Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
Add more filters

Publication year range
1.
Cell ; 187(13): 3373-3389.e16, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38906102

ABSTRACT

The gut microbiota influences the clinical responses of cancer patients to immunecheckpoint inhibitors (ICIs). However, there is no consensus definition of detrimental dysbiosis. Based on metagenomics (MG) sequencing of 245 non-small cell lung cancer (NSCLC) patient feces, we constructed species-level co-abundance networks that were clustered into species-interacting groups (SIGs) correlating with overall survival. Thirty-seven and forty-five MG species (MGSs) were associated with resistance (SIG1) and response (SIG2) to ICIs, respectively. When combined with the quantification of Akkermansia species, this procedure allowed a person-based calculation of a topological score (TOPOSCORE) that was validated in an additional 254 NSCLC patients and in 216 genitourinary cancer patients. Finally, this TOPOSCORE was translated into a 21-bacterial probe set-based qPCR scoring that was validated in a prospective cohort of NSCLC patients as well as in colorectal and melanoma patients. This approach could represent a dynamic diagnosis tool for intestinal dysbiosis to guide personalized microbiota-centered interventions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Gastrointestinal Microbiome , Immunotherapy , Lung Neoplasms , Neoplasms , Female , Humans , Male , Akkermansia , Carcinoma, Non-Small-Cell Lung/microbiology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/immunology , Dysbiosis/microbiology , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Lung Neoplasms/microbiology , Lung Neoplasms/drug therapy , Metagenomics/methods , Neoplasms/microbiology , Treatment Outcome
2.
Cell ; 184(9): 2302-2315.e12, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33838112

ABSTRACT

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.


Subject(s)
Bacteria/genetics , Bacterial Proteins/metabolism , Gastrointestinal Microbiome , Metabolome , Metagenome , Microbiota , Adult , Aged , Aged, 80 and over , Bacteria/classification , Bacteria/isolation & purification , Bacteria/metabolism , Bacterial Proteins/genetics , Drug Resistance, Microbial , Feces/microbiology , Female , Genomic Instability , Humans , Longitudinal Studies , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Virulence Factors/genetics , Virulence Factors/metabolism , Young Adult
3.
Immunity ; 56(6): 1376-1392.e8, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37164013

ABSTRACT

Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.


Subject(s)
Antibodies , Bacteriophages , Humans , Antigens , Epitopes/genetics , Peptides
4.
Immunity ; 56(6): 1393-1409.e6, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37164015

ABSTRACT

Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.


Subject(s)
Bacteriophages , Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , Humans , Antibodies , Epitopes
5.
Nature ; 625(7996): 813-821, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38172637

ABSTRACT

Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Host Microbial Interactions , Metagenome , Humans , Acetylgalactosamine/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cohort Studies , Computer Simulation , Faecalibacterium prausnitzii/genetics , Gastrointestinal Microbiome/genetics , Genome, Human/genetics , Genotype , Host Microbial Interactions/genetics , In Vitro Techniques , Metagenome/genetics , Multigene Family , Netherlands , Tanzania
6.
Gut ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002973

ABSTRACT

The gut microbiome has been recognised as a key component in the pathogenesis of inflammatory bowel diseases (IBD), and the wide range of metabolites produced by gut bacteria are an important mechanism by which the human microbiome interacts with host immunity or host metabolism. High-throughput metabolomic profiling and novel computational approaches now allow for comprehensive assessment of thousands of metabolites in diverse biomaterials, including faecal samples. Several groups of metabolites, including short-chain fatty acids, tryptophan metabolites and bile acids, have been associated with IBD. In this Recent Advances article, we describe the contribution of metabolomics research to the field of IBD, with a focus on faecal metabolomics. We discuss the latest findings on the significance of these metabolites for IBD prognosis and therapeutic interventions and offer insights into the future directions of metabolomics research.

7.
Gut ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955400

ABSTRACT

OBJECTIVE: Gut microbiome composition is associated with multiple diseases, but relatively little is known about its relationship with long-term outcome measures. While gut dysbiosis has been linked to mortality risk in the general population, the relationship with overall survival in specific diseases has not been extensively studied. In the current study, we present results from an in-depth analysis of the relationship between gut dysbiosis and all-cause and cause-specific mortality in the setting of solid organ transplant recipients (SOTR). DESIGN: We analysed 1337 metagenomes derived from faecal samples of 766 kidney, 334 liver, 170 lung and 67 heart transplant recipients part of the TransplantLines Biobank and Cohort-a prospective cohort study including extensive phenotype data with 6.5 years of follow-up. To analyze gut dysbiosis, we included an additional 8208 metagenomes from the general population of the same geographical area (northern Netherlands). Multivariable Cox regression and a machine learning algorithm were used to analyse the association between multiple indicators of gut dysbiosis, including individual species abundances, and all-cause and cause-specific mortality. RESULTS: We identified two patterns representing overall microbiome community variation that were associated with both all-cause and cause-specific mortality. The gut microbiome distance between each transplantation recipient to the average of the general population was associated with all-cause mortality and death from infection, malignancy and cardiovascular disease. A multivariable Cox regression on individual species abundances identified 23 bacterial species that were associated with all-cause mortality, and by applying a machine learning algorithm, we identified a balance (a type of log-ratio) consisting of 19 out of the 23 species that were associated with all-cause mortality. CONCLUSION: Gut dysbiosis is consistently associated with mortality in SOTR. Our results support the observations that gut dysbiosis is associated with long-term survival. Since our data do not allow us to infer causality, more preclinical research is needed to understand mechanisms before we can determine whether gut microbiome-directed therapies may be designed to improve long-term outcomes.

8.
Gut ; 72(8): 1472-1485, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36958817

ABSTRACT

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease of the intestine, comprising Crohn's disease and ulcerative colitis. By characterising metabolites in faeces, combined with faecal metagenomics, host genetics and clinical characteristics, we aimed to unravel metabolic alterations in IBD. DESIGN: We measured 1684 different faecal metabolites and 8 short-chain and branched-chain fatty acids in stool samples of 424 patients with IBD and 255 non-IBD controls. Regression analyses were used to compare concentrations of metabolites between cases and controls and determine the relationship between metabolites and each participant's lifestyle, clinical characteristics and gut microbiota composition. Moreover, genome-wide association analysis was conducted on faecal metabolite levels. RESULTS: We identified over 300 molecules that were differentially abundant in the faeces of patients with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and non-IBD samples (AUC=0.85). We found changes in the bile acid pool in patients with dysbiotic microbial communities and a strong association between faecal metabolome and gut microbiota. For example, the abundance of Ruminococcus gnavus was positively associated with tryptamine levels. In addition, we found 158 associations between metabolites and dietary patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism. CONCLUSION: In this large-scale analysis, we identified alterations in the metabolome of patients with IBD that are independent of commonly overlooked confounders such as diet and surgical history. Considering the influence of the microbiome on faecal metabolites, our results pave the way for future interventions targeting intestinal inflammation.


Subject(s)
Arylamine N-Acetyltransferase , Colitis, Ulcerative , Inflammatory Bowel Diseases , Humans , Genome-Wide Association Study , Inflammatory Bowel Diseases/metabolism , Colitis, Ulcerative/metabolism , Metabolome , Feces , Arylamine N-Acetyltransferase/metabolism
9.
Hum Mol Genet ; 30(5): 356-369, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33555323

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gut. Genetic association studies have identified the highly variable human leukocyte antigen (HLA) region as the strongest susceptibility locus for IBD and specifically DRB1*01:03 as a determining factor for ulcerative colitis (UC). However, for most of the association signal such as delineation could not be made because of tight structures of linkage disequilibrium within the HLA. The aim of this study was therefore to further characterize the HLA signal using a transethnic approach. We performed a comprehensive fine mapping of single HLA alleles in UC in a cohort of 9272 individuals with African American, East Asian, Puerto Rican, Indian and Iranian descent and 40 691 previously analyzed Caucasians, additionally analyzing whole HLA haplotypes. We computationally characterized the binding of associated HLA alleles to human self-peptides and analyzed the physicochemical properties of the HLA proteins and predicted self-peptidomes. Highlighting alleles of the HLA-DRB1*15 group and their correlated HLA-DQ-DR haplotypes, we not only identified consistent associations (regarding effects directions/magnitudes) across different ethnicities but also identified population-specific signals (regarding differences in allele frequencies). We observed that DRB1*01:03 is mostly present in individuals of Western European descent and hardly present in non-Caucasian individuals. We found peptides predicted to bind to risk HLA alleles to be rich in positively charged amino acids. We conclude that the HLA plays an important role for UC susceptibility across different ethnicities. This research further implicates specific features of peptides that are predicted to bind risk and protective HLA proteins.


Subject(s)
Colitis, Ulcerative/genetics , Ethnicity/genetics , Genetic Predisposition to Disease , HLA Antigens/genetics , HLA-DQ Antigens/genetics , HLA-DRB1 Chains/genetics , Peptides/genetics , Alleles , Cohort Studies , Gene Frequency , Genetic Association Studies , Genotype , Haplotypes , Humans , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Protein Binding
10.
Gastroenterology ; 162(6): 1690-1704, 2022 05.
Article in English | MEDLINE | ID: mdl-35031299

ABSTRACT

BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.


Subject(s)
Crohn Disease , Enteritis , Fatty Acids, Omega-3 , Animals , Crohn Disease/drug therapy , Endoribonucleases , Enteritis/chemically induced , Enteritis/drug therapy , Fatty Acids, Unsaturated , Humans , Inflammation/drug therapy , Mice , Protein Serine-Threonine Kinases , Toll-Like Receptor 2
11.
BMC Cancer ; 23(1): 166, 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36805683

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of melanoma and other cancers. However, no reliable biomarker of survival or response has entered the clinic to identify those patients with melanoma who are most likely to benefit from ICIs. Glycosylation affects proteins and lipids' structure and functions. Tumours are characterized by aberrant glycosylation which may contribute to their progression and hinder an effective antitumour immune response. METHODS: We aim at identifying novel glyco-markers of response and survival by leveraging the N-glycome of total serum proteins collected in 88 ICI-naive patients with advanced melanoma from two European countries. Samples were collected before and during ICI treatment. RESULTS: We observe that responders to ICIs present with a pre-treatment N-glycome profile significantly shifted towards higher abundancy of low-branched structures containing lower abundances of antennary fucose, and that this profile is positively associated with survival and a better predictor of response than clinical variables alone. CONCLUSION: While changes in serum protein glycosylation have been previously implicated in a pro-metastatic melanoma behaviour, we show here that they are also associated with response to ICI, opening new avenues for the stratification of patients and the design of adjunct therapies aiming at improving immune response.


Subject(s)
Immune Checkpoint Inhibitors , Melanoma , Humans , Melanoma/drug therapy , Ambulatory Care Facilities , Europe , Polysaccharides
12.
Liver Int ; 43(5): 1056-1067, 2023 05.
Article in English | MEDLINE | ID: mdl-36779848

ABSTRACT

BACKGROUND & AIMS: Data regarding health-related quality of life (HRQoL) in primary sclerosing cholangitis (PSC) are sparse and have only been studied cross-sectionally in a disease which runs a fluctuating and unpredictable course. We aim to describe HRQoL longitudinally by using repeated measurements in a population-based cohort. METHODS: Every 3 months from May 2017 up to August 2020, patients received digital questionnaires at home. These included the EQ-5D, 5-D Itch, patient-based SCCAI and patient-based HBI. The SF-36, measuring HRQoL over eight dimensions as well as a physical component summary (PCS) and mental component summary (MCS) score, was sent annually. Data were compared with Dutch reference data and a matched IBD disease control from the population-based POBASIC cohort. Mixed-effects modelling was performed to identify factors associated with HRQoL. RESULTS: Three hundred twenty-eight patients completed 2576 questionnaires. A significant reduction of small clinical relevance in several mean HRQoL scores was found compared with the Dutch reference population: 46.4 versus 48.0, p = .018 for PCS and 47.5 versus 50.5, p = .004 for MCS scores. HRQoL outcomes were significantly negatively associated with coexisting active IBD (PCS -12.2, p < .001 and MCS -12.0, p < .001), which was not the case in case of quiescent IBD. Decreasing HRQoL scores were also negatively associated with increasing age (PCS -0.1 per 10 years, p = .002), female sex (PCS -2.8, p < .001), diagnosis of AIH overlap (PCS -3.7, p = .059), end-stage liver disease (PCS -3.7, p = .015) and presence of itch (PCS -9.2, p < .001 and MCS -3.1, p = .078). The odds of reporting a clinically relevant reduction in EQ-5D scores showed seasonal variation, being lowest in summer (OR = 0.48 relative to spring, p = .037). In patients with liver transplant, HRQoL outcomes were comparable to the Dutch general population. CONCLUSIONS: PSC patients report impaired HRQoL of small clinical relevance compared with the general population. After liver transplantation, HRQoL scores are at comparable levels to the general population. HRQoL scores are associated with potentially modifiable factors such as itch and IBD activity.


Subject(s)
Cholangitis, Sclerosing , Inflammatory Bowel Diseases , Humans , Female , Child , Quality of Life , Cohort Studies , Cholangitis, Sclerosing/epidemiology , Cholangitis, Sclerosing/complications , Surveys and Questionnaires , Inflammatory Bowel Diseases/complications
13.
Liver Int ; 43(3): 639-648, 2023 03.
Article in English | MEDLINE | ID: mdl-36328957

ABSTRACT

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is a progressive, cholestatic liver disease which greatly impacts the lives of individuals. Burden of disease due to shortened life expectancy and impaired quality of life is ill-described. The aim of this study was to assess long-term disease burden in a large population-based registry with regard to survival, clinical course, quality adjusted life years (QALYs), medical consumption and work productivity loss. METHODS: All PSC patients living in a geographically defined area covering ~50% of the Netherlands were included, together with patients from the three liver transplant centres. Survival was estimated by competing risk analysis. Proportional shortfall of QALYs during disease course was measured relative to a matched reference cohort using validated questionnaires. Work productivity loss and medical consumption were evaluated over time. RESULTS: A total of 1208 patients were included with a median follow-up of 11.2 year. Median liver transplant-free survival was 21.0 years. Proportional shortfall of QALYs increased to 48% >25 years after diagnosis. Patients had on average 12.4 hospital contact days among which 3.17 admission days per year, annual medical costs were €12 169 and mean work productivity loss was 25%. CONCLUSIONS: Our data quantify for the first time disease burden in terms of QALYs lost, clinical events, medical consumption, costs as well as work productivity loss, and show that all these are substantial and increase over time.


Subject(s)
Cholangitis, Sclerosing , Humans , Follow-Up Studies , Quality of Life , Netherlands , Cost of Illness
14.
Nature ; 547(7662): 173-178, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28658209

ABSTRACT

Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been conclusively resolved to specific functional variants. Here we report fine-mapping of 94 inflammatory bowel disease loci using high-density genotyping in 67,852 individuals. We pinpoint 18 associations to a single causal variant with greater than 95% certainty, and an additional 27 associations to a single variant with greater than 50% certainty. These 45 variants are significantly enriched for protein-coding changes (n = 13), direct disruption of transcription-factor binding sites (n = 3), and tissue-specific epigenetic marks (n = 10), with the last category showing enrichment in specific immune cells among associations stronger in Crohn's disease and in gut mucosa among associations stronger in ulcerative colitis. The results of this study suggest that high-resolution fine-mapping in large samples can convert many discoveries from genome-wide association studies into statistically convincing causal variants, providing a powerful substrate for experimental elucidation of disease mechanisms.


Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Inflammatory Bowel Diseases/genetics , Quantitative Trait Loci/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Binding Sites , Chromatin/genetics , Colitis, Ulcerative/genetics , Crohn Disease/genetics , Epigenesis, Genetic/genetics , Female , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium/genetics , Male , Middle Aged , Smad3 Protein/genetics , Transcription Factors/metabolism , Young Adult
15.
Int J Mol Sci ; 24(3)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36768705

ABSTRACT

Dystonia is a movement disorder in which patients have involuntary abnormal movements or postures. Non-motor symptoms, such as psychiatric symptoms, sleep problems and fatigue, are common. We hypothesise that the gut microbiome might play a role in the pathophysiology of the (non-)motor symptoms in dystonia via the gut-brain axis. This exploratory study investigates the composition of the gut microbiome in dystonia patients compared to healthy controls. Furthermore, the abundance of neuro-active metabolic pathways, which might be implicated in the (non-)motor symptoms, was investigated. We performed both metagenomic and 16S rRNA sequencing on the stool samples of three subtypes of dystonia (27 cervical dystonia, 20 dopa-responsive dystonia and 24 myoclonus-dystonia patients) and 25 controls. While microbiome alpha and beta diversity was not different between dystonia patients and controls, dystonia patients had higher abundances of Ruminococcus torques and Dorea formicigenerans, and a lower abundance of Butyrivibrio crossotus compared to controls. For those with dystonia, non-motor symptoms and the levels of neurotransmitters in plasma explained the variance in the gut microbiome composition. Several neuro-active metabolic pathways, especially tryptophan degradation, were less abundant in the dystonia patients compared to controls. This suggest that the gut-brain axis might be involved in the pathophysiology of dystonia. Further studies are necessary to confirm our preliminary findings.


Subject(s)
Dyskinesias , Dystonia , Dystonic Disorders , Gastrointestinal Microbiome , Mental Disorders , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics
16.
Hum Mol Genet ; 29(R1): R51-R58, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32588873

ABSTRACT

Our understanding of gut functioning and pathophysiology has grown considerably in the past decades, and advancing technologies enable us to deepen this understanding. Single-cell RNA sequencing (scRNA-seq) has opened a new realm of cellular diversity and transcriptional variation in the human gut at a high, single-cell resolution. ScRNA-seq has pushed the science of the digestive system forward by characterizing the function of distinct cell types within complex intestinal cellular environments, by illuminating the heterogeneity within specific cell populations and by identifying novel cell types in the human gut that could contribute to a variety of intestinal diseases. In this review, we highlight recent discoveries made with scRNA-seq that significantly advance our understanding of the human gut both in health and across the spectrum of gut diseases, including inflammatory bowel disease, colorectal carcinoma and celiac disease.


Subject(s)
Computational Biology/methods , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/pathology , Gene Expression Profiling , Single-Cell Analysis/methods , Transcriptome , Animals , Humans
17.
Clin Gastroenterol Hepatol ; 20(4): 798-805.e1, 2022 04.
Article in English | MEDLINE | ID: mdl-33453400

ABSTRACT

BACKGROUND & AIMS: Patients with inflammatory bowel disease are at increased risk of colorectal neoplasia (CRN) due to mucosal inflammation. As current surveillance guidelines form a burden on patients and healthcare costs, stratification of high-risk patients is crucial. Cigarette smoke reduces inflammation in ulcerative colitis (UC) but not Crohn's disease (CD) and forms a known risk factor for CRN in the general population. Due to this divergent association, the effect of smoking on CRN in IBD is unclear and subject of this study. METHODS: In this retrospective cohort study, 1,386 IBD patients with previous biopsies analyzed and reported in the PALGA register were screened for development of CRN. Clinical factors and cigarette smoke were evaluated. Patients were stratified for guideline-based risk of CRN. Cox-regression modeling was used to estimate the effect of cigarette smoke and its additive effect within the current risk stratification for prediction of CRN. RESULTS: 153 (11.5%) patients developed CRN. Previously described risk factors, i.e. first-degree family member with CRN in CD (p-value=.001), presence of post-inflammatory polyps in UC (p-value=.005), were replicated. Former smoking increased risk of CRN in UC (HR 1.73; 1.05-2.85), whereas passive smoke exposure yielded no effect. For CD, active smoking (2.20; 1.02-4.76) and passive smoke exposure (1.87; 1.09-3.20) significantly increased CRN risk. Addition of smoke exposure to the current risk-stratification model significantly improved model fit for CD. CONCLUSIONS: This study is the first to describe the important role of cigarette smoke in CRN development in IBD patients. Adding this risk factor improves the current risk stratification for CRN surveillance strategies.


Subject(s)
Cigarette Smoking , Colitis, Ulcerative , Colorectal Neoplasms , Inflammatory Bowel Diseases , Cigarette Smoking/adverse effects , Cigarette Smoking/epidemiology , Colitis, Ulcerative/pathology , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Humans , Inflammatory Bowel Diseases/complications , Retrospective Studies , Risk Factors , Smoking/adverse effects
18.
Gastroenterology ; 160(6): 1970-1985, 2021 05.
Article in English | MEDLINE | ID: mdl-33476671

ABSTRACT

BACKGROUND & AIMS: It is currently unclear whether reported changes in the gut microbiome are cause or consequence of inflammatory bowel disease (IBD). Therefore, we studied the gut microbiome of IBD-discordant and -concordant twin pairs, which offers the unique opportunity to assess individuals at increased risk of developing IBD, namely healthy cotwins from IBD-discordant twin pairs. METHODS: Fecal samples were obtained from 99 twins (belonging to 51 twin pairs), 495 healthy age-, sex-, and body mass index-matched controls, and 99 unrelated patients with IBD. Whole-genome metagenomic shotgun sequencing was performed. Taxonomic and functional (pathways) composition was compared among healthy cotwins, IBD-twins, unrelated patients with IBD, and healthy controls with multivariable (ie, adjusted for potential confounding) generalized linear models. RESULTS: No significant differences were observed in the relative abundance of species and pathways between healthy cotwins and their IBD-twins (false discovery rate <0.10). Compared with healthy controls, 13, 19, and 18 species, and 78, 105, and 153 pathways were found to be differentially abundant in healthy cotwins, IBD-twins, and unrelated patients with IBD, respectively (false discovery rate <0.10). Of these, 8 (42.1%) of 19 and 1 (5.6%) of 18 species, and 37 (35.2%) of 105 and 30 (19.6%) of 153 pathways overlapped between healthy cotwins and IBD-twins, and healthy cotwins and unrelated patients with IBD, respectively. Many of the shared species and pathways have previously been associated with IBD. The shared pathways include potentially inflammation-related pathways, for example, an increase in propionate degradation and L-arginine degradation pathways. CONCLUSIONS: The gut microbiome of healthy cotwins from IBD-discordant twin pairs displays IBD-like signatures. These IBD-like microbiome signatures might precede the onset of IBD. However, longitudinal follow-up studies are needed to infer a causal relationship.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Breast Neoplasms/epidemiology , Inflammatory Breast Neoplasms/microbiology , Adult , Antigens, Bacterial/biosynthesis , Case-Control Studies , Cross-Sectional Studies , Feces/microbiology , Female , Gastrointestinal Microbiome/physiology , Humans , Male , Metagenomics , Middle Aged , Netherlands/epidemiology , Phenotype , Risk Factors , Siderophores/biosynthesis , Twins, Dizygotic , Twins, Monozygotic , Young Adult
19.
PLoS Genet ; 15(3): e1008018, 2019 03.
Article in English | MEDLINE | ID: mdl-30849075

ABSTRACT

Several bacteria in the gut microbiota have been shown to be associated with inflammatory bowel disease (IBD), and dozens of IBD genetic variants have been identified in genome-wide association studies. However, the role of the microbiota in the etiology of IBD in terms of host genetic susceptibility remains unclear. Here, we studied the association between four major genetic variants associated with an increased risk of IBD and bacterial taxa in up to 633 IBD cases. We performed systematic screening for associations, identifying and replicating associations between NOD2 variants and two taxa: the Roseburia genus and the Faecalibacterium prausnitzii species. By exploring the overall association patterns between genes and bacteria, we found that IBD risk alleles were significantly enriched for associations concordant with bacteria-IBD associations. To understand the significance of this pattern in terms of the study design and known effects from the literature, we used counterfactual principles to assess the fitness of a few parsimonious gene-bacteria-IBD causal models. Our analyses showed evidence that the disease risk of these genetic variants were likely to be partially mediated by the microbiome. We confirmed these results in extensive simulation studies and sensitivity analyses using the association between NOD2 and F. prausnitzii as a case study.


Subject(s)
Gastrointestinal Microbiome/genetics , Host Microbial Interactions/genetics , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/microbiology , Adult , CARD Signaling Adaptor Proteins/genetics , Clostridiales/genetics , Clostridiales/isolation & purification , Clostridiales/pathogenicity , Faecalibacterium prausnitzii/genetics , Faecalibacterium prausnitzii/isolation & purification , Faecalibacterium prausnitzii/pathogenicity , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Humans , Inflammatory Bowel Diseases/etiology , Male , Middle Aged , Models, Genetic , Nod2 Signaling Adaptor Protein/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL