistant to influenza disease compared to other birds, animals, and humans. Here, we investigate a mechanism of influenza A virus interference in an important antiviral signaling pathway that is orthologous in humans and ducks. We show that NS1 proteins from four avian influenza strains can block the coactivation and signaling of the human RIG-I antiviral receptor, while none block the coactivation and signaling of duck RIG-I. Understanding host-pathogen dynamics in the natural reservoir will contribute to our understanding of viral disease mechanisms, viral evolution, and the pressures that drive it, which benefits global surveillance and outbreak prevention.


Subject(s)
Avian Proteins , Influenza A virus , Influenza in Birds , Interferon-beta , Receptors, Retinoic Acid , Signal Transduction , Viral Nonstructural Proteins , Animals , Antiviral Agents/metabolism , Avian Proteins/metabolism , Ducks , Humans , Influenza A virus/genetics , Interferon Type I/metabolism , Interferon-beta/metabolism , Mice , Receptors, Retinoic Acid/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitination , Viral Nonstructural Proteins/metabolism
5.
J Virol ; 96(7): e0010022, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35254104

ABSTRACT

Understanding how animal influenza A viruses (IAVs) acquire airborne transmissibility in humans and ferrets is needed to prepare for and respond to pandemics. Here, we investigated in ferrets the replication and transmission of swine H1N1 isolates P4 and G15, whose majority population had decreased polymerase activity and poor hemagglutinin (HA) stability, respectively. For both isolates, a minor variant was selected and transmitted in ferrets. Polymerase-enhancing variant PA-S321 airborne-transmitted and propagated in one ferret. HA-stabilizing variant HA1-S210 was selected in all G15-inoculated ferrets and was transmitted by contact and airborne routes. With an efficient polymerase and a stable HA, the purified minor variant G15-HA1-S210 had earlier and higher peak titers in inoculated ferrets and was recovered at a higher frequency after airborne transmission than P4 and G15. Overall, HA stabilization played a more prominent role than polymerase enhancement in the replication and transmission of these viruses in ferrets. The results suggest pandemic risk-assessment studies may benefit from deep sequencing to identify minor variants with human-adapted traits. IMPORTANCE Diverse IAVs circulate in animals, yet few acquire the viral traits needed to start a human pandemic. A stabilized HA and mammalian-adapted polymerase have been shown to promote the adaptation of IAVs to humans and ferrets (the gold-standard model for IAV replication, pathogenicity, and transmissibility). Here, we used swine IAV isolates of the gamma lineage as a model to investigate the importance of HA stability and polymerase activity in promoting replication and transmission in ferrets. These are emerging viruses that bind to both α-2,6- and α-2,3-linked receptors. Using isolates containing mixed populations, a stabilized HA was selected within days in inoculated ferrets. An enhanced polymerase was also selected and propagated after airborne transmission to a ferret. Thus, HA stabilization was a stricter requirement, yet both traits promoted transmissibility. Knowing the viral traits needed for pandemic potential, and the relative importance of each, will help identify emerging viruses of greatest concern.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Animals , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Humans , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Protein Stability , Swine
6.
Proc Natl Acad Sci U S A ; 117(15): 8593-8601, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32217734

ABSTRACT

Baloxavir marboxil (BXM) was approved in 2018 for treating influenza A and B virus infections. It is a first-in-class inhibitor targeting the endonuclease activity of the virus polymerase acidic (PA) protein. Clinical trial data revealed that PA amino acid substitutions at residue 38 (I38T/F/M) reduced BXM potency and caused virus rebound in treated patients, although the fitness characteristics of the mutant viruses were not fully defined. To determine the fitness impact of the I38T/F/M substitutions, we generated recombinant A/California/04/2009 (H1N1)pdm09, A/Texas/71/2017 (H3N2), and B/Brisbane/60/2008 viruses with I38T/F/M and examined drug susceptibility in vitro, enzymatic properties, replication efficiency, and transmissibility in ferrets. Influenza viruses with I38T/F/M substitutions exhibited reduced baloxavir susceptibility, with 38T causing the greatest reduction. The I38T/F/M substitutions impaired PA endonuclease activity as compared to that of wild-type (I38-WT) PA. However, only 38T/F A(H3N2) substitutions had a negative effect on polymerase complex activity. The 38T/F substitutions decreased replication in cells among all viruses, whereas 38M had minimal impact. Despite variable fitness consequences in vitro, all 38T/M viruses disseminated to naive ferrets by contact and airborne transmission, while 38F-containing A(H3N2) and B viruses failed to transmit via the airborne route. Reversion of 38T/F/M to I38-WT was rare among influenza A viruses in this study, suggesting stable retention of 38T/F/M genotypes during these transmission events. BXM reduced susceptibility-associated mutations had variable effects on in vitro fitness of influenza A and B viruses, but the ability of these viruses to transmit in vivo indicates a risk of their spreading from BXM-treated individuals.


Subject(s)
Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects , Influenza B virus/drug effects , Orthomyxoviridae Infections/transmission , Oxazines/pharmacology , Pyridines/pharmacology , Thiepins/pharmacology , Triazines/pharmacology , Virus Replication , Amino Acid Substitution , Animals , Antiviral Agents/pharmacology , Dibenzothiepins , Ferrets , Male , Microbial Sensitivity Tests , Morpholines , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/virology , Pyridones , Viral Proteins/genetics , Viral Proteins/metabolism
7.
World J Urol ; 40(3): 671-677, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34132897

ABSTRACT

Image-guidance during partial nephrectomy enables navigation within the operative field alongside a 3-dimensional roadmap of renal anatomy generated from patient-specific imaging. Once a process is performed by the human mind, the technology will allow standardization of the task for the benefit of all patients undergoing robot-assisted partial nephrectomy. Any surgeon will be able to visualize the kidney and key subsurface landmarks in real-time within a 3-dimensional simulation, with the goals of improving operative efficiency, decreasing surgical complications, and improving oncologic outcomes. For similar purposes, image-guidance has already been adopted as a standard of care in other surgical fields; we are now at the brink of this in urology. This review summarizes touch-based approaches to image-guidance during partial nephrectomy, as the technology begins to enter in vivo human evaluation. The processes of segmentation, localization, registration, and re-registration are all described with seamless integration into the da Vinci surgical system; this will facilitate clinical adoption sooner.


Subject(s)
Kidney Neoplasms , Robotic Surgical Procedures , Robotics , Humans , Kidney/surgery , Kidney Neoplasms/surgery , Nephrectomy/methods , Touch
8.
J Virol ; 94(11)2020 05 18.
Article in English | MEDLINE | ID: mdl-32188732

ABSTRACT

The discovery in 1976 of waterfowl as the primary reservoir of influenza A viruses (IAVs) has since spurred decades of waterfowl surveillance efforts by researchers dedicated to understanding the ecology of IAV and its subsequent threat to human and animal health. Here, we employed a multidecade, continental-scale approach of surveillance data to understand trends of seasonal IAV subtype diversity. Between 1976 and 2015, IAVs were detected in 8,427 (10.8%) of 77,969 samples from migratory waterfowl throughout the Central and Mississippi Migratory Flyways in the United States and Canada. A total of 96 hemagglutinin (HA)/neuraminidase (NA) subtype combinations were isolated, which included most HA (H1 to H14) and all 9 NA subtypes. We observed an annual trend of high influenza prevalence, involving a few dominant subtypes, on northern breeding grounds during summer with progressively lowered influenza prevalence, comprised of a highly diverse profile of subtypes, as waterfowl migrate toward southern wintering grounds. Isolates recovered during winter had the highest proportion of mixed and rare HA/NA combinations, indicating increased opportunity for reassortment of IAVs. In addition, 70% of H5 and 49% of H7 IAV isolates were recovered from samples collected during fall and spring, respectively; these are subtypes that can have significant implications for public health and agriculture sectors. Annual cyclical dominance of subtypes on northern breeding grounds is revealed through the longitudinal nature of this study. Our novel findings exhibit the unrealized potential for discovery using existing IAV surveillance data.IMPORTANCE Wild aquatic birds are the primary natural reservoir of influenza A viruses (IAVs) and are therefore responsible for the dispersal and maintenance of IAVs representing a broad range of antigenic and genetic diversity. The aims of IAV surveillance in waterfowl not only relate to understanding the risk of spillover risk to humans, but also to improving our understanding of basic questions related to IAV evolution and ecology. By evaluating several decades of surveillance data from wild aquatic birds sampled along North American migratory flyways, we discovered an annual trend of increasing subtype diversity during southbound migration, peaking on southern wintering grounds. Winter sampling revealed the highest proportion of mixed and rare infections that suggest higher opportunity for spillover. These findings allow improvements to surveillance efforts to robustly capture IAV diversity that will be used for vaccine development and cultivate a more thorough understanding of IAV evolution and persistence mechanisms.


Subject(s)
Birds/virology , Genetic Variation , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A virus/genetics , Influenza in Birds , Neuraminidase/genetics , Phylogeny , Viral Proteins/genetics , Animal Migration , Animals , Canada/epidemiology , Influenza in Birds/epidemiology , Influenza in Birds/genetics , Prevalence , United States/epidemiology
9.
J Virol ; 94(23)2020 11 09.
Article in English | MEDLINE | ID: mdl-32907981

ABSTRACT

The genesis of novel influenza viruses through reassortment poses a continuing risk to public health. This is of particular concern in Bangladesh, where highly pathogenic avian influenza viruses of the A(H5N1) subtype are endemic and cocirculate with other influenza viruses. Active surveillance of avian influenza viruses in Bangladeshi live poultry markets detected three A(H5) genotypes, designated H5N1-R1, H5N1-R2, and H5N2-R3, that arose from reassortment of A(H5N1) clade 2.3.2.1a viruses. The H5N1-R1 and H5N1-R2 viruses contained HA, NA, and M genes from the A(H5N1) clade 2.3.2.1a viruses and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. H5N2-R3 viruses contained the HA gene from circulating A(H5N1) clade 2.3.2.1a viruses, NA and M genes from concurrently circulating A(H9N2) influenza viruses, and PB2, PB1, PA, NP, and NS genes from other Eurasian influenza viruses. Representative viruses of all three genotypes and a parental clade 2.3.2.1a strain (H5N1-R0) infected and replicated in mice without prior adaptation; the H5N2-R3 virus replicated to the highest titers in the lung. All viruses efficiently infected and killed chickens. All viruses replicated in inoculated ferrets, but no airborne transmission was detected, and only H5N2-R3 showed limited direct-contact transmission. Our findings demonstrate that although the A(H5N1) viruses circulating in Bangladesh have the capacity to infect and replicate in mammals, they show very limited capacity for transmission. However, reassortment does generate viruses of distinct phenotypes.IMPORTANCE Highly pathogenic avian influenza A(H5N1) viruses have circulated continuously in Bangladesh since 2007, and active surveillance has detected viral evolution driven by mutation and reassortment. Recently, three genetically distinct A(H5N1) reassortant viruses were detected in live poultry markets in Bangladesh. Currently, we cannot assign pandemic risk by only sequencing viruses; it must be conducted empirically. We found that the H5Nx highly pathogenic avian influenza viruses exhibited high virulence in mice and chickens, and one virus had limited capacity to transmit between ferrets, a property considered consistent with a higher zoonotic risk.


Subject(s)
Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza in Birds/virology , Mammals/virology , Phylogeny , Poultry/virology , Animals , Bangladesh/epidemiology , Chickens , Ferrets , Genome, Viral , Genotype , Influenza A Virus, H5N1 Subtype , Influenza A Virus, H5N2 Subtype , Influenza A Virus, H9N2 Subtype , Influenza A virus/genetics , Influenza in Birds/pathology , Influenza in Birds/transmission , Lung/pathology , Mice , Pandemics , Poultry Diseases/epidemiology , Poultry Diseases/pathology , Poultry Diseases/transmission , Poultry Diseases/virology , Reassortant Viruses/genetics , Viral Nonstructural Proteins/genetics , Virulence
10.
BMC Biol ; 18(1): 14, 2020 02 12.
Article in English | MEDLINE | ID: mdl-32050986

ABSTRACT

BACKGROUND: The Japanese quail (Coturnix japonica) is a popular domestic poultry species and an increasingly significant model species in avian developmental, behavioural and disease research. RESULTS: We have produced a high-quality quail genome sequence, spanning 0.93 Gb assigned to 33 chromosomes. In terms of contiguity, assembly statistics, gene content and chromosomal organisation, the quail genome shows high similarity to the chicken genome. We demonstrate the utility of this genome through three diverse applications. First, we identify selection signatures and candidate genes associated with social behaviour in the quail genome, an important agricultural and domestication trait. Second, we investigate the effects and interaction of photoperiod and temperature on the transcriptome of the quail medial basal hypothalamus, revealing key mechanisms of photoperiodism. Finally, we investigate the response of quail to H5N1 influenza infection. In quail lung, many critical immune genes and pathways were downregulated after H5N1 infection, and this may be key to the susceptibility of quail to H5N1. CONCLUSIONS: We have produced a high-quality genome of the quail which will facilitate further studies into diverse research questions using the quail as a model avian species.


Subject(s)
Coturnix/genetics , Genome , Life History Traits , Poultry Diseases/genetics , Social Behavior , Animals , Seasons
11.
Int J Rob Res ; 40(6-7): 923-938, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34334877

ABSTRACT

Continuum manipulators, inspired by nature, have drawn significant interest within the robotics community. They can facilitate motion within complex environments where traditional rigid robots may be ineffective, while maintaining a reasonable degree of precision. Soft continuum manipulators have emerged as a growing subfield of continuum robotics, with promise for applications requiring high compliance, including certain medical procedures. This has driven demand for new control schemes designed to precisely control these highly flexible manipulators, whose kinematics may be sensitive to external loads, such as gravity. This article presents one such approach, utilizing a rapidly computed kinematic model based on Cosserat rod theory, coupled with sensor feedback to facilitate closed-loop control, for a soft continuum manipulator under tip follower actuation and external loading. This approach is suited to soft manipulators undergoing quasi-static deployment, where actuators apply a follower wrench (i.e., one that is in a constant body frame direction regardless of robot configuration) anywhere along the continuum structure, as can be done in water-jet propulsion. In this article we apply the framework specifically to a tip actuated soft continuum manipulator. The proposed control scheme employs both actuator feedback and pose feedback. The actuator feedback is utilized to both regulate the follower load and to compensate for non-linearities of the actuation system that can introduce kinematic model error. Pose feedback is required to maintain accurate path following. Experimental results demonstrate successful path following with the closed-loop control scheme, with significant performance improvements gained through the use of sensor feedback when compared with the open-loop case.

12.
J Minim Invasive Gynecol ; 27(7): 1631-1635, 2020.
Article in English | MEDLINE | ID: mdl-32540499

ABSTRACT

To trial the use of a novel endoscopic robot that functions using concentric tube robots, enabling 2-handed surgery in small spaces, in a bioengineering laboratory. This was a feasibility study of the endoscopic robot for hysteroscopic applications, including removal of a simulated endometrial polyp. The endoscopic robot was successfully used to resect a simulated endometrial polyp from a porcine uterine tissue model in a fluid environment. The potential advantages of this platform to the surgeon may include improved exposure, finer dissection capability, and use of a 2-handed surgical technique. Further study regarding the safe, efficient, and cost-effective use of the endoscopic robot in gynecology is needed.


Subject(s)
Endoscopy/instrumentation , Hysteroscopy/instrumentation , Inventions , Robotic Surgical Procedures/instrumentation , Robotics/instrumentation , Animals , Device Removal/instrumentation , Device Removal/methods , Endoscopy/methods , Feasibility Studies , Female , Gynatresia/surgery , Humans , Hysteroscopy/methods , Intrauterine Devices , Models, Animal , Polyps/surgery , Robotic Surgical Procedures/methods , Robotics/methods , Swine , Uterine Diseases/surgery
13.
Proc Natl Acad Sci U S A ; 114(42): 11217-11222, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28874549

ABSTRACT

North American wild birds are an important reservoir of influenza A viruses, yet the potential of viruses in this reservoir to transmit and cause disease in mammals is not well understood. Our surveillance of avian influenza viruses (AIVs) at Delaware Bay, USA, revealed a group of similar H1N1 AIVs isolated in 2009, some of which were airborne-transmissible in the ferret model without prior adaptation. Comparison of the genomes of these viruses revealed genetic markers of airborne transmissibility in the Polymerase Basic 2 (PB2), PB1, PB1-F2, Polymerase Acidic-X (PA-X), Nonstructural Protein 1 (NS1), and Nuclear Export Protein (NEP) genes. We studied the role of NS1 in airborne transmission and found that NS1 mutants that were not airborne-transmissible caused limited tissue pathology in the upper respiratory tract (URT). Viral maturation was also delayed, evident as strong intranuclear staining and little virus at the mucosa. Our study of this naturally occurring constellation of genetic markers has provided insights into the poorly understood phenomenon of AIV airborne transmissibility by revealing a role for NS1 and characteristics of viral replication in the URT that were associated with airborne transmission. The transmissibility of these viruses further highlights the pandemic potential of AIVs in the wild bird reservoir and the need to maintain surveillance.


Subject(s)
Charadriiformes/virology , Influenza A Virus, H1N1 Subtype/pathogenicity , Orthomyxoviridae Infections/transmission , Animals , Chick Embryo , Disease Vectors , Ferrets , Influenza A Virus, H1N1 Subtype/genetics , Male , Respiratory System/virology , Virus Replication
14.
Microsc Microanal ; 26(4): 653-666, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32627727

ABSTRACT

The use of fast pixelated detectors and direct electron detection technology is revolutionizing many aspects of scanning transmission electron microscopy (STEM). The widespread adoption of these new technologies is impeded by the technical challenges associated with them. These include issues related to hardware control, and the acquisition, real-time processing and visualization, and storage of data from such detectors. We discuss these problems and present software solutions for them, with a view to making the benefits of new detectors in the context of STEM more accessible. Throughout, we provide examples of the application of the technologies presented, using data from a Medipix3 direct electron detector. Most of our software are available under an open source licence, permitting transparency of the implemented algorithms, and allowing the community to freely use and further improve upon them.

15.
Microsc Microanal ; 26(5): 944-963, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32883393

ABSTRACT

Fast pixelated detectors incorporating direct electron detection (DED) technology are increasingly being regarded as universal detectors for scanning transmission electron microscopy (STEM), capable of imaging under multiple modes of operation. However, several issues remain around the post-acquisition processing and visualization of the often very large multidimensional STEM datasets produced by them. We discuss these issues and present open source software libraries to enable efficient processing and visualization of such datasets. Throughout, we provide examples of the analysis methodologies presented, utilizing data from a 256 × 256 pixel Medipix3 hybrid DED detector, with a particular focus on the STEM characterization of the structural properties of materials. These include the techniques of virtual detector imaging; higher-order Laue zone analysis; nanobeam electron diffraction; and scanning precession electron diffraction. In the latter, we demonstrate a nanoscale lattice parameter mapping with a fractional precision ≤6 × 10−4 (0.06%).

16.
IEEE Trans Robot ; 36(6): 1704-1718, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33603591

ABSTRACT

Existing static and kinematic models of concentric tube robots are based on the ordinary differential equations of a static Cosserat rod. In this paper, we provide the first dynamic model for concentric tube continuum robots by adapting the partial differential equations of a dynamic Cosserat rod to describe the coupled inertial dynamics of precurved concentric tubes. This generates an initial-boundary-value problem that can capture robot vibrations over time. We solve this model numerically at high time resolutions using implicit finite differences in time and arc length. This approach is capable of resolving the high-frequency torsional dynamics that occur during unstable "snapping" motions and provides a simulation tool that can track the true robot configuration through such transitions. Further, it can track slower oscillations associated with bending and torsion as a robot interacts with tissue at real-time speeds. Experimental verification of the model shows that this wide range of effects is captured efficiently and accurately.

17.
IEEE ASME Trans Mechatron ; 25(3): 1432-1443, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33746503

ABSTRACT

Open surgical approaches are still often employed in neurosurgery, despite the availability of neuroendoscopic approaches that reduce invasiveness. The challenge of maneuvering instruments at the tip of the endoscope makes neuroendoscopy demanding for the physician. The only way to aim tools passed through endoscope ports is to tilt the entire endoscope; but, tilting compresses brain tissue through which the endoscope passes and can damage it. Concentric tube robots can provide necessary dexterity without endoscope tilting, while passing through existing ports in the endoscope and carrying surgical tools in their inner lumen. In this paper we describe the mechatronic design of a new concentric tube robot that can deploy two concentric tube manipulators through a standard neuroendoscope. The robot uses a compact differential drive and features embedded motor control electronics and redundant position sensors for safety. In addition to the mechatronic design of this system, this paper contributes experimental validation in the context of colloid cyst removal, comparing our new robotic system to standard manual endoscopy in a brain phantom. The robotic approach essentially eliminated endoscope tilt during the procedure (17.09° for the manual approach vs. 1.16° for the robotic system). The robotic system also enables a single surgeon to perform the procedure - typically in a manual approach one surgeon aims the endoscope and another operates the tools delivered through its ports.

18.
Nature ; 502(7470): 241-4, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-23965623

ABSTRACT

A novel H7N9 influenza A virus first detected in March 2013 has since caused more than 130 human infections in China, resulting in 40 deaths. Preliminary analyses suggest that the virus is a reassortant of H7, N9 and H9N2 avian influenza viruses, and carries some amino acids associated with mammalian receptor binding, raising concerns of a new pandemic. However, neither the source populations of the H7N9 outbreak lineage nor the conditions for its genesis are fully known. Using a combination of active surveillance, screening of virus archives, and evolutionary analyses, here we show that H7 viruses probably transferred from domestic duck to chicken populations in China on at least two independent occasions. We show that the H7 viruses subsequently reassorted with enzootic H9N2 viruses to generate the H7N9 outbreak lineage, and a related previously unrecognized H7N7 lineage. The H7N9 outbreak lineage has spread over a large geographic region and is prevalent in chickens at live poultry markets, which are thought to be the immediate source of human infections. Whether the H7N9 outbreak lineage has, or will, become enzootic in China and neighbouring regions requires further investigation. The discovery here of a related H7N7 influenza virus in chickens that has the ability to infect mammals experimentally, suggests that H7 viruses may pose threats beyond the current outbreak. The continuing prevalence of H7 viruses in poultry could lead to the generation of highly pathogenic variants and further sporadic human infections, with a continued risk of the virus acquiring human-to-human transmissibility.


Subject(s)
Influenza A virus/classification , Influenza A virus/genetics , Influenza, Human/virology , Phylogeny , Animals , Chickens , China , Ducks , Genes, Viral/genetics , Humans , Influenza A Virus, H7N7 Subtype/classification , Influenza A Virus, H7N7 Subtype/genetics , Influenza A Virus, H9N2 Subtype/classification , Influenza A Virus, H9N2 Subtype/genetics , Influenza in Birds/transmission , Influenza in Birds/virology , Influenza, Human/transmission , Molecular Sequence Data , Reassortant Viruses/classification , Reassortant Viruses/genetics
19.
Proc Natl Acad Sci U S A ; 113(32): 9033-8, 2016 08 09.
Article in English | MEDLINE | ID: mdl-27457948

ABSTRACT

One of the major unresolved questions in influenza A virus (IAV) ecology is exemplified by the apparent disappearance of highly pathogenic (HP) H5N1, H5N2, and H5N8 (H5Nx) viruses containing the Eurasian hemagglutinin 2.3.4.4 clade from wild bird populations in North America. The introduction of Eurasian lineage HP H5 clade 2.3.4.4 H5N8 IAV and subsequent reassortment with low-pathogenic H?N2 and H?N1 North American wild bird-origin IAVs in late 2014 resulted in widespread HP H5Nx IAV infections and outbreaks in poultry and wild birds across two-thirds of North America starting in November 2014 and continuing through June 2015. Although the stamping out strategies adopted by the poultry industry and animal health authorities in Canada and the United States-which included culling, quarantining, increased biosecurity, and abstention from vaccine use-were successful in eradicating the HP H5Nx viruses from poultry, these activities do not explain the apparent disappearance of these viruses from migratory waterfowl. Here we examine current and historical aquatic bird IAV surveillance and outbreaks of HP H5Nx in poultry in the United States and Canada, providing additional evidence of unresolved mechanisms that restrict the emergence and perpetuation of HP avian influenza viruses in these natural reservoirs.


Subject(s)
Birds/virology , Influenza A Virus, H5N1 Subtype/isolation & purification , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza A Virus, H5N8 Subtype/isolation & purification , Animals , Disease Outbreaks , Influenza in Birds/epidemiology , North America
20.
Proc Natl Acad Sci U S A ; 113(6): 1636-41, 2016 Feb 09.
Article in English | MEDLINE | ID: mdl-26811446

ABSTRACT

Influenza pandemics require that a virus containing a hemagglutinin (HA) surface antigen previously unseen by a majority of the population becomes airborne-transmissible between humans. Although the HA protein is central to the emergence of a pandemic influenza virus, its required molecular properties for sustained transmission between humans are poorly defined. During virus entry, the HA protein binds receptors and is triggered by low pH in the endosome to cause membrane fusion; during egress, HA contributes to virus assembly and morphology. In 2009, a swine influenza virus (pH1N1) jumped to humans and spread globally. Here we link the pandemic potential of pH1N1 to its HA acid stability, or the pH at which this one-time-use nanomachine is either triggered to cause fusion or becomes inactivated in the absence of a target membrane. In surveillance isolates, our data show HA activation pH values decreased during the evolution of H1N1 from precursors in swine (pH 5.5-6.0), to early 2009 human cases (pH 5.5), and then to later human isolates (pH 5.2-5.4). A loss-of-function pH1N1 virus with a destabilizing HA1-Y17H mutation (pH 6.0) was less pathogenic in mice and ferrets, less transmissible by contact, and no longer airborne-transmissible. A ferret-adapted revertant (HA1-H17Y/HA2-R106K) regained airborne transmissibility by stabilizing HA to an activation pH of 5.3, similar to that of human-adapted isolates from late 2009-2014. Overall, these studies reveal that a stable HA (activation pH ≤ 5.5) is necessary for pH1N1 influenza virus pathogenicity and airborne transmissibility in ferrets and is associated with pandemic potential in humans.


Subject(s)
Acids/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Pandemics , Animals , Biological Evolution , Ferrets/virology , Humans , Hydrogen-Ion Concentration , Influenza A Virus, H1N1 Subtype/pathogenicity , Male , Mice, Inbred DBA , Mutation/genetics , Orthomyxoviridae Infections/pathology , Orthomyxoviridae Infections/transmission , Orthomyxoviridae Infections/virology , Protein Stability , Swine , Virus Activation , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL